Exercise 8: Intensity and distance (and color) The method of standard candles and the inverse-square law of brightness

Size: px
Start display at page:

Download "Exercise 8: Intensity and distance (and color) The method of standard candles and the inverse-square law of brightness"

Transcription

1 Astronomy 100 Names: Exercise 8: Intensity and distance (and color) The method of standard candles and the inverse-square law of brightness From everyday experience you know that light sources become brighter when you move closer to them. The apparent brightness of the source is related to your distance from it. However, moving a light source twice as close to you does not make it twice as bright, though it may seem this way. Astronomically, this correlation between distance and intensity is of great importance, because it allows the determination of distances to distant stars and galaxies. You will determine the relationship experimentally and then use it to answer some astronomical questions. For this experiment, you will use a light detector (photocell) which enables you to make light intensity measurements that are more precise than those made by the human eye. The photocell converts light intensity to an electrical current, which can be measured with a current meter (ammeter). The current produced by the photocell is directly proportional to the amount of light falling on it. If the light intensity doubles, the meter reading will also double. Procedure (work in groups of two or three): A. Obtain a Vernier datalogging device and a Vernier photocell detector. B. Connect the photocell to the datalogger through the CH 1 port and make sure that the datalogger display shows light intensity. C. Obtain two meter sticks, a high intensity (standard bulb size) light source and a low intensity (small bulb) light source. Place the high intensity source on a level flat surface and plug it in. Do not turn it on yet. Lay out the meter sticks in a line directly away from the light source; make sure you are not in line with some other group's light source! D. Place the photocell 50 cm away from and pointing toward the unlit bulb and turn out the room lights. Take a measurement and write it down in Table 8.1 under the "" column. Don t forget to record the luminosity (wattage) of the bulb. 1. a. Does the intensity change for the depending on distance from the unlit bulb? If not, do you have to measure the for every distance you will be using? E. Turn on the bulb. Take measurements of source intensity from 30, 45, 60, 75 and 90 cm away. Take more measurements if you have time.

2 1. b. Should you enter this data into the "source" or "source and " column of Table 8.1? Then how do you calculate the "source" number? Table 8.1: High-intensity source W bulb distance (cm) source and light intensity (lumens) source F. Now replace the high intensity light bulb with one of a lower wattage. Follow steps D and E for the lower intensity bulb and record your data in table 8.2. Don t forget to record the luminosity (wattage) of the bulb. Table 8.2: Low-intensity source W bulb distance (cm) source and light intensity (lumens) source

3 2. a. Error analysis with the light bulb on, place the photocell at 30 cm and slowly swing the photocell so that it is not directly pointing at the light bulb. What happens to the intensity? b. Estimate the number of degrees away from the bulb you can point the photocell before an error of 10% is introduced. 3. Plot both your data sets on the same graph. Distance from source (cm) should be along the x-axis and light intensity (arbitrary units) should be along the y-axis. Draw in two smooth curves (use two different colors for the two different intensities) that best fit each set of data points; don't just draw straight line segments. Label the low-intensity and high-intensity curves. Attach the plot to the back of this exercise. 4. Looking at the graph: is the relationship between light intensity and distance linear? Is the relationship between light intensity and distance inverse? 5. a. Using the high-intensity curve on the graph, find the intensity of light at d = 40 cm. Divide the intensity by four. Find this new intensity on the high-intensity curve on the graph; what distance does this new intensity correspond to? Compared to 40 cm, how would you mathematically describe this new distance? b. Using the low-intensity curve on the graph, find the intensity of light at d = 40 cm. Divide the intensity by four. Find this new intensity on the low-intensity curve on the graph; what distance does this new intensity correspond to? Compared to 40 cm, how would you mathematically describe this new distance? c. In both these cases, quartering (multiplying by 1/4) the intensity led to what change in the distance? 6. Write a simple equation connecting I (the intensity of light) and d (the distance); use k for a proportionality constant. What you will have written is an example of an inverse-square law.

4 7. To test your new law, find the distance d at which the detector must be placed in order for the intensity to be one-ninth as much as the intensity at d = 100 cm. Hint: you may want to set up a ratio of two I s and cancel out the k s. 8. If one star is at a distance of 100 light years, how far away would a second star, of exactly the same luminosity (wattage) as the first, have to be to appear at one-ninth the brightness of the first? 9. If one star is at a distance of 100 light years, how far away would a second star, that is 9 times as luminous, have to be, to appear at the same brightness as the first? 10. Would you expect the inverse-square law to always hold accurately for the stars in the sky? Why or why not? 11. a. From your two measurements of intensity made at d = 30 cm, find the ratio of intensities between the high and low wattage bulbs, dividing the lower intensity by the higher intensity. Repeat this calculation for the d = 60 cm and d= 90 cm distances; are all the results nearly (within 20%, let's say) of each other? In other words, do you have consistency between the two curves? b. Now divide the luminosity (wattage) of the low intensity bulb by the luminosity (wattage) of the high intensity bulb. Is this fraction the same as the fraction you calculated in part a? NO. Why not? In other words, why don t the light intensities of the two bulbs scale simply as a function of the luminosity?

5 Astronomical magnitudes G. Copy the previous data or obtain new data to fill table 8.3 below. 12. a. The formula for calculating any type of magnitude is: Magnitude = -2.5 * log10(intensity of object) Fill in the magnitude column in the table. Table 8.3: Magnitudes Bulb Low wattage placed at a distance of 30 cm High wattage placed at a distance of 90 cm Bulb Low wattage placed at a distance of 60 cm High wattage placed at a distance of 60 cm Photocell intensity Photocell intensity Apparent visual magnitude Absolute visual magnitude b. Which type of visual magnitude is used to describe stellar and other astronomical object luminosity from Earth? Why is this type misleading when trying to determine the actual stellar luminosity? Photometry is the determination and use of the color spectrum of astronomical objects to determine the objects properties. Two properties you will investigate in this exercise are distance and age. The objects you will use are stars in various clusters in the Milky Way galaxy and beyond. This is known as the Color Index method of distance determination. Figuring out a color index As seen in Wien s Law, the color of a star is related to its temperature. So to figure out how far away or how old a star is, one needs to agree to a color index which anyone can use and will not be affected by the distance to the star (remember, the star should get dimmer when it s further away, not change color!).

6 With the advent of colored filters in color photography, this idea became easier to implement. One could take color time-exposure photos of the stars using various filters and then compare the results. 13. a. Given a red star and a blue star of equal magnitude (apparent brightness) and given a yellow filter, which would appear brighter? b. Given a red star and a blue star of equal magnitude (apparent brightness) and given a blue filter, which would appear brighter? Hipparchus, in the second century BC, decided that a star of magnitude one (first magnitude as bright as some of the brightest stars in the sky) should be 100 times as bright as a star of magnitude six (sixth magnitude the limit of human vision). This works out to be a times increase in brightness for every lower magnitude (Hipparchus didn t work this out this work was done in the eighteenth century AD). So the magnitude scale is a logarithmic scale, just like the Richter scale for earthquake magnitudes. In the early twentieth century, it was shown that if one measured the magnitude of star s brightness using an image of the star taken with a yellow filter (problem 1a call this the V or visual index) and if one did the same with a blue filter (problem 1b the B or blue index), then the quantity B-V (B minus V) could be related to the star s temperature. This is the B-V color index. 14. a. What color stars tended to have the hottest surface temperature? the coolest? b. What temperature stars tend to have negative B-V index numbers? What temperature stars tend to have positive B-V index numbers? A very basic correlation using the color index By the 1920 s, various astronomers had evidence that the temperature of a star was also related to the star s luminosity (the intrinsic brightness of a star). So, to quantify the luminosity without using non-standard brightness units, astronomers developed the absolute magnitude scale, which is the magnitude of a star if it could be viewed from a standard 10 parsecs away). This takes away the distance-dimming effect. When the absolute magnitude (M) was plotted against the B-V index for lots of stars, the correlation became apparent.

7 For instance, for a particular star cluster, these data were derived: Star Brightness Color Number in Visual B-V Magnitudes Plot the B-V color index (x-axis) versus the absolute brightness in visual magnitudes (y-axis) on standard graph paper. One weird thing: put 0 high up on the y-axis, and number sequentially downwards. Make sure you have room for the negative B-V values. Remember to label axes and title the graph. 16. Using an appropriate diagram in your textbook, label the various areas of your diagram that classify the various stars.

Exercise 4: Intensity and distance (and color) The method of standard candles and the inverse-square law of brightness

Exercise 4: Intensity and distance (and color) The method of standard candles and the inverse-square law of brightness Astronomy 100 Names: Exercise 4: Intensity and distance (and color) The method of standard candles and the inverse-square law of brightness From everyday experience you know that light sources become brighter

More information

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! NAME: 1. Define using complete sentences: Globular Cluster: OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! Open Cluster: Main Sequence: Turnoff point: Answer the following

More information

Assignment #9 Star Colors & the B-V Index

Assignment #9 Star Colors & the B-V Index Name Class Date Assignment #9 Star Colors & the B-V Index Millions of stars are scattered across the sky. Astronomers want to study these stars as carefully as possible. This means measuring everything

More information

Guiding Questions. Measuring Stars

Guiding Questions. Measuring Stars Measuring Stars Guiding Questions 1. How far away are the stars? 2. What is meant by a first-magnitude or second magnitude star? 3. Why are some stars red and others blue? 4. What are the stars made of?

More information

For instance, for a particular star cluster, these data were derived:

For instance, for a particular star cluster, these data were derived: Astronomy 100 Name(s): Exercise 5: The H-R diagram and spectroscopy A very basic correlation using the color index By the 1920 s, various astronomers had evidence that the temperature of a star was also

More information

The magnitude system. ASTR320 Wednesday January 30, 2019

The magnitude system. ASTR320 Wednesday January 30, 2019 The magnitude system ASTR320 Wednesday January 30, 2019 What we measure: apparent brightness How bright a star appears to be in the sky depends on: How bright it actually is Luminosity and its distance

More information

AS 102 Lab The Luminosity of the Sun

AS 102 Lab The Luminosity of the Sun AS 102 Lab The Luminosity of the Sun The Problem SOHO Image of the Sun The luminosity of a light source whether it is a star or the Sun or a light bulb is a measure of the actual light output of the source.

More information

The principle of geometrical parallax

The principle of geometrical parallax The principle of geometrical parallax One of the hardest things to do in astronomy is to determine how far away things are. Does the star Vega in Lyra appear exceptionally bright because it s an intrinsically

More information

The Distances and Ages of Star Clusters

The Distances and Ages of Star Clusters Name: Partner(s): Lab #7 The Distances and Ages of Star Clusters 0.1 Due July 14th Very few stars are born isolated. Instead, most stars form in small groups, known as clusters. The stars in a cluster

More information

Which property of a star would not change if we could observe it from twice as far away? a) Angular size b) Color c) Flux d) Parallax e) Proper Motion

Which property of a star would not change if we could observe it from twice as far away? a) Angular size b) Color c) Flux d) Parallax e) Proper Motion Exam #1 is in class next monday 25 multiple-choice questions 50 minutes Similar to questions asked in class Review sheet to be posted this week. We will have two 1-hour review sessions Friday 5-6pm (with

More information

Astronomy 102 Lab: Distance to the Pleiades

Astronomy 102 Lab: Distance to the Pleiades Name: Astronomy 102 Lab: Distance to the Pleiades Please bring your textbook to class. Use a pencil when plotting the points on the graphs. Pre-Lab Assignment: From the planetarium, you know the Pleiades

More information

( ) = 5log pc NAME: OPEN CLUSTER PRELAB

( ) = 5log pc NAME: OPEN CLUSTER PRELAB NAME: OPEN CLUSTER PRELAB 1. Read over the material in the lab script that discusses the background of colormagnitude (CM) diagrams (these can also be called H-R diagrams). Explain the CM diagram: What

More information

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY P R O J E C T 3 COLOUR IN ASTRONOMY Objective: Explain what colour means in an astronomical context and its relationship with the temperature of a star. Learn how to create colour-colour diagrams and how

More information

How do we know the distance to these stars? The Ping Pong Ball Challenge -Devise a method for determining the height of the ping pong ball above the floor. -You are restricted to the floor. -You can only

More information

Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2)

Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2) Name Date Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2) Millions of stars are scattered across the sky. Astronomers want to study these stars as carefully as possible. This means

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Reading and Announcements Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Stars The stars are distant and unobtrusive, but bright and enduring as our fairest

More information

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax The Family of Stars Chapter 13 Measuring the Properties of Stars 1 Those tiny glints of light in the night sky are in reality huge, dazzling balls of gas, many of which are vastly larger and brighter than

More information

COLOR MAGNITUDE DIAGRAMS

COLOR MAGNITUDE DIAGRAMS COLOR MAGNITUDE DIAGRAMS What will you learn in this Lab? This lab will introduce you to Color-Magnitude, or Hertzsprung-Russell, Diagrams: one of the most useful diagnostic tools developed in 20 th century

More information

OPEN CLUSTERS LAB. I. Introduction: II. HR Diagram NAME:

OPEN CLUSTERS LAB. I. Introduction: II. HR Diagram NAME: NAME: OPEN CLUSTERS LAB What will you learn in this Lab? An open cluster is a group of stars that were born at the same time and can be studied to determine both the distance and age of the member stars

More information

Properties of Stars. N. Sharp (REU/NOAO/AURA/NSF)

Properties of Stars. N. Sharp (REU/NOAO/AURA/NSF) Properties of Stars N. Sharp (REU/NOAO/AURA/NSF) What properties of the stars can we determine just from this image? Measuring Stars Measuring Stars Information you can get from 1 image: Position on the

More information

Astronomy 201: Cosmology, Fall Professor Edward Olszewski and Charles Kilpatrick

Astronomy 201: Cosmology, Fall Professor Edward Olszewski and Charles Kilpatrick Astronomy 201: Cosmology, Fall 2013 Professor Edward Olszewski and Charles Kilpatrick Lab 3, Cluster Hertzsprung-Russell Diagrams and the Age of Stars Due October 22, Worth 32 points You may work in groups

More information

Hertzsprung-Russel Diagrams and Distance to Stars

Hertzsprung-Russel Diagrams and Distance to Stars Chapter 10 Hertzsprung-Russel Diagrams and Distance to Stars 10.1 Purpose In this lab, we will explore how astronomer classify stars. This classificatin one way that can be used to determine the distance

More information

Astr 102 Lec 6: Basic Properties of Stars

Astr 102 Lec 6: Basic Properties of Stars 1 Astr 102 Lec 6: Basic Properties of Stars Stars are made up entirely of gas. Main properties: luminosity, mass, Text temperature, chemical composition, radius, evolutionary stage Main sequence 2 Questions

More information

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Jason Kendall, William Paterson University, Department of Physics HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Background Purpose: HR Diagrams are central to understanding

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

The Hertzsprung-Russell Diagram and Stellar Evolution

The Hertzsprung-Russell Diagram and Stellar Evolution The Hertzsprung-Russell Diagram and Stellar Evolution Names: The H-R Diagram and Stellar Properties Activity 1. In which corner of the diagram (upper right, upper left, lower right, or lower left) would

More information

The Hertzsprung-Russell Diagram

The Hertzsprung-Russell Diagram The Hertzsprung-Russell Diagram Name: Date: 1 Introduction As you may have learned in class, the Hertzsprung-Russell Diagram, or the HR diagram, is one of the most important tools used by astronomers:

More information

MEASURING DISTANCE WITH CEPHEID VARIABLES

MEASURING DISTANCE WITH CEPHEID VARIABLES Name Date Partner(s) Grade / MEASURING DISTANCE WITH CEPHEID VARIABLES Written by T. Jaeger INTRODUCTION Cepheid stars (named after the class prototype star, DELTA CEPHEI) are of great interest because

More information

TWINKLE, TWINKLE LITTLE STAR HOW ASTRONOMERS KNOW WHAT YOU ARE. View the white lights in the room with the diffraction glasses. What do you see?

TWINKLE, TWINKLE LITTLE STAR HOW ASTRONOMERS KNOW WHAT YOU ARE. View the white lights in the room with the diffraction glasses. What do you see? Name Partner(s) Section Date TWINKLE, TWINKLE LITTLE STAR HOW ASTRONOMERS KNOW WHAT YOU ARE Since journeys to the stars are not possible at this time, astronomers use every source of information available

More information

Pr P ope p rti t es s of o f St S a t rs

Pr P ope p rti t es s of o f St S a t rs Properties of Stars Distances Parallax ( Triangulation ): - observe object from two separate points - use orbit of the Earth (1 AU) - measure angular shift of object - angle depends on distance to object

More information

Lecture Tutorial: Using Astronomy Picture of the Day to learn about the life cycle of stars

Lecture Tutorial: Using Astronomy Picture of the Day to learn about the life cycle of stars Lecture Tutorial: Using Astronomy Picture of the Day to learn about the life cycle of stars For this exercise, you will need an ipad or computer and access to the internet. We will be using the website

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0. Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

More information

Background and Theory

Background and Theory Homework 4. Cluster HR Diagrams and the Age of Stars NAME: Due: Thursday, October 7, 2010 In Class Astro 201: Cosmology Prof. Bechtold In this assignment, we are going to measure the age of stars in star

More information

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam]

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Although we can be certain that other stars are as complex as the Sun, we will try to

More information

Galaxies. Hubbleʼs Law. Author: Sarah Roberts

Galaxies. Hubbleʼs Law. Author: Sarah Roberts Galaxies Hubbleʼs Law Author: Sarah Roberts Hubbleʼs Law Introduction The first galaxies were identified in the 17th Century by the French astronomer Charles Messier, although at the time he did not know

More information

LAB: Photometry of the Pleiades Cluster

LAB: Photometry of the Pleiades Cluster LAB: Photometry of the Pleiades Cluster ASTR 203 - Instructors Olszewski & Rigby Due IN CLASS on Oct. 30 You may work with 1 partner. If you do, only turn in 1 assignment with both your names on it! You

More information

Astron 104 Laboratory #8 The H-R Diagram

Astron 104 Laboratory #8 The H-R Diagram Name: Date: Section: Astron 104 Laboratory #8 The H-R Diagram Section 10.1, 10.5 Introduction The Hertzsprung-Russell diagram, or H-R diagram for short, relates two fundamental properties of stars and

More information

Stars I. Distance and Magnitude. How Does One Measure Distance? Distances. Stellar Parallax. Distance Equation some examples!

Stars I. Distance and Magnitude. How Does One Measure Distance? Distances. Stellar Parallax. Distance Equation some examples! Stars I Distance and Magnitude Chapter 17 Why doesn t comparison work? Distances The nearest star (Alpha Centauri) is 40 trillion kilometers away(4 ly) Distance is one of the most important quantities

More information

Chapter 9: Measuring the Stars

Chapter 9: Measuring the Stars Chapter 9: Measuring the Stars About 10 11 (100,000,000,000) stars in a galaxy; also about 10 11 galaxies in the universe Stars have various major characteristics, the majority of which fall into several

More information

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift 17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

More information

Physics 1401 Introduction to Astronomy Laboratory Manual

Physics 1401 Introduction to Astronomy Laboratory Manual Physics 1401 Introduction to Astronomy Laboratory Manual Fall 2006 Dr. Keith Mon 5:30-8:30 Wed 2:30-5:30 Thurs 5:30-8:30 Text by R. Thompson, J. Christensen, T. Bykov, and W. Keith, and for the Virtual

More information

Characterizing Stars

Characterizing Stars Characterizing Stars 1 Guiding Questions 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances Guiding Questions Characterizing Stars 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

Making an H-R diagram Earth & Sky

Making an H-R diagram Earth & Sky Making an H-R diagram Earth & Sky Name: Introduction Astronomers have discovered relationships between the surface temperatures and luminosities (brightnesses) of stars. These relationships are often presented

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

Mass-Luminosity and Stellar Lifetimes WS

Mass-Luminosity and Stellar Lifetimes WS Name Mass-Luminosity and Stellar Lifetimes WS The graph shows the Mass-Luminosity Relationship for main sequence stars. Use it to answer questions 1-3. 1) A star with a mass of 0.5 solar masses would be

More information

Temperature, Blackbodies & Basic Spectral Characteristics.

Temperature, Blackbodies & Basic Spectral Characteristics. Temperature, Blackbodies & Basic Spectral Characteristics. Things that have one primary temperature but also exhibit a range of temperatures are known in physics as blackbodies. They radiate energy thermally.

More information

Name: Partner(s): 1102 or 3311: Desk # Date: NGC 6633

Name: Partner(s): 1102 or 3311: Desk # Date: NGC 6633 Name: Partner(s): 1102 or 3311: Desk # Date: NGC 6633 Determining the Age of a Cluster Purpose Understand how HR diagrams reveal information about stellar evolution Use an HR diagram to determine the age

More information

The magnitude scale. Why do we continue to use this system? There are several of reasons:

The magnitude scale. Why do we continue to use this system? There are several of reasons: The magnitude scale Why use magnitudes? One of the most fundamental properties of a star is its brightness. Astronomers measure stellar brightness in units called magnitudes, which seem at first counterintuitive

More information

Astronomical "color"

Astronomical color Astronomical "color" What color is the star Betelgeuse? It's the bright star at upper left in this picture of Orion taken by a student at the RIT Observatory. Orange? Red? Yellow? These are all reasonable

More information

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Properties of Stars (continued) Some Properties of Stars. What is brightness? Properties of Stars (continued) Some Properties of Stars Luminosity Temperature of the star s surface Mass Physical size 2 Chemical makeup 3 What is brightness? Apparent brightness is the energy flux (watts/m

More information

HOMEWORK - Chapter 17 The Stars

HOMEWORK - Chapter 17 The Stars Astronomy 20 HOMEWORK - Chapter 7 The Stars Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate sheet

More information

Tuesday, Thursday 2:30-3:45 pm. Astronomy 100. Tom Burbine

Tuesday, Thursday 2:30-3:45 pm.   Astronomy 100. Tom Burbine Astronomy 100 Tuesday, Thursday 2:30-3:45 pm Tom Burbine tburbine@mtholyoke.edu www.xanga.com/astronomy100 OWL assignment (Due Today) There is be an OWL assignment due on Thursday April 14 at 11:59 pm.

More information

PH104 Lab 5 Stellar Classification Pre-Lab

PH104 Lab 5 Stellar Classification Pre-Lab Name: Lab Time: 1 PH104 Lab 5 Stellar Classification Pre-Lab 5.1 Goals This is a series of labs designed to help is in understanding the nature and lives of stars. There are 3 total labs in this sequence.

More information

Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

More information

Stars: Stars and their Properties

Stars: Stars and their Properties Stars: Stars and their Properties Astronomy 110 Class 10 WHEN I heard the learn d astronomer; When the proofs, the figures, were ranged in columns before me; When I was shown the charts and the diagrams,

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called

Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called Measuring the Stars How to measure: Distance Stellar motion Luminosity Temperature Size Evolutionary stage (H-R diagram) Cosmic distances Mass The measurement of distances The family of distance-measurement

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet Student Name: Lab TA Name: A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet One of the most basic physical properties of a star is its luminosity, the rate at which it radiates energy

More information

Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford

Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford You are going to work with some famous astronomical data in this homework.

More information

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB WEEK 1. Introduction D. E. McLaughlin January 2011 The purpose of this lab is to introduce you to some astronomical terms

More information

Lab: Distance to the Globular Cluster M15 Containing RR Lyrae Stars

Lab: Distance to the Globular Cluster M15 Containing RR Lyrae Stars Astronomy 1100 Name Lab: Distance to the Globular Cluster M15 Containing RR Lyrae Stars Distance to Stars: This distance to stars, star clusters and galaxies is an essential piece of information in astronomy.

More information

Question Details UNCAstro101L1 5.IL.001. [ ]

Question Details UNCAstro101L1 5.IL.001. [ ] Lab 5: Distance Ladder II: Standard Candles (T) (2628698) Due: Fri Nov 7 2014 12:00 PM EST Question 1 Instructions Lab 5: The Cosmic Distance Ladder II: Standard Candles Read the lab before attending lab.

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

A blue flame is hotter than a yellow one.

A blue flame is hotter than a yellow one. CHAPTER 19 1 Stars SECTION Stars, Galaxies, and the Universe BEFORE YOU READ After you read this section, you should be able to answer these questions: Why are stars different colors? How can scientists

More information

PHYS-1050 Measuring Cosmic Distances Spring 2013

PHYS-1050 Measuring Cosmic Distances Spring 2013 Name: 1 Introduction This lab will introduce the concepts of distance modulus and using supernovae as a measuring tool to determine the distances to galaxies beyond our own. Read through this information

More information

Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October points Profs. Rieke

Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October points Profs. Rieke Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October 31 30 points Profs. Rieke You are going to work with some famous astronomical data in this homework. The image data

More information

Obtain one of the laminated sheets, and classify the numbered objects by color (hopefully obvious) and by shape:

Obtain one of the laminated sheets, and classify the numbered objects by color (hopefully obvious) and by shape: Astronomy 100 Name(s): Exercise 8: Galaxies and the Hubble Law The large-scale structure of the universe is governed by gravity. The Sun orbits the center of our galaxy, the Milky Way. The Milky Way, in

More information

Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass. Dr. Ugur GUVEN

Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass. Dr. Ugur GUVEN Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass Dr. Ugur GUVEN Space Science Distance Definitions One Astronomical Unit (AU), is the distance from the Sun to the Earth.

More information

MIT Invitational, Jan Astronomy C. 2. You may separate the pages, but do not forget to put your team number at the top of all answer pages.

MIT Invitational, Jan Astronomy C. 2. You may separate the pages, but do not forget to put your team number at the top of all answer pages. MIT Invitational, Jan 2019 Astronomy C Competitors: School name: Team number: INSTRUCTIONS 1. Please turn in all materials at the end of the event. 2. You may separate the pages, but do not forget to put

More information

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018 Hertzprung-Russel and colormagnitude diagrams ASTR320 Wednesday January 31, 2018 H-R diagram vs. Color- Magnitude Diagram (CMD) H-R diagram: Plot of Luminosity vs. Temperature CMD: Plot of magnitude vs.

More information

Marian Physics! Apparent Magnitude. Flat Prairie Publishing

Marian Physics! Apparent Magnitude. Flat Prairie Publishing Marian Physics! Apparent Flat Prairie Publishing Apparent Assignment Apparent Apparent The scale used in astronomy to measure the brightness of stars is steeped in history and perhaps not a whole lot of

More information

INTRODUCTION TO THE TELESCOPE

INTRODUCTION TO THE TELESCOPE AST 113/114 Fall 2014 / Spring 2016 NAME: INTRODUCTION TO THE TELESCOPE What will you learn in this Lab? For a few of the labs this semester, you will be using an 8-inch Celestron telescope to take observations.

More information

Lab 1: Measurement Errors Adapted from Holtzman's Intro Lab for Astr110

Lab 1: Measurement Errors Adapted from Holtzman's Intro Lab for Astr110 Lab 1: Measurement Errors Adapted from Holtzman's Intro Lab for Astr110 Purpose: to give students practice making measurements and estimating error, as an introduction to understanding measurements in

More information

Open Cluster Research Project

Open Cluster Research Project Open Cluster Research Project I. Introduction The observational data indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium and a trace of other elements, something triggers

More information

Parallax: Measuring the distance to Stars

Parallax: Measuring the distance to Stars Measuring the Stars Parallax: Measuring the distance to Stars Use Earth s orbit as baseline Parallactic angle = 1/2 angular shift Distance from the Sun required for a star to have a parallactic angle of

More information

The Sun (chapter 14) some of this is review from quiz 3, but you should

The Sun (chapter 14) some of this is review from quiz 3, but you should Astro20 / Harpell Topics for Quiz 4 The quiz will have 20 multiple choice questions; several "fill in the blanks" about five short essay questions that may require sketches.. If you can answer everything

More information

Properties of Stars. 1.1 Brightnesses of Stars

Properties of Stars. 1.1 Brightnesses of Stars Properties of Stars 1.1 Brightnesses of Stars I m sure you have noticed that some stars are very bright, others less bright, and some are quite dim. There is a true brightness of a star and an apparent

More information

Lab 4, part one: Electric and magnetic fields

Lab 4, part one: Electric and magnetic fields Astronomy 102 Name: Lab 4, part one: Electric and magnetic fields Learning outcome: Ultimately, to understand how a changing electric field induces a magnetic field, and how a changing magnetic field induces

More information

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Hubble s Law: Finding the Age of the Universe

Hubble s Law: Finding the Age of the Universe Lab 16 Name: Hubble s Law: Finding the Age of the Universe 16.1 Introduction In your lecture sessions (or the lab on spectroscopy), you will find out that an object s spectrum can be used to determine

More information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information Name: Astro 102 S17 Test 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Your test is Version A. Please fill in the circle for A for this question on

More information

Lab 8: Stellar Classification and the H-R Diagram

Lab 8: Stellar Classification and the H-R Diagram Name: Section: Date: Lab 8: Stellar Classification and the H-R Diagram 1 Introduction Stellar Classification As early as the beginning of the 19th century, scientists have studied absorption spectra in

More information

VARIABLE STARS. What will you learn in this Lab?

VARIABLE STARS. What will you learn in this Lab? VARIABLE STARS What will you learn in this Lab? This lab will cover three of the main types of variable stars that we observe in our night sky: RR Lyrae stars, Cepheid variable stars and Eclipsing Binary

More information

Properties of Stars & H-R Diagram

Properties of Stars & H-R Diagram Properties of Stars & H-R Diagram What is a star? A cloud of gas, mainly hydrogen and helium The core is so hot/dense that nuclear fusion can occur. The fusion converts light nuclei (elements) into heavier

More information

Q25: Record the wavelength of each colored line according to the scale given.

Q25: Record the wavelength of each colored line according to the scale given. C. Measurement Errors and Uncertainties The term "error" signifies a deviation of the result from some "true" value. Often in science, we cannot know what the true value is, and we can only determine estimates

More information

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift 17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

More information

Lab Title: Parallax and Astronomical Distances. Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses.

Lab Title: Parallax and Astronomical Distances. Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses. Lab Title: Parallax and Astronomical Distances Equipment: Sextant Meter sticks (or tape measures) Calipers Magnetic compasses Introduction: Since we cannot travel to most celestial objects in order to

More information

Introduction -X +X. Front of Room

Introduction -X +X. Front of Room Distances and Magnitudes of Stars Credit: Developed by Beth Bell and Neal Sumerlin, Lynchburg College (Virginia) Data from Internet Stellar Database: http://www.stellar-database.com/ Introduction If we

More information

The distance modulus in the presence of absorption is given by

The distance modulus in the presence of absorption is given by Problem 4: An A0 main sequence star is observed at a distance of 100 pc through an interstellar dust cloud. Furthermore, it is observed with a color index B-V = 1.5. What is the apparent visual magnitude

More information

Announcements. Office hours this Tuesday will be 1-2 pm.

Announcements. Office hours this Tuesday will be 1-2 pm. Announcements Scores for first exam on ICON The average was 53.4 or 67%. The curve is A:80-68, B:64-56, C:52-40, D:36-32, F < 30. Material for problem about Kepler satellite was not adequately covered,

More information

Types of Stars and the HR diagram

Types of Stars and the HR diagram Types of Stars and the HR diagram Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted! See

More information

Stars. Properties of Stars

Stars. Properties of Stars Stars Properties of Stars Do all stars appear the same? How are they different? Which one looks the coolest? Hottest? Are they all the same brightness? Do they all look the same size? Luminosity: Amount

More information

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch)

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Name: Speed of waves Group Members: Date: TA s Name: Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Objectives 1. To directly calculate the speed of waves in a stretched

More information

INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram

INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram OBJECTIVE: To become familiar with the Hertzsprung-Russell diagram and the method of spectroscopic parallax. DISCUSSION: The Hertzsprung-Russell

More information

ClassAction: Stellar Properties Module Instructor s Manual

ClassAction: Stellar Properties Module Instructor s Manual ClassAction: Stellar Properties Module Instructor s Manual Table of Contents Section 1: Warm-up Questions...3 Temperature and Color.....4 Section 2: General Questions.....5 Apparent Magnitude and Brightness....6

More information

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 17 Astronomy Today 8th Edition Chaisson/McMillan Chapter 17 Measuring the Stars Units of Chapter 17 17.1 The Solar Neighborhood 17.2 Luminosity and Apparent Brightness 17.3 Stellar

More information