Atomic Theory: Spectroscopy and Flame Tests

Size: px
Start display at page:

Download "Atomic Theory: Spectroscopy and Flame Tests"

Transcription

1 Atomic Theory: Spectroscopy and Flame Tests Introduction: When sunlight strikes your skin, you feel its heat. This is a sign that you are absorbing some of the sun's energy. Light is only one form of energy known as electromagnetic radiation. The electromagnetic spectrum below shows all of the other forms of radiation: visible light, X-rays, radio waves, infrared (IR), ultraviolet (UV) rays and microwaves. Light that can be seen with the naked eye falls within a small range of wavelengths (~ nm) called the visible region. Note that these different forms of radiation possess different energies and present different potential health hazards. For example, patients often wear lead shields when getting dental X-rays, and sunscreens are used to block UVA or UVB rays, forms of ultraviolet radiation that can not only tan skin but can also cause severe sunburns. However, people usually do not worry about exposure to the radio waves being broadcast throughout a city, so they can all listen to their favorite station. These different forms of radiation have electric and magnetic components that travel in the form of a wave. Imagine throwing a pebble into a still pond and watching the circular ripples moving outward. Like those ripples, each energy wave has a series of high points known as crests and a series of low points known as troughs. The figure below shows two different waves : λ A crest λ B trough The wavelength, symbolized by the Greek letter lambda (λ), is the distance between two wave crests, which is equal to the distance between two troughs. Notice that the wavelength for the top wave, indicated by λ A, is greater than the wavelength for the bottom wave, λ B. Since energy waves move, we can count the number of crests or peaks that pass a given point in one second. GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 1 of 9

2 This is called the wave s frequency, which is symbolized by the Greek letter nu (v) and measured in units of cycles per second called Hertz (Hz = 1/s = s -1 ). For two waves moving at the same speed, the longer the wavelength, the fewer crests or troughs that pass per second. Thus, the frequency of waves is inversely proportional to their wavelengths. These two properties can be related to one another using a proportionality constant equal to the speed of the wave. Light and other forms of energy move at the fastest speed possible in a vacuum, defined as the speed of light. The speed of light is given the symbol c and is exactly equal to m/s. For convenience sake, the speed of light is often rounded to m/s. Since this value is rounded, we don t use it to limit significant figures in calculations. Frequency and wavelength are related according to the following equation: c = λ v Equation 1 Because the heat emitted by the sun and other energy sources is constant, most scientists believed that energy existed as continuous waves. This belief continued for centuries until a German physicist named Max Planck proposed a controversial new theory: Energy was not only a wave but also a particle. Based on his experiments on Blackbody radiation, Planck theorized that energy is emitted in small bundles called quanta or quantum for a single bundle, which led to the theory s name: quantum mechanics. Each quantum of energy has a specific frequency associated with it, and the frequency is directly proportional to its energy: E = hv h=6.626 x J s Equation 2 where h is Planck's constant, which is equal to x J s. Albert Einstein later applied Planck s theory to light, so a particle of light is now called a photon. Given its wavelength, the energy of a photon or other kind of energy can be determined by combining Equations 1 and 2. In this lab, you will calculate the wavelength, frequency, and/or energy of various forms of electromagnetic radiation. I. USING LIGHT AND COLOR TO ANALYZE SAMPLES A spectrophotometer (often abbreviated as Spec-20 ) is an instrument that measures the intensity of a light beam passing through a solution. Most Spec-20 s operate in the visible and IR regions; for example, the Genesys Spec-20 s used in our labs use wavelengths ranging from 325 nm to 1100 nm. Spec-20 s generally have wavelength control buttons, a display, and a zero button. Inside, there is a white light source, a prism to separate the white light into the spectrum of colors (each with a different wavelength), a sample compartment, and a detector. Spec-20 s are generally used to analyze colored solutions. Light of a given wavelength (selected by the control buttons) passes through the sample, hits the detector, and the detector measures the solution s absorbance (A), the amount of light absorbed by the solution s molecules and/or GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 2 of 9

3 ions. In general, darker solutions are more concentrated (i.e., containing more molecules or ions), and thus have a higher absorbance. In this experiment, you will use a Spec-20 to determine the color of light at various wavelengths. Note that as you change the wavelength you are actually turning the prism so different colors shine through the slit onto the sample. II. ATOMIC EMISSION SPECTRA AND FLAME TESTS The sun is 93 million miles away, and other stars are many light years away. (Note that one light year = six trillion miles or 6 x miles). In spite of these great distances, the elements in stars can be determined by analyzing the light they give off since the atoms of every element selectively absorb and emit light of specific wavelengths, and thus, specific energies. These characteristic wavelengths account for the different colors substances emit when heated. The unique colors emitted by each element provided experimental evidence for Danish physicist Neils Bohr to propose that electrons in an atom occupy orbitals, and each orbital has a specific energy. Because negatively charged electrons are attracted to the positively charged nucleus, they prefer to be in the lowest energy orbitals close to the nucleus; thus, an atom is in its ground (or lowest energy) state when its electrons occupy the lowest energy orbitals. However, when atoms are heated, they absorb the specific energies needed for their electrons to jump up to higher energy orbitals. Now, the atom is in an excited state, which is unstable. Since the electrons prefer to be closer to the nucleus, they quickly return to lower energy orbitals, and the excess energy is emitted. When the energy emitted falls within the visible range, specific colors are observed. Since every element has a different number of protons and electrons, then the energy gap between its orbitals varies. As a result, different elements release light at different wavelengths, and each element emits a characteristic emission spectrum, often called an atomic fingerprint. When an element is heated, it may emit a characteristic color, usually corresponding to one of the colors in its emission spectrum. This accounts for the different colors observed with fireworks. In this experiment, you will observe the characteristic colors given off by various elements using flame tests and then use your observations to identify an unknown. III. ABSORPTION AND EMISSION SPECTRA The third part of this lab involves an interactive online tutorial to help explain the process electrons go through when emission and absorption spectra are obtained from pure substances. Procedure: PART I. SPECTROPHOTOMETRIC ANALYSIS OF LIGHT Turn on the Spec-20 Genesys spectrophotometer, using the switch on the back side of the instrument at the start of lab; it will take about 15 minutes to warm up before use. On the top right of the instrument is a sample holder that holds the sample cells, called cuvettes. Never insert chemicals directly into the Spec-20, or you will contaminate and damage it. To the left of the sample holder is a panel of buttons that control the wavelength (in nanometers) and output (percent transmittance or absorbance) settings. The up/down arrows by GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 3 of 9

4 wavelength turn the prism-like device in the Spec-20, so light of only one wavelength strikes the sample in the cuvette. Use the up/down arrows to adjust the wavelength to 400 nm. A piece of filter paper will be placed in the sample holder to reflect the light beam within the spectrophotometer. Stand where each student can see the side of the filter paper that faces the light source. You should see a tiny dot of color on the paper. The color observed is the color of light with a wavelength of 400 nm. Use the up/down arrows to scroll through wavelength values from 400 nm to 750 nm in 25 nm increments to find the colors corresponding to the different wavelengths of the visible spectrum. Use colored pencils to color in the spectrum in the box on your report sheet to show the correlation between color and wavelength. Note: There will be many more shades of color than the seven used in the often-used pneumonic device ROYGBIV (which means: Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Therefore, you may have to use some creative color blending of colors. PART II: Gas Discharge Demonstration Your instructor will show samples of gas collected in thin glass tubes known as gas discharge tubes. The ends of the tubes have electrodes that allow a current to pass through the gas and light up. When inserted into a voltage source, the samples will glow a characteristic color. When the light is diffracted (e.g., with a prism or the diffraction glasses we will be using in class), you can see the separate spectral lines that make up each sample. In the 2 boxes at the top of your Lab Report, draw color representations of the diffracted light from the two gas samples your instructor shows. PART III: FLAME TESTS **Lab Notebook** In this lab, you will record the flame test data directly into your lab notebook. Read through the directions for the flame tests at least once and then think about how you would create a table to organize your experimental data. Here are a couple of hints: You will be testing 6 known solutions: LiNO 3,Cu(NO 3 ) 2,Sr(NO 3 ) 2, Ba(NO 3 ) 2,KNO 3, and NaNO 3. You will label test tubes for your known solutions (from 1-6). Each known solution should correspond to a unique number. For each solution, you will need to describe the emission color of the flame during the test. You will also be testing an unknown solution. You will need to describe the emission color of the flame and determine the identity of the solution. You will conduct flame tests to observe the flame emission colors for your known solutions. Since nitrates (NO 3 - ) do not emit color, you will be observing the color of the emission of the metallic cations. Safety precaution: Do not touch the chemicals on the splints with your fingers! Wash your hands immediately if you accidentally touch the chemicals on any of the splints. GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 4 of 9

5 1. Label your 6 test tubes with a pencil one for each solution listed above. From the reagent station, put about drops of each solution into the appropriate test tube. Place one splint into each test tube. These should soak for about 5 10 minutes in order to absorb enough solution. 2. At this time, each group should obtain one unknown from your instructor. Get a splint, and place it in the test tube of the unknown to allow sufficient time to soak. Be sure to record your unknown number in your lab notebook. 3. Prepare your 150 ml beaker with about ml of water to dispose of the used splints. 4. Light your Bunsen burner with a striker. Your instructor will check to make sure that your flame is adjusted properly for the activity. You should see two blue cones of flame. 5. Grasp the LiNO 3 wood splint by the tip and place the damp end of the splint in the middle of the flame (in the tip of the inner cone) for a short time (about 2 3 seconds). You should see the color of the metal ion burning in the first few seconds. 6. Avoid burning the wood splint itself. A wet splint cannot burn. If you start to notice the splint burning, it was in the flame past the point of dryness. If it does start to burn, you should immediately dip the splint back into the correct test tube to put out the flame, re-wet the splint and test the flame color again. You can repeat this several times if you have difficulty seeing the color. 7. When you are done testing a splint and its solution, dispose of the burned splint in the 150 ml beaker. 8. Observe and carefully describe the color of the flame on the data table. For example, describe the color as pinkish red or violet red instead of just red. 9. Continue with the other solutions, recording the flame color for each solution. Be as descriptive and accurate as possible. 10. Observe and record the color given off by your unknown in the same manner. Identify the metal in your unknown solution. 11. When you have finished with all splints and solutions, dispose of all materials in the proper solid or liquid waste container in the hood. PART IV. ABSORPTION AND EMISSION SPECTRA: A WEB TUTORIAL The fourth activity of this lab involves an interactive tutorial to help explain the process electrons go through when absorption and emission spectra are obtained from pure substances. Go to the Website link provided in the discussion section for this week s experiment. Your Lab Report Should include the following: ü Header completed in your lab notebook. ü A purpose statement (in notebook) ü Each section of the experiment clearly labeled Observations (in notebook) Data table with a title and proper headings (in notebook) Calculations clearly written showing all work (in notebook) Results/Summary of the unknown solution with the unknown number included (in notebook) ü Conclusion (in notebook) ü Discussion Questions (answers written on pages 7-9) GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 5 of 9

6 Name: Section: Pre-Lab Questions Write your answers on this page and turn it in to your instructor before starting this experiment. 1. How are wavelength and frequency related? Directly or Inversely 2. How are wavelength and energy related? Directly or Inversely 3. Calculate the frequency of red light with a wavelength of 705 nm? 4. Why is the range of wavelengths used on the spectrophotometer in today s lab only 400 nm 750 nm? 5. A student burns a wood splint soaked in a solution of calcium nitrate, Ca(NO 3 ) 2, and it burns a brick red color. Is it the electrons in the calcium ion or the nitrate ion of Ca(NO 3 ) 2 that is causing the observed color? GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 6 of 9

7 Name: Section: Discussion Questions Write your answers on these pages and attach them to your report. I: Spectrophotometric Analysis of Visible Light 8 points Shade in all colors between the wavelengths (in nm) listed below: II: Gas Charge Demonstration 12 points Gas Discharge Demo Before putting the diffraction glasses on, identify the element being shown in the discharge tube and its color (be descriptive with the color). Now put the glasses on, and draw exactly what you see as best you can, emphasizing specific lines of color. You should include one full spectrum of diffracted light. This data should be recorded directly in your notebook, then copied here as neatly as possible for your report. Sample 1 Gas: Color of lamp: Spectral Lines Sample 2 Gas: Color of lamp: Spectral Lines GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 7 of 9

8 Part III: Flame Tests (The data and results for the flame tests should be recorded in the lab notebook only) 1. (3 pts) Describe the difference between the lithium emission and the strontium emission in the flame tests. Part IV: Online interactive tutorial: ü Click on Light Emission and Absorption only for the correct video tutorial. Answer these questions in your own words. Do not restate what the tutorial says word for word, as this would be plagiarism. 1. (4 pts) Describe the difference between the ground state and the excited state of an atom. 2. (4 pts) Describe what happens to an electron when it absorbs energy. Describe the location of the electrons in terms of energy levels and distance from the nucleus. 3. (4 pts) Describe what happens when an electron in an excited atom returns to its ground state. 4. (4 pts) The emission spectrum of hydrogen gives four distinct wavelengths representing four colors of light. The tutorial lists the colors as: violet (410nm), blue (434nm), green (486nm), and red (656nm). Which color of light in the visible emissions spectrum for hydrogen has the highest energy photons? Explain. GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 8 of 9

9 Questions and Calculations: (You must show all of your work on calculations to receive full credit.) 1. (4 pts) Determine if energy is absorbed or emitted for each electron transition in a hydrogen atom: a. from n = 4 to n = 2 emitted absorbed b. from n = 2 to n = 6 emitted absorbed 2. (4 pts) You are the student representative for Glendale Christmas fireworks display. Explain which chemicals should be used in the fireworks to have the fireworks match the traditional Christmas decorations. (Hint: Consider your flame test results.) 3. (4 pts) KSLX FM radio rocks out at MHz (FM radio station frequencies are in megahertz). Calculate the wavelength in meters for this Phoenix station. 4. (4 pts) Which travels faster X rays or microwaves? Explain your answer. 5. (10 pts) Several Predators (aliens that see IR radiation) have landed near your house one dark night, and Arnold is nowhere to be found. Your filtered lamp is emitting radiation of 5.45 x J per photon of energy. If Predators can only sense IR radiation, will they see the radiation from your lamp? Calculate the frequency and wavelength of the lamp emissions and then look at Figure 3.1 in the book to determine if this radiation is in the IR range. ν = Hz λ = nm Type of radiation GCC CHM 151LL: Atomic Theory: Spectroscopy and Flame Tests GCC, 2016 page 9 of 9

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Pre-Lab Demonstrations: Gas Discharge Demo Your instructor will show samples of gas collected in thin glass tubes known as gas discharge tubes. The ends of the

More information

Atomic Theory C &03

Atomic Theory C &03 Atomic Theory Part One: Flame Tests Part Two: Atomic Spectra Part Three: Applications of Spectra (optional) C12-2-02 &03 This activity will focus on the visible portion of the electromagnetic spectrum.

More information

Introduction to light Light is a form of energy called electromagnetic radiation. A chart of the electromagnetic spectrum is shown below.

Introduction to light Light is a form of energy called electromagnetic radiation. A chart of the electromagnetic spectrum is shown below. Experiment: Spectroscopy Introduction to light Light is a form of energy called electromagnetic radiation. A chart of the electromagnetic spectrum is shown below. Radiowave Microwave Infrared Visible Ultraviolet

More information

Lab: Excited Electrons

Lab: Excited Electrons Part A: EMISSION SPECTROSCOPY Lab: Excited Electrons According to the Bohr atomic model, electrons orbit the nucleus within specific energy levels. These levels are defined by unique amounts of energy.

More information

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths

Atomic Spectra for Atoms and Ions. Light is made up of different wavelengths Atomic Spectra for Atoms and Ions What will you be doing in lab next week? Recording the line spectra of several different substances in discharge tubes. Recording the line spectra of several ions from

More information

EXPERIMENT 17: Atomic Emission

EXPERIMENT 17: Atomic Emission EXPERIMENT 17: Atomic Emission PURPOSE: To construct an energy level diagram of the hydrogen atom To identify an element from its line spectrum. PRINCIPLES: White light, such as emitted by the sun or an

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Today is Thursday, March (!) 1 st, 2018

Today is Thursday, March (!) 1 st, 2018 In This Lesson: Atomic Emissions (Lesson 2 of 4) Stuff You Need: Calculator Today is Thursday, March (!) 1 st, 2018 Pre-Class: [choose one] What is white light? How are fireworks made to be different colors?

More information

Chemistry 212 ATOMIC SPECTROSCOPY

Chemistry 212 ATOMIC SPECTROSCOPY Chemistry 212 ATOMIC SPECTROSCOPY The emission and absorption of light energy of particular wavelengths by atoms and molecules is a common phenomenon. The emissions/absorptions are characteristic for each

More information

To observe flame test colors produced by ions in solution.

To observe flame test colors produced by ions in solution. Flame Tests PURPOSE To determine the identities of ions in two solutions of unknown composition by comparing the colors they produce in flame tests with colors produced by solutions of known composition.

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model Unit 3 Chapter 4 Electrons in the Atom Electrons in the Atom (Chapter 4) & The Periodic Table/Trends (Chapter 5) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the electrons

More information

Experiment 3 Electromagnetic Radiation and Atom Interaction

Experiment 3 Electromagnetic Radiation and Atom Interaction Experiment 3 Electromagnetic Radiation and Atom Interaction B OBJECTIVES To be familiar with the relationship between emission line spectra and the energy levels of electrons in various atoms. B INTRODUCTION

More information

Forensics Lab Flame Tests

Forensics Lab Flame Tests Forensics Lab Flame Tests Name Per Due Date Introduction The fundamental particles that make up the building blocks of matter are known as atoms, each of which is shown on the periodic table of the elements.

More information

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3 Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 Figure 2 Figure 3 Light Calculation Notes Here s how the type/form of EM radiation can be determined The amount

More information

Experiment #9. Atomic Emission Spectroscopy

Experiment #9. Atomic Emission Spectroscopy Introduction Experiment #9. Atomic Emission Spectroscopy Spectroscopy is the study of the interaction of light with matter. This interaction can be in the form of the absorption or the emission of electromagnetic

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

Electrons! Chapter 5

Electrons! Chapter 5 Electrons! Chapter 5 I.Light & Quantized Energy A.Background 1. Rutherford s nuclear model: nucleus surrounded by fast-moving electrons; no info on how electrons move, how they re arranged, or differences

More information

Spectroscopy Minneapolis Community and Technical College v.10.17

Spectroscopy Minneapolis Community and Technical College v.10.17 Spectroscopy Minneapolis Community and Technical College v.10.17 Objective: To observe, measure and compare line spectra from various elements and to determine the energies of those electronic transitions

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Figure 2 Figure 3 The energy is released as electromagnetic radiation.

More information

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

5.3. Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model Chemistry 5-3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the

More information

Physics and the Quantum Mechanical Model

Physics and the Quantum Mechanical Model chemistry 1 of 38 Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET 1.) Look at the EM spectrum below to answer this question. As you move across the visible light spectrum from red to violet (A) Does the wavelength

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? Chemistry Ms. Ye Name Date Block Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? 1 st shell 2 nd shell 3 rd shell 4 th shell

More information

Laboratory Atomic Emission Spectrum

Laboratory Atomic Emission Spectrum Laboratory Atomic Emission Spectrum Pre-Lab Questions: Answer the following questions in complete sentences by reading through the Overview and Background sections below. 1. What is the purpose of the

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Emission Spectroscopy

Emission Spectroscopy Objectives Emission Spectroscopy Observe spectral lines from a hydrogen gas discharge tube Determine the initial and final energy levels for the electronic transitions associated with the visible portion

More information

SPECTROSCOPY: A KEY TO ELEMENTAL IDENTITY

SPECTROSCOPY: A KEY TO ELEMENTAL IDENTITY AME PARTERS SECTIO DATE SPECTROSCOPY: A KEY TO ELEMETAL IDETITY This activity is designed to introduce visible light spectroscopy as a means of identifying elements and providing information on atomic

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

Atomic Spectroscopy. Objectives

Atomic Spectroscopy. Objectives Atomic Spectroscopy Name Objectives explain the difference between emission and absorption spectra calculate the energy of orbits in the Bohr model of hydrogen calculate E for energy transitions in the

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Outcomes: http://www.avclub.com/article/marvel-made-its-own-movies-ang-lee-offered-idiosyn-204118 Qualitatively describe the electromagnetic spectrum in terms of frequency,

More information

P O G I L E L E C T R O N E N E R G Y A N D L I G H T

P O G I L E L E C T R O N E N E R G Y A N D L I G H T South Pasadena Honors Chemistry Name 9 Atomic Structure Period Date Why? P O G I L E L E C T R O N E N E R G Y A N D L I G H T How does light reveal the behavior of electrons in an atom? From fireworks

More information

Color. 3. Why are the color labels in the table above plural (i.e., Reds rather than Red )?

Color. 3. Why are the color labels in the table above plural (i.e., Reds rather than Red )? NS D3 Electron Energy and Light Name From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by hydrogen and other atoms has played a key role in understanding

More information

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them.

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them. NAME: SPECTROSCOPY PRELAB 1) What is a spectrum? 2) Name the 3 types of spectra and, in 1 sentence each, describe them. a. b. c. 3) Use Wien s law to calculate the surface temperature of the star Alnilam

More information

Atomic Spectra & Electron Energy Levels

Atomic Spectra & Electron Energy Levels CHM151LL: ATOMIC SPECTRA & ELECTRON ENERGY LEVELS 1 Atomic Spectra & Electron Energy Levels OBJECTIVES: To measure the wavelength of visible light emitted by excited atoms to calculate the energy of that

More information

5.1 Light & Quantized Energy

5.1 Light & Quantized Energy 5.1 Light & Quantized Energy Objectives: 1. Describe electromagnetic (EM) wave properties & measures 2. Relate visible light to areas of the EM spectrum with higher & lower energy 3. Know the relationship

More information

WAVE NATURE OF LIGHT

WAVE NATURE OF LIGHT WAVE NATURE OF LIGHT Light is electromagnetic radiation, a type of energy composed of oscillating electric and magnetic fields. The fields oscillate perpendicular to each other. In vacuum, these waves

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

Chapter 5 Models of the Atom

Chapter 5 Models of the Atom Chapter 5 Models of the Atom Atomic Models Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus. However, Rutherford s atomic model

More information

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates Name Period CRHS Academic Chemistry Unit 4 Electrons Notes Key Dates Quiz Date Exam Date Lab Dates Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell?

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? AP Chemistry Ms. Ye Name Date Block Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? 1 st shell 2 nd shell

More information

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves The Sine Wave Mathematically, a function that represents a smooth oscillation For example, if we drew the motion of how the weight bobs on the spring to the weight we would draw out a sine wave. The Sine

More information

Unit 3: Electron configuration and periodicity

Unit 3: Electron configuration and periodicity Unit 3: Electron configuration and periodicity Group 1 BOHR MODELS Group 18 H Group 2 Group 13 Group 14 Group 15 Group 16 Group 17 He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca His theory couldn t

More information

Lecture 7. Outline. ASTR 111 Section 002. Discuss Quiz 5 Light. Light travels through empty space at a speed of 300,000 km/s

Lecture 7. Outline. ASTR 111 Section 002. Discuss Quiz 5 Light. Light travels through empty space at a speed of 300,000 km/s Lecture 7 ASTR 111 Section 002 Outline Discuss Quiz 5 Light Suggested reading: Chapter 5.1-5.2 and 5.6-5.8 of textbook Light travels through empty space at a speed of 300,000 km/s In 1676, Danish astronomer

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

Atomic Emission and Molecular Absorption Spectra

Atomic Emission and Molecular Absorption Spectra Atomic Emission and Molecular Absorption Spectra v062513_6pm Objective: The student will observe the atomic emission spectra of hydrogen using a spectroscope, determine the identity of an unknown metal

More information

The relationship between these aspects is described by the following equation: E = hν =

The relationship between these aspects is described by the following equation: E = hν = 1 Learning Outcomes EXPERIMENT A10: LINE SPECTRUM Upon completion of this lab, the student will be able to: 1) Examine the line spectrum of the hydrogen atom. 2) Calculate the frequency and energy of the

More information

Chapter 5. Electrons in Atoms

Chapter 5. Electrons in Atoms Chapter 5 Electrons in Atoms Warm - Up What kind of light causes you to sunburn? Is that the only light that the sun emits? What does sunscreen do on a chemical level? Today s Agenda Question of the day:

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

PH104 Lab 1 Light and Matter Pre-lab

PH104 Lab 1 Light and Matter Pre-lab Name: Lab Time: PH04 Lab Light and Matter Pre-lab. Goals Since this is the first lab, we don t want to try to do things that are too complex. We would like to get used to the lab room and some of the steps

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

Sample Copyright. Academic Group ATOMIC STRUCTURE 1. Topics covered in this chapter:

Sample Copyright. Academic Group ATOMIC STRUCTURE 1. Topics covered in this chapter: ATOMIC STRUCTURE Topics covered in this chapter:. Structure of the Atom.2 Atomic Number, Mass Number.3 Isotopes.4 The Mass Spectrometer.5 Atomic Structure and Light Spectra.6 Electron Arrangements in Atoms.7

More information

What are the energies (J) and wavelengths (in nm) for these colors? Color Energy wavelength. Rev. F11 Page 1 of 5

What are the energies (J) and wavelengths (in nm) for these colors? Color Energy wavelength. Rev. F11 Page 1 of 5 Exp. 8 Pre Lab ASSIGNMENT Name: Lab Section Score: / 10 (1) Use the equations [see the discussion on the next page] to calculate the energies of the 6 lowest states for the hydrogen atom, and enter your

More information

The ELECTRON: Wave Particle Duality. chapter 4

The ELECTRON: Wave Particle Duality. chapter 4 The ELECTRON: Wave Particle Duality chapter 4 What do we know about light? Before 1900 s scientists thought light behaved as a wave. This belief changed when it was discovered that light also has particle

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY SPECTROSCOPY SYNOPSIS: In this lab you will eplore different types of emission spectra, calibrate a spectrometer using the spectrum of a known element, and use your calibration to identify an unknown element.

More information

Emission of Light: Discharge Lamps & Flame Tests 1

Emission of Light: Discharge Lamps & Flame Tests 1 Emission of Light: Discharge Lamps & Flame Tests 1 Objectives At the end of this activity you should be able to: o Describe how discharge lamps emit photons following electrical excitation of gaseous atoms.

More information

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons???

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? no mass travel in a wave like pattern move at the speed of light contain a certain amount (or bundle) of energy

More information

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 7 Lecture Lecture Presentation Chapter 7 The Quantum- Mechanical Model of the Atom Sherril Soman Grand Valley State University The Beginnings of Quantum Mechanics Until the beginning of the twentieth

More information

Chapter 5. Electrons in Atoms

Chapter 5. Electrons in Atoms Chapter 5 Electrons in Atoms Warm - Up What kind of light causes you to sunburn? Why does only this type of light burn your skin and not other light? What does sunscreen do on a chemical level? Today s

More information

Yellow. Strontium red white. green. yellow violet. green. red. Chapter 4. Arrangement of Electrons in Atoms. Table of Contents

Yellow. Strontium red white. green. yellow violet. green. red. Chapter 4. Arrangement of Electrons in Atoms. Table of Contents Chapter 4 Arrangement of Electrons in Atoms Table of Contents Section 1 Section 2 Section 3 The Development of a New Atomic Model The Quantum Model of the Atom Electron Configurations Sodium Yellow Strontium

More information

Let s start with ionization energy - The minimum energy needed to remove and electron from an atom.

Let s start with ionization energy - The minimum energy needed to remove and electron from an atom. Early Quantum Theory In what may seem like an abrupt change of pace, we will now drop our periodic table with its focus on practical chemistry of elements and start working on the background needed to

More information

Atomic Theory. Unit 3 Development of the Atomic Theory

Atomic Theory. Unit 3 Development of the Atomic Theory Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Quick Review. 1. Kinetic Molecular Theory. 2. Average kinetic energy and average velocity. 3. Graham s Law of Effusion. 4. Real Gas Behavior.

Quick Review. 1. Kinetic Molecular Theory. 2. Average kinetic energy and average velocity. 3. Graham s Law of Effusion. 4. Real Gas Behavior. Quick Review 1. Kinetic Molecular Theory. 2. Average kinetic energy and average velocity. 3. Graham s Law of Effusion. 4. Real Gas Behavior. Emission spectra Every element has a unique emission spectrum

More information

The Structure of the Atom

The Structure of the Atom CHAPTER 5 The Structure of the Atom 5.4 Light and Spectroscopy 460 370 BC 1808 1870 1897 1910 1925 Today Democritus Atomism Dalton Modern atomic theory Crookes Cathode rays Thomson Discovery of the electron

More information

Name Date Class ELECTRONS IN ATOMS

Name Date Class ELECTRONS IN ATOMS Name _ Date Class 5 ELECTRONS IN ATOMS SECTION 5.1 MODELS OF THE ATOM (pages 127 132) This section summarizes the development of atomic theory. It also explains the significance of quantized energies of

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Lecture 6: The Physics of Light, Part 1. Astronomy 111 Wednesday September 13, 2017

Lecture 6: The Physics of Light, Part 1. Astronomy 111 Wednesday September 13, 2017 Lecture 6: The Physics of Light, Part 1 Astronomy 111 Wednesday September 13, 2017 Reminders Star party tonight! Homework #3 due Monday Exam #1 Monday, September 25 The nature of light Look, but don t

More information

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Atomic Structure Part II. Electrons in Atoms

Atomic Structure Part II. Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

The ELECTRON: Wave Particle Duality

The ELECTRON: Wave Particle Duality The ELECTRON: Wave Particle Duality No familiar conceptions can be woven around the electron. Something unknown is doing we don t know what. -Sir Arthur Eddington The Nature of the Physical World (1934)

More information

Ex: N has 5 valence electrons, so it s Lewis structure would look like: N

Ex: N has 5 valence electrons, so it s Lewis structure would look like: N Chemistry Ms. Ye Review: Bohr Model of the Atom Name Date Block Electrons are shown in concentric shells or energy levels around the nucleus o The first shell can hold up to o The second shell can hold

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

Atomic Structure Part II Electrons in Atoms

Atomic Structure Part II Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Thousands of years ago, copper was abundant enough in quantity that it could be found on the Earth s surface. Prospecting for copper then was relatively

More information

ACTIVITY 1. Exploring Light from Gases

ACTIVITY 1. Exploring Light from Gases Name: WAVES of matter Class: Visual Quantum Mechanics ACTIVITY 1 Exploring Light from Gases Goal We will view the colors of light which are emitted by different gases. From these patterns of light we gain

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #9: Diffraction Spectroscopy Lab Writeup Due: Mon/Wed/Thu/Fri, April 30/ May 2/3/4, 2018 Background All

More information

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

Background: The Electromagnetic Spectrum

Background: The Electromagnetic Spectrum Background: The Electromagnetic Spectrum Wavelength (λ) in meters wavelength decreasing 10 4 10 2 10 0 10-2 10-4 10-6 10-8 10-10 10-12 10-14 microwaves ultraviolet Gamma rays Radio waves AM 10 4 Shortwave

More information

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Unit 1 Inorganic and Physical Chemistry Electromagnetic Radiation and Atomic Spectra 1 Electromagnetic Radiation Radiation such as light, microwaves,

More information

Chapter 7. Quantum Theory and Atomic Structure

Chapter 7. Quantum Theory and Atomic Structure Chapter 7 Quantum Theory and Atomic Structure Outline 1. The Nature of Light 2. Atomic Spectra 3. The Wave-Particle Duality of Matter and Energy 4. The Quantum-Mechanical Model of the Atom 3 September

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

Atoms and Spectra October 8th, 2013

Atoms and Spectra October 8th, 2013 Atoms and Spectra October 8th, 2013 Announcements Second writing assignment due two weeks from today (again, on a news item of your choice). Be sure to make plans to visit one of the open observing nights

More information

General Chemistry by Ebbing and Gammon, 8th Edition

General Chemistry by Ebbing and Gammon, 8th Edition Chem 1045 General Chemistry by Ebbing and Gammon, 8th Edition George W.J. Kenney, Jr Last Update: 26-Mar-2009 Chapter 7: Quantum Theory of the Atom These Notes are to SUPPLIMENT the Text, They do NOT Replace

More information