Mathematical Background and Basic Notations

Size: px
Start display at page:

Download "Mathematical Background and Basic Notations"

Transcription

1 University of Science and Technology of China (USTC) 09/19/2011

2 Outline Sets 1 Sets

3 Outline Sets 1 Sets

4 Sets Basic Notations x S membership S T subset S T proper subset S fin T finite subset N Z B the empty set natural numbers integers {true, false} S T intersection = {x x S and x T} S T union = {x x S or x T} S T difference = {x x S and x T} P(S) powerset = {T T S} [m, n] integer range = {x m x n}

5 Sets Basic Notations x S membership S T subset S T proper subset S fin T finite subset N Z B the empty set natural numbers integers {true, false} S T intersection = {x x S and x T} S T union = {x x S or x T} S T difference = {x x S and x T} P(S) powerset = {T T S} [m, n] integer range = {x m x n}

6 Generalized Unions S S(i) i I n i=m S(i) def = {x T S. x T} def = def = {S(i) i I} def = i [m,n] S(i) Here S is a set of sets. S(i) is a set whose definition depends on i. For instance, we may have S(i) = {x x > i + 3} Given i = 1, 2,...,n, we know the corresponding S(i).

7 Generalized Intersections S S(i) i I n i=m S(i) def = {x T S. x T} meaningless def = {S(i) i I} def = i [m,n] Note that is undefined. Why? S(i)

8 Some Examples A B = {A, B} Let S(i) = [i, i + 1] and I = {j 2 j [1, 3]}, then S(i) = {1, 2, 4, 5, 9, 10}. i I

9 Outline Sets 1 Sets

10 Cartesian Products The cartesian product of two sets A and B: A B def = {(x, y) x A and y B} Here (x, y) is called a pair. Projections over pairs: π 0 (x, y) = x and π 1 (x, y) = y. Generalize Cartesian products to n sets: S 0 S 1 S n 1 def = {(x 0,..., x n 1 ) x i S i, for all i [0, n 1] } We say (x 0,..., x n 1 ) is an n-tuple. Then we have π i (x 0,...,x n 1 ) = x i.

11 Sets ρ is a relation from A to B if ρ A B, or ρ P(A B). ρ is a relation on S if ρ S S. We say ρ relates x and y if (x, y) ρ. Sometimes we write it as x ρ y. ρ is an identity relation if (x, y) ρ.x = y.

12 Basic Notations the identity on S Id S {(x, x) x S} the domain of ρ dom(ρ) {x y.(x, y) ρ} the range of ρ ran(ρ) {y x.(x, y) ρ} composition of ρ and ρ ρ ρ {(x, z) y.(x, y) ρ (y, z) ρ } inverse of ρ ρ 1 {(y, x) (x, y) ρ}

13 Some Properties and Examples (ρ 3 ρ 2 ) ρ 1 = ρ 3 (ρ 2 ρ 1 ) ( ρ 1 ) 1 = ρ ρ Id S = ρ = Id T ρ (ρ 2 ρ 1 ) 1 = ρ 1 1 ρ 1 2 dom(id S ) = S = ran(id S ) Id T Id S = Id T S Id 1 S = Id S ρ = = ρ Id = = 1 dom(ρ) = ρ = < = < < = < < Id N = = = Id N = 1

14 Some Properties and Examples (ρ 3 ρ 2 ) ρ 1 = ρ 3 (ρ 2 ρ 1 ) ( ρ 1 ) 1 = ρ ρ Id S = ρ = Id T ρ (ρ 2 ρ 1 ) 1 = ρ 1 1 ρ 1 2 dom(id S ) = S = ran(id S ) Id T Id S = Id T S Id 1 S = Id S ρ = = ρ Id = = 1 dom(ρ) = ρ = < = < < = < < Id N = = = Id N = 1

15 More on Reflexivity, symmetry, and transitivity of relations. Equivalence relations on S. Total relations.

16 Outline Sets 1 Sets

17 Definition Sets A function f from A to B is a special relation from A to B such that, for all x, y and y, (x, y) f and (x, y ) f imply y = y. If f is a function, instead of writing (x, y) f, we say f x = y. and Id S are functions. If f and g are functions, then g f is a function. (g f) x = g(f x)

18 More Definitions If f is a function, f 1 is not necessarily a function. Injection, subjection, bijection. f 1 is a function if f is an injection. with types in the form of λx S. E. For instance, λx N. x + 3. Placeholder: we may use a for the bound variables: + 42 def = λx N. x + 42.

19 Variation of a function Variation of a function f{x n}: { f z if z x f{x n} = λz. n if z = x Note that x does not have to be in dom(f). dom(f{x n}) = dom(f) {x} ran(f{x n}) = (ran(f) {n f x = n and x x. f x n }) {n}

20 Function Types Sets We use A B to represent the set of all functions from A to B. is right associative. That is, A B C = A (B C). with multiple arguments: f A 1 A 2 A n A f = λx A 1 A 2 A n. E f (a 1, a 2,..., a n ) Currying of multi-argument functions: f A 1 A 2 A n A f = λx 1 A 1.λx 2 A 2....λx n A n. E f a 1 a 2... a n

21 Function Types Sets We use A B to represent the set of all functions from A to B. is right associative. That is, A B C = A (B C). with multiple arguments: f A 1 A 2 A n A f = λx A 1 A 2 A n. E f (a 1, a 2,..., a n ) Currying of multi-argument functions: f A 1 A 2 A n A f = λx 1 A 1.λx 2 A 2....λx n A n. E f a 1 a 2... a n

22 Outline Sets 1 Sets

23 Tuples as We can view a pair (x, y) as a function { x if i = 0 λi 2. y if i = 1 where 2 = {0, 1}. Similary, we can view an n-tuple (x 0,..., x n 1 ) as a function x 0 if i = 0 λi n x n 1 if i = n 1 where n = {0, 1,...,n 1}.

24 We have seen the Cartesian prodcut S 0 S n 1. We can generalize it to infinite number of sets. Let θ be an indexed family of sets θ is a function from the set of indices to a set of sets θ = {(i, S(i)) i I}, where I is the set of indices. Πθ def = {f dom(f) = dom(θ), and i dom(θ), f i θ i}

25 Example Sets Let θ = λi 2.B. Then That is, Πθ = B B. Πθ = { {(0, true),(1, true)}, {(0, true),(1, false)}, {(0, false),(1, true)}, {(0, false),(1, false)} }

26 More on We write S T for x T x T n i=m S(x) def = Πλx T. S(x) S(i) def = i [m,n] S(i) S if S is independent of x. Recall that T S is the set of all functions from T to S. So (T S) = S T

27 More on We write S T for x T x T n i=m S(x) def = Πλx T. S(x) S(i) def = i [m,n] S(i) S if S is independent of x. Recall that T S is the set of all functions from T to S. So (T S) = S T

28 Another Example A subset T of S is isomorphic with the function f T = {(x, i) x S T and i = 0 or x T and i = 1}. We know f T S 2. Then 2 S is isomorphic with P(S).

29 Another Example A subset T of S is isomorphic with the function f T = {(x, i) x S T and i = 0 or x T and i = 1}. We know f T S 2. Then 2 S is isomorphic with P(S).

30 Outline Sets 1 Sets

31 (or Disjoint Unions) A+B def = {(i, x) i = 0 and x A, or i = 1 and x B} Injection operations: ι 0 A+B A A+B ι 1 A+B B A+B The disjoint union can be generalized to n sets: S 0 + S 1 + +S n 1.

32 (or Disjoint Unions) It can also be generalized to inifinite number of sets. The disjoint union (sum) of θ is Σθ def = {(i, x) i dom(θ) and x θ i} x T n i=m S(x) def = Σλx T.S(x) S(i) def = i [m,n] S(i) S = T S if S is independent of x. x T

Outline. Sets. Relations. Functions. Products. Sums 2 / 40

Outline. Sets. Relations. Functions. Products. Sums 2 / 40 Mathematical Background Outline Sets Relations Functions Products Sums 2 / 40 Outline Sets Relations Functions Products Sums 3 / 40 Sets Basic Notations x S membership S T subset S T proper subset S fin

More information

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X.

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. Notation 2 A set can be described using set-builder notation. That is, a set can be described

More information

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. 2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is

More information

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions Sets and Functions MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Notation x A means that element x is a member of set A. x / A means that x is not a member of A.

More information

COMP9020 Lecture 3 Session 2, 2016 Sets, Functions, and Sequences. Revision: 1.3

COMP9020 Lecture 3 Session 2, 2016 Sets, Functions, and Sequences. Revision: 1.3 1 COMP9020 Lecture 3 Session 2, 2016 Sets, Functions, and Sequences Revision: 1.3 2 Divisibility Let m, n Z. m n means m is a divisor of n, defined by n = km for some k Z (Also stated as: n is divisible

More information

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a Solutions to Homework #6 1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in R is connected). Solution: Let X R be a closed interval. Case 1:

More information

Any Wizard of Oz fans? Discrete Math Basics. Outline. Sets. Set Operations. Sets. Dorothy: How does one get to the Emerald City?

Any Wizard of Oz fans? Discrete Math Basics. Outline. Sets. Set Operations. Sets. Dorothy: How does one get to the Emerald City? Any Wizard of Oz fans? Discrete Math Basics Dorothy: How does one get to the Emerald City? Glynda: It is always best to start at the beginning Outline Sets Relations Proofs Sets A set is a collection of

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant).

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant). Sets and Functions 1. The language of sets Informally, a set is any collection of objects. The objects may be mathematical objects such as numbers, functions and even sets, or letters or symbols of any

More information

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9 1.4 Cardinality Tom Lewis Fall Term 2006 Tom Lewis () 1.4 Cardinality Fall Term 2006 1 / 9 Outline 1 Functions 2 Cardinality 3 Cantor s theorem Tom Lewis () 1.4 Cardinality Fall Term 2006 2 / 9 Functions

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

Mathematics Review for Business PhD Students

Mathematics Review for Business PhD Students Mathematics Review for Business PhD Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

Sets, Structures, Numbers

Sets, Structures, Numbers Chapter 1 Sets, Structures, Numbers Abstract In this chapter we shall introduce most of the background needed to develop the foundations of mathematical analysis. We start with sets and algebraic structures.

More information

Equivalence Relations

Equivalence Relations Equivalence Relations Definition 1. Let X be a non-empty set. A subset E X X is called an equivalence relation on X if it satisfies the following three properties: 1. Reflexive: For all x X, (x, x) E.

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

REVIEW FOR THIRD 3200 MIDTERM

REVIEW FOR THIRD 3200 MIDTERM REVIEW FOR THIRD 3200 MIDTERM PETE L. CLARK 1) Show that for all integers n 2 we have 1 3 +... + (n 1) 3 < 1 n < 1 3 +... + n 3. Solution: We go by induction on n. Base Case (n = 2): We have (2 1) 3 =

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

Rings and groups. Ya. Sysak

Rings and groups. Ya. Sysak Rings and groups. Ya. Sysak 1 Noetherian rings Let R be a ring. A (right) R -module M is called noetherian if it satisfies the maximum condition for its submodules. In other words, if M 1... M i M i+1...

More information

Chapter Summary. Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2.

Chapter Summary. Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2. Chapter 2 Chapter Summary Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2.6) Section 2.1 Section Summary Definition of sets Describing

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

Math Fall 2014 Final Exam Solutions

Math Fall 2014 Final Exam Solutions Math 2001-003 Fall 2014 Final Exam Solutions Wednesday, December 17, 2014 Definition 1. The union of two sets X and Y is the set X Y consisting of all objects that are elements of X or of Y. The intersection

More information

Math 42, Discrete Mathematics

Math 42, Discrete Mathematics c Fall 2018 last updated 10/10/2018 at 23:28:03 For use by students in this class only; all rights reserved. Note: some prose & some tables are taken directly from Kenneth R. Rosen, and Its Applications,

More information

Math 109 September 1, 2016

Math 109 September 1, 2016 Math 109 September 1, 2016 Question 1 Given that the proposition P Q is true. Which of the following must also be true? A. (not P ) or Q. B. (not Q) implies (not P ). C. Q implies P. D. A and B E. A, B,

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

Chapter 0. Introduction: Prerequisites and Preliminaries

Chapter 0. Introduction: Prerequisites and Preliminaries Chapter 0. Sections 0.1 to 0.5 1 Chapter 0. Introduction: Prerequisites and Preliminaries Note. The content of Sections 0.1 through 0.6 should be very familiar to you. However, in order to keep these notes

More information

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1. MATH 101: ALGEBRA I WORKSHEET, DAY #1 We review the prerequisites for the course in set theory and beginning a first pass on group theory. Fill in the blanks as we go along. 1. Sets A set is a collection

More information

POINT SET TOPOLOGY. Definition 2 A set with a topological structure is a topological space (X, O)

POINT SET TOPOLOGY. Definition 2 A set with a topological structure is a topological space (X, O) POINT SET TOPOLOGY Definition 1 A topological structure on a set X is a family O P(X) called open sets and satisfying (O 1 ) O is closed for arbitrary unions (O 2 ) O is closed for finite intersections.

More information

CHAPTER 1. Preliminaries. 1 Set Theory

CHAPTER 1. Preliminaries. 1 Set Theory CHAPTER 1 Preliminaries 1 et Theory We assume that the reader is familiar with basic set theory. In this paragraph, we want to recall the relevant definitions and fix the notation. Our approach to set

More information

Mathematics Review for Business PhD Students Lecture Notes

Mathematics Review for Business PhD Students Lecture Notes Mathematics Review for Business PhD Students Lecture Notes Anthony M. Marino Department of Finance and Business Economics Marshall School of Business University of Southern California Los Angeles, CA 90089-0804

More information

Sets, Functions and Relations

Sets, Functions and Relations Chapter 2 Sets, Functions and Relations A set is any collection of distinct objects. Here is some notation for some special sets of numbers: Z denotes the set of integers (whole numbers), that is, Z =

More information

AMB111F Notes 1: Sets and Real Numbers

AMB111F Notes 1: Sets and Real Numbers AMB111F Notes 1: Sets and Real Numbers A set is a collection of clearly defined objects called elements (members) of the set. Traditionally we use upper case letters to denote sets. For example the set

More information

SWER ENG 2DM3 Tutorial 2

SWER ENG 2DM3 Tutorial 2 Tutorial 2 Min Jing Liu Department of Computing and Software McMaster University Sept 22, 2011 Tutorial 2 Outline 1 Set 2 Function 3 Sequences and Summation Set Set Definition: A set is an unordered collection

More information

9/19/2018. Cartesian Product. Cartesian Product. Partitions

9/19/2018. Cartesian Product. Cartesian Product. Partitions Cartesian Product The ordered n-tuple (a 1, a 2, a 3,, a n ) is an ordered collection of objects. Two ordered n-tuples (a 1, a 2, a 3,, a n ) and (b 1, b 2, b 3,, b n ) are equal if and only if they contain

More information

INVERSE LIMITS AND PROFINITE GROUPS

INVERSE LIMITS AND PROFINITE GROUPS INVERSE LIMITS AND PROFINITE GROUPS BRIAN OSSERMAN We discuss the inverse limit construction, and consider the special case of inverse limits of finite groups, which should best be considered as topological

More information

6 CARDINALITY OF SETS

6 CARDINALITY OF SETS 6 CARDINALITY OF SETS MATH10111 - Foundations of Pure Mathematics We all have an idea of what it means to count a finite collection of objects, but we must be careful to define rigorously what it means

More information

A Short Review of Cardinality

A Short Review of Cardinality Christopher Heil A Short Review of Cardinality November 14, 2017 c 2017 Christopher Heil Chapter 1 Cardinality We will give a short review of the definition of cardinality and prove some facts about the

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

CHAPTER THREE: RELATIONS AND FUNCTIONS

CHAPTER THREE: RELATIONS AND FUNCTIONS CHAPTER THREE: RELATIONS AND FUNCTIONS 1 Relations Intuitively, a relation is the sort of thing that either does or does not hold between certain things, e.g. the love relation holds between Kim and Sandy

More information

INFINITY: CARDINAL NUMBERS

INFINITY: CARDINAL NUMBERS INFINITY: CARDINAL NUMBERS BJORN POONEN 1 Some terminology of set theory N := {0, 1, 2, 3, } Z := {, 2, 1, 0, 1, 2, } Q := the set of rational numbers R := the set of real numbers C := the set of complex

More information

Models of Computation. by Costas Busch, LSU

Models of Computation. by Costas Busch, LSU Models of Computation by Costas Busch, LSU 1 Computation CPU memory 2 temporary memory input memory CPU output memory Program memory 3 Example: f ( x) x 3 temporary memory input memory Program memory compute

More information

Foundations Revision Notes

Foundations Revision Notes oundations Revision Notes hese notes are designed as an aid not a substitute for revision. A lot of proofs have not been included because you should have them in your notes, should you need them. Also,

More information

Lecture Notes on Discrete Mathematics. October 15, 2018 DRAFT

Lecture Notes on Discrete Mathematics. October 15, 2018 DRAFT Lecture Notes on Discrete Mathematics October 15, 2018 2 Contents 1 Basic Set Theory 5 1.1 Basic Set Theory....................................... 5 1.1.1 Union and Intersection of Sets...........................

More information

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page. Formal Methods Name: Key Midterm 2, Spring, 2007 Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.. Determine whether each of

More information

n CS 160 or CS122 n Sets and Functions n Propositions and Predicates n Inference Rules n Proof Techniques n Program Verification n CS 161

n CS 160 or CS122 n Sets and Functions n Propositions and Predicates n Inference Rules n Proof Techniques n Program Verification n CS 161 Discrete Math at CSU (Rosen book) Sets and Functions (Rosen, Sections 2.1,2.2, 2.3) TOPICS Discrete math Set Definition Set Operations Tuples 1 n CS 160 or CS122 n Sets and Functions n Propositions and

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

Selected Solutions to Even Problems, Part 3

Selected Solutions to Even Problems, Part 3 Selected Solutions to Even Problems, Part 3 March 14, 005 Page 77 6. If one selects 101 integers from among {1,,..., 00}, then at least two of these numbers must be consecutive, and therefore coprime (which

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Lecture 8: Equivalence Relations

Lecture 8: Equivalence Relations Lecture 8: Equivalence Relations 1 Equivalence Relations Next interesting relation we will study is equivalence relation. Definition 1.1 (Equivalence Relation). Let A be a set and let be a relation on

More information

ABOUT THE CLASS AND NOTES ON SET THEORY

ABOUT THE CLASS AND NOTES ON SET THEORY ABOUT THE CLASS AND NOTES ON SET THEORY About the Class Evaluation. Final grade will be based 25%, 25%, 25%, 25%, on homework, midterm 1, midterm 2, final exam. Exam dates. Midterm 1: Oct 4. Midterm 2:

More information

Sets McGraw-Hill Education

Sets McGraw-Hill Education Sets A set is an unordered collection of objects. The objects in a set are called the elements, or members of the set. A set is said to contain its elements. The notation a A denotes that a is an element

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Chapter 2 - Basics Structures

Chapter 2 - Basics Structures Chapter 2 - Basics Structures 2.1 - Sets Definitions and Notation Definition 1 (Set). A set is an of. These are called the or of the set. We ll typically use uppercase letters to denote sets: S, A, B,...

More information

RELATIONS AND FUNCTIONS

RELATIONS AND FUNCTIONS Chapter 1 RELATIONS AND FUNCTIONS There is no permanent place in the world for ugly mathematics.... It may be very hard to define mathematical beauty but that is just as true of beauty of any kind, we

More information

Math 105A HW 1 Solutions

Math 105A HW 1 Solutions Sect. 1.1.3: # 2, 3 (Page 7-8 Math 105A HW 1 Solutions 2(a ( Statement: Each positive integers has a unique prime factorization. n N: n = 1 or ( R N, p 1,..., p R P such that n = p 1 p R and ( n, R, S

More information

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B = CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A B, A B =, A, B open in X, and non-empty. (We ll abbreviate disjoint union of two subsets A and

More information

Math 564 Homework 1. Solutions.

Math 564 Homework 1. Solutions. Math 564 Homework 1. Solutions. Problem 1. Prove Proposition 0.2.2. A guide to this problem: start with the open set S = (a, b), for example. First assume that a >, and show that the number a has the properties

More information

1. (B) The union of sets A and B is the set whose elements belong to at least one of A

1. (B) The union of sets A and B is the set whose elements belong to at least one of A 1. (B) The union of sets A and B is the set whose elements belong to at least one of A or B. Thus, A B = { 2, 1, 0, 1, 2, 5}. 2. (A) The intersection of sets A and B is the set whose elements belong to

More information

2.2 Annihilators, complemented subspaces

2.2 Annihilators, complemented subspaces 34CHAPTER 2. WEAK TOPOLOGIES, REFLEXIVITY, ADJOINT OPERATORS 2.2 Annihilators, complemented subspaces Definition 2.2.1. [Annihilators, Pre-Annihilators] Assume X is a Banach space. Let M X and N X. We

More information

MATH 13 FINAL EXAM SOLUTIONS

MATH 13 FINAL EXAM SOLUTIONS MATH 13 FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers. T F

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

1 Initial Notation and Definitions

1 Initial Notation and Definitions Theory of Computation Pete Manolios Notes on induction Jan 21, 2016 In response to a request for more information on induction, I prepared these notes. Read them if you are interested, but this is not

More information

Axioms of Kleene Algebra

Axioms of Kleene Algebra Introduction to Kleene Algebra Lecture 2 CS786 Spring 2004 January 28, 2004 Axioms of Kleene Algebra In this lecture we give the formal definition of a Kleene algebra and derive some basic consequences.

More information

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B.

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Chapter 4 Functions Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Definition 2 Let A and B be sets. A function from A to B is a relation f between A and B such that

More information

Axioms for Set Theory

Axioms for Set Theory Axioms for Set Theory The following is a subset of the Zermelo-Fraenkel axioms for set theory. In this setting, all objects are sets which are denoted by letters, e.g. x, y, X, Y. Equality is logical identity:

More information

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k)

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k) MATH 111 Optional Exam 3 lutions 1. (0 pts) We define a relation on Z as follows: a b if a + b is divisible by 3. (a) (1 pts) Prove that is an equivalence relation. (b) (8 pts) Determine all equivalence

More information

Set Theory. CSE 215, Foundations of Computer Science Stony Brook University

Set Theory. CSE 215, Foundations of Computer Science Stony Brook University Set Theory CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Set theory Abstract set theory is one of the foundations of mathematical thought Most mathematical

More information

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Section 2.1 Introduction Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Important for counting. Programming languages have set operations. Set theory

More information

Sets. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007

Sets. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 1 / 42 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.1, 2.2 of Rosen Introduction I Introduction

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n Lecture 2 1.10 Cell attachments Let X be a topological space and α : S n 1 X be a map. Consider the space X D n with the disjoint union topology. Consider further the set X B n and a function f : X D n

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Problem 1: Specify two different predicates P (x) and

More information

MATH 433 Applied Algebra Lecture 14: Functions. Relations.

MATH 433 Applied Algebra Lecture 14: Functions. Relations. MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian

More information

Linear Vector Spaces

Linear Vector Spaces CHAPTER 1 Linear Vector Spaces Definition 1.0.1. A linear vector space over a field F is a triple (V, +, ), where V is a set, + : V V V and : F V V are maps with the properties : (i) ( x, y V ), x + y

More information

Propositional Logic, Predicates, and Equivalence

Propositional Logic, Predicates, and Equivalence Chapter 1 Propositional Logic, Predicates, and Equivalence A statement or a proposition is a sentence that is true (T) or false (F) but not both. The symbol denotes not, denotes and, and denotes or. If

More information

Review 1. Andreas Klappenecker

Review 1. Andreas Klappenecker Review 1 Andreas Klappenecker Summary Propositional Logic, Chapter 1 Predicate Logic, Chapter 1 Proofs, Chapter 1 Sets, Chapter 2 Functions, Chapter 2 Sequences and Sums, Chapter 2 Asymptotic Notations,

More information

Sets, Models and Proofs. I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University

Sets, Models and Proofs. I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University Sets, Models and Proofs I. Moerdijk and J. van Oosten Department of Mathematics Utrecht University 2000; revised, 2006 Contents 1 Sets 1 1.1 Cardinal Numbers........................ 2 1.1.1 The Continuum

More information

Notas de Aula Grupos Profinitos. Martino Garonzi. Universidade de Brasília. Primeiro semestre 2018

Notas de Aula Grupos Profinitos. Martino Garonzi. Universidade de Brasília. Primeiro semestre 2018 Notas de Aula Grupos Profinitos Martino Garonzi Universidade de Brasília Primeiro semestre 2018 1 Le risposte uccidono le domande. 2 Contents 1 Topology 4 2 Profinite spaces 6 3 Topological groups 10 4

More information

COMP9020 Lecture 3 Session 2, 2014 Sets, Functions, and Sequences. Revision: 1.3

COMP9020 Lecture 3 Session 2, 2014 Sets, Functions, and Sequences. Revision: 1.3 1 COMP9020 Lecture 3 Session 2, 2014 Sets, Functions, and Sequences Revision: 1.3 2 Notation for Numbers Definition Integers Z = {... 2, 1, 0, 1, 2,...} Reals R. : R Z floor of x, the greatest integer

More information

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Chapter 2 1 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Sequences and Summations Types of Sequences Summation

More information

Sets. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Sets. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen Introduction I We ve already

More information

Math 3T03 - Topology

Math 3T03 - Topology Math 3T03 - Topology Sang Woo Park April 5, 2018 Contents 1 Introduction to topology 2 1.1 What is topology?.......................... 2 1.2 Set theory............................... 3 2 Functions 4 3

More information

Appendix A. Definitions for Ordered Sets. The appendices contain all the formal definitions, propositions and proofs for

Appendix A. Definitions for Ordered Sets. The appendices contain all the formal definitions, propositions and proofs for 161 Appendix A Definitions for Ordered Sets The appendices contain all the formal definitions, propositions and proofs for developing a model of the display process based on lattices. Here we list some

More information

More Books At www.goalias.blogspot.com www.goalias.blogspot.com www.goalias.blogspot.com www.goalias.blogspot.com www.goalias.blogspot.com www.goalias.blogspot.com www.goalias.blogspot.com www.goalias.blogspot.com

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

A function is a special kind of relation. More precisely... A function f from A to B is a relation on A B such that. f (x) = y

A function is a special kind of relation. More precisely... A function f from A to B is a relation on A B such that. f (x) = y Functions A function is a special kind of relation. More precisely... A function f from A to B is a relation on A B such that for all x A, there is exactly one y B s.t. (x, y) f. The set A is called the

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information

Math 3140 Fall 2012 Assignment #3

Math 3140 Fall 2012 Assignment #3 Math 3140 Fall 2012 Assignment #3 Due Fri., Sept. 21. Remember to cite your sources, including the people you talk to. My solutions will repeatedly use the following proposition from class: Proposition

More information

PRELIMINARIES FOR GENERAL TOPOLOGY. Contents

PRELIMINARIES FOR GENERAL TOPOLOGY. Contents PRELIMINARIES FOR GENERAL TOPOLOGY DAVID G.L. WANG Contents 1. Sets 2 2. Operations on sets 3 3. Maps 5 4. Countability of sets 7 5. Others a mathematician knows 8 6. Remarks 9 Date: April 26, 2018. 2

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

Short notes on Axioms of set theory, Well orderings and Ordinal Numbers

Short notes on Axioms of set theory, Well orderings and Ordinal Numbers Short notes on Axioms of set theory, Well orderings and Ordinal Numbers August 29, 2013 1 Logic and Notation Any formula in Mathematics can be stated using the symbols and the variables,,,, =, (, ) v j

More information

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality.

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality. Some harder problems on cardinality. These are two series of problems with specific goals: the first goal is to prove that the cardinality of the set of irrational numbers is continuum, and the second

More information

NOTES ON WELL ORDERING AND ORDINAL NUMBERS. 1. Logic and Notation Any formula in Mathematics can be stated using the symbols

NOTES ON WELL ORDERING AND ORDINAL NUMBERS. 1. Logic and Notation Any formula in Mathematics can be stated using the symbols NOTES ON WELL ORDERING AND ORDINAL NUMBERS TH. SCHLUMPRECHT 1. Logic and Notation Any formula in Mathematics can be stated using the symbols,,,, =, (, ) and the variables v j : where j is a natural number.

More information

A set is an unordered collection of objects.

A set is an unordered collection of objects. Section 2.1 Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the elements, or members of the set. A set is said to contain

More information

Spring Based on Partee, ter Meulen, & Wall (1993), Mathematical Methods in Linguistics

Spring Based on Partee, ter Meulen, & Wall (1993), Mathematical Methods in Linguistics 1 / 17 L545 Spring 2013 Based on Partee, ter Meulen, & Wall (1993), Mathematical Methods in Linguistics 2 / 17 Why set theory? Set theory sets the foundation for much of mathematics For us: provides precise

More information

Decidability of integer multiplication and ordinal addition. Two applications of the Feferman-Vaught theory

Decidability of integer multiplication and ordinal addition. Two applications of the Feferman-Vaught theory Decidability of integer multiplication and ordinal addition Two applications of the Feferman-Vaught theory Ting Zhang Stanford University Stanford February 2003 Logic Seminar 1 The motivation There are

More information