FINITE MEMORY DETERMINACY

Size: px
Start display at page:

Download "FINITE MEMORY DETERMINACY"

Transcription

1 p. 1/? FINITE MEMORY DETERMINACY Alexander Rabinovich Department of Computer Science Tel-Aviv University

2 p. 2/? Plan 1. Finite Memory Strategies. 2. Finite Memory Determinacy of Muller games. 3. Latest Appearance Record. 4. Reduction of Muller Games to parity games.

3 p. 3/? Finite Memory Strategies G(V 1, V 2, E) - arena or game graph. A strategy for I is a function f I : (V 1 V 2 ) V 1 V 2. A strategy is memoryless if it depends only on the last node - does not remember the past (history). A memoryless strategy for I corresponds - to a function σ I : V 1 V 2 - does not remember anything about the past. Finite memory strategy remembers a finite amount of information about the past.

4 p. 4/? Finite Memory Strategies Finite memory strategy remembers a finite amount of information about the past. Def. Let M be a finite set. A strategy σ 1 for I with the memory M consists of 1. next move function next 1 : M V 1 V the memory update function: update : M V M 3. m init : V M the initial state of the memory. Def. Let x be a play x 1 x 2... x i... and let m 1 m i m 2... be the sequence of memory states computed by m i = update(m i 1, x i ). The play x is consistent with σ 1 if x 2i = next 1 (m 2i 1, x 2i 1 ) Note. If the game arena is finite then a finite memory strategy can be implemented by a finite automata.

5 p. 5/? Example V 1 V 2 V 3 Winning conditions for : Inf(ρ) = {v 1, v 2, v 3 } Can win? A winning finite memory strategy for : M = {1, 2, 3} - remember the previous state. update(, v i ) = i; move 1 (v 2, i) = 4 i.

6 p. 6/? Muller Winning Conditions G(V 1, V 2, E) - game graph. Nodes are colored by a finite set Q (states). col : V 1 V 2 Q. A play x = x 1, x 2... induces an ω-sequence c x of over Q: c x = col(x 1 )col(x 2 )col(x 3 )... Inf(x) - the set of states that appear infinitely often in c x. Muller winning conditions: A family F = {F 1,..., F k } of subsets of Q. Each subset F i is called a macrostate. Player I wins the play x iff Inf(x) F. Otherwise Player II wins the play. Strategies, winning strategies, memoryless strategies... are defined as usual.

7 p. 7/? Finite Memory Determinacy of Muller Games Theorem. In every Muller game one of the players has a Finite memory winning strategy. Moreover, there is a partition (W 1, W 2 ) of the nodes of G and finite memory memory strategies σ 1 and σ 2 such that 1. σ 1 is a winning strategy of Player I from W σ 2 is a winning strategy of Player II from W The memory size is O(n!), where n is the number of states (colors). The proof will reduce a Muller game over G to a parity game over more complex graph G. A major role in the proof plays the Latest Appearance Record - a data structure introduced by McNaughton.

8 p. 8/? Latest Appearance Record Let s be a string over a finite alphabet Σ. The latest appearance records of sσ remembers the order of the last occurrences of each letter in s and the last letter σ. lar(sσ) = abc, σ iff the last occurrence of a in s precedes the last occurrence of b precedes the last occurrence of c. s =... a... b...c The recent letters set of sa the set of letters that occurs between the last two occurrences of σ (including σ). string LAR RLS a ǫ, a ac a, c acc ac, c {c} accb ac, b accba acb, a {a, b, c} accbab cba, b {a, b} shorthand for LAR a ac ac acb cba cab

9 p. 9/? Properties of the Latest Appearance Record Lemma. 1. lar(s) contains each letter at most once. 2. lar(sa) is computable from lar(s). (remove a from lar(s) and then append a to the right.) 3. rls(sa) is computable from lar(s). Lemma. Let u be an a 1 a 2... a i.... Let s i = a 1... a i be the i-th prefix of u. Then inf(u) = F = {q 1,... q k } iff 1. there is j such that rls(s i ) F for all i j and 2. infinitely often the cardinality of rls(s i ) = k and

10 p. 10/? Reduction of Muller Games to Parity Games Muller game: G(V 1, V 2, E, col : V Q) with Muller winning conditions: F = {F 1,..., F k }. Construct a parity game G Nodes: V 1 LAR(Q) V 2 LAR(Q). Edges u, l u, l iff u G u and l = lar(lq) where q is the label of u. Coloring Col (u, l) = { 2 rls(l) + 1 if rls(l) F 2 rls(l) otherwise A play ρ in G induces a play ρ in G. Moreover I wins ρ in G if he wins ρ in G.

11 p. 11/? Reduction of Muller Games to Parity Games A play ρ in G from u, q is induced by a play ρ in G. Moreover I wins ρ in G if he wins ρ in G. A memoryless strategy f in G defines a strategy f with the memory LAR(Q) in G. Moreover, f is winning iff f is winning. Hence, the memoryless determinacy of parity games implies Theorem. In every Muller game one of the players has a Finite memory winning strategy. Moreover, there is a partition (W 1, W 2 ) of the nodes of G and finite memory memory strategies f 1 and f 2 such that 1. f 1 is a winning strategy of Player I from W f 2 is a winning strategy of Player II from W 2.

12 p. 12/? Decidability of Muller Games Input A parity game over a finite graph, a vertex v. Task Find the winner of the game and his winning strategy Theorem The Problem is computable.

13 p. 13/? Game version of Church s Problem Consider a bit by bit transformation of bit streams...b t...b 2 b 1 F...a t...a 2 a 1 Question. Given a logical specification ϕ(x, Y) of the input-output relation. 1. Does the output player has a strategy to satisfy ϕ? 2. If Yes, compute such a strategy. Solution of Church s Problem Reduce to ( a finite state) Muller Game. From the solution of Muller Game find the solution of the Church Problem.

14 p. 14/? From Logic to Muller Games Each formula ϕ(x, Y) of MLO can be transformed into a Muller game over a finite graph with designated node v 0 such that 1. Player I has a winning strategy for ϕ iff Player I has a winning strategy in the corresponding Muller game. 2. A finite-state winning strategy for Player I in the Muller game from v 0 allows to construct a finite state winning strategy for Player I to satisfy ϕ. Proof. (1) Transform formula to an equivalent deterministic Muller automata. (2) Transform the automaton to Muller game. q1 q1 (0,0) 0 (0,1) q2 0 1 q2 q (1,0) q3 q 1 0 q3 (1,1) 1 q4 q4

15 p. 15/? Game version of the BL Theorem Theorem. Let ϕ(x, Y) be an MLO formula. One of the player has a finite state winning strategy in the game with winning condition ϕ. Moreover, it is decidable who wins and his finite state winning strategy is computable from ϕ. Corollary. The Church Problem is decidable.

CHURCH SYNTHESIS PROBLEM and GAMES

CHURCH SYNTHESIS PROBLEM and GAMES p. 1/? CHURCH SYNTHESIS PROBLEM and GAMES Alexander Rabinovich Tel-Aviv University, Israel http://www.tau.ac.il/ rabinoa p. 2/? Plan of the Course 1. The Church problem - logic and automata. 2. Games -

More information

Rabin Theory and Game Automata An Introduction

Rabin Theory and Game Automata An Introduction Rabin Theory and Game Automata An Introduction Ting Zhang Stanford University November 2002 Logic Seminar 1 Outline 1. Monadic second-order theory of two successors (S2S) 2. Rabin Automata 3. Game Automata

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 1. Büchi Automata and S1S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong Büchi Automata & S1S 14-19 June

More information

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University Infinite Games Sumit Nain Department of Computer Science Rice University 28 January 2013 Slides Credit: Barbara Jobstmann (CNRS/Verimag) Motivation Abstract games are of fundamental importance in mathematics

More information

Logic and Games SS 2009

Logic and Games SS 2009 Logic and Games SS 2009 Prof. Dr. Erich Grädel Łukasz Kaiser, Tobias Ganzow Mathematische Grundlagen der Informatik RWTH Aachen c b n d This work is licensed under: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 2 Parity Games, Tree Automata, and S2S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong S2S 14-19 June

More information

On positional strategies over finite arenas

On positional strategies over finite arenas On positional strategies over finite arenas Damian Niwiński University of Warsaw joint work with Thomas Colcombet Berlin 2018 Disclaimer. Credits to many authors. All errors are mine own. 1 Perfect information

More information

Agame is composed of an arena and a winning condition. We will first study arenas and then add winning conditions on top of arenas.

Agame is composed of an arena and a winning condition. We will first study arenas and then add winning conditions on top of arenas. 2 Infinite Games René Mazala Institut für Informatik Martin-Luther-Universität Halle-Wittenberg 2.1 Introduction This chapter is meant as an introduction to infinite two-person games on directed graphs.

More information

Automata, Logic and Games. C.-H. L. Ong

Automata, Logic and Games. C.-H. L. Ong Automata, Logic and Games C.-H. L. Ong June 12, 2015 2 Contents 0 Automata, Logic and Games 1 0.1 Aims and Prerequisites............................... 1 0.2 Motivation.....................................

More information

Down the Borel Hierarchy: Solving Muller Games via Safety Games

Down the Borel Hierarchy: Solving Muller Games via Safety Games Down the Borel Hierarchy: Solving Muller Games via Safety Games Daniel Neider a, Roman Rabinovich b,1, Martin Zimmermann a,c,2 a Lehrstuhl für Informatik 7, RWTH Aachen University, 52056 Aachen, Germany

More information

Logic and Automata I. Wolfgang Thomas. EATCS School, Telc, July 2014

Logic and Automata I. Wolfgang Thomas. EATCS School, Telc, July 2014 Logic and Automata I EATCS School, Telc, July 2014 The Plan We present automata theory as a tool to make logic effective. Four parts: 1. Some history 2. Automata on infinite words First step: MSO-logic

More information

Languages, logics and automata

Languages, logics and automata Languages, logics and automata Anca Muscholl LaBRI, Bordeaux, France EWM summer school, Leiden 2011 1 / 89 Before all that.. Sonia Kowalewskaya Emmy Noether Julia Robinson All this attention has been gratifying

More information

A Tight Lower Bound for Determinization of Transition Labeled Büchi Automata

A Tight Lower Bound for Determinization of Transition Labeled Büchi Automata A Tight Lower Bound for Determinization of Transition Labeled Büchi Automata Thomas Colcombet, Konrad Zdanowski CNRS JAF28, Fontainebleau June 18, 2009 Finite Automata A finite automaton is a tuple A =

More information

Büchi Automata and Their Determinization

Büchi Automata and Their Determinization Büchi Automata and Their Determinization Edinburgh, October 215 Plan of the Day 1. Büchi automata and their determinization 2. Infinite games 3. Rabin s Tree Theorem 4. Decidability of monadic theories

More information

Complexity Bounds for Muller Games 1

Complexity Bounds for Muller Games 1 Complexity Bounds for Muller Games 1 Paul Hunter a, Anuj Dawar b a Oxford University Computing Laboratory, UK b University of Cambridge Computer Laboratory, UK Abstract We consider the complexity of infinite

More information

Alternating nonzero automata

Alternating nonzero automata Alternating nonzero automata Application to the satisfiability of CTL [,, P >0, P =1 ] Hugo Gimbert, joint work with Paulin Fournier LaBRI, Université de Bordeaux ANR Stoch-MC 06/07/2017 Control and verification

More information

Note on winning positions on pushdown games with omega-regular winning conditions

Note on winning positions on pushdown games with omega-regular winning conditions Note on winning positions on pushdown games with omega-regular winning conditions Olivier Serre To cite this version: Olivier Serre. Note on winning positions on pushdown games with omega-regular winning

More information

Complexity Bounds for Regular Games (Extended Abstract)

Complexity Bounds for Regular Games (Extended Abstract) Complexity Bounds for Regular Games (Extended Abstract) Paul Hunter and Anuj Dawar University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK. paul.hunter@cl.cam.ac.uk, anuj.dawar@cl.cam.ac.uk

More information

Overlapping tile automata:

Overlapping tile automata: Overlapping tile automata: towards a language theory of overlapping structures David Janin LaBRI, Université de Bordeaux Computer Science in Russia, Ekaterinburg, june 2013 1. From strings to overlapping

More information

A Survey of Partial-Observation Stochastic Parity Games

A Survey of Partial-Observation Stochastic Parity Games Noname manuscript No. (will be inserted by the editor) A Survey of Partial-Observation Stochastic Parity Games Krishnendu Chatterjee Laurent Doyen Thomas A. Henzinger the date of receipt and acceptance

More information

Semi-Automatic Distributed Synthesis

Semi-Automatic Distributed Synthesis Semi-Automatic Distributed Synthesis Bernd Finkbeiner and Sven Schewe Universität des Saarlandes, 66123 Saarbrücken, Germany {finkbeiner schewe}@cs.uni-sb.de Abstract. We propose a sound and complete compositional

More information

Optimal Bounds in Parametric LTL Games

Optimal Bounds in Parametric LTL Games Optimal Bounds in Parametric LTL Games Martin Zimmermann 1 Institute of Informatics University of Warsaw Warsaw, Poland Abstract Parameterized linear temporal logics are extensions of Linear Temporal Logic

More information

Boundedness Games. Séminaire du LIGM, April 16th, Nathanaël Fijalkow. Institute of Informatics, Warsaw University Poland

Boundedness Games. Séminaire du LIGM, April 16th, Nathanaël Fijalkow. Institute of Informatics, Warsaw University Poland Boundedness Games Séminaire du LIGM, April 16th, 2013 Nathanaël Fijalkow Institute of Informatics, Warsaw University Poland LIAFA, Université Paris 7 Denis Diderot France (based on joint works with Krishnendu

More information

Automata, Logic and Games. C.-H. L. Ong

Automata, Logic and Games. C.-H. L. Ong Automata, Logic and Games C.-H. L. Ong March 6, 2013 2 Contents 0 Automata, Logic and Games 1 0.1 Aims and Prerequisites............................... 1 0.2 Motivation.....................................

More information

ERICH GRÄDEL a AND IGOR WALUKIEWICZ b. address: address:

ERICH GRÄDEL a AND IGOR WALUKIEWICZ b.  address:  address: Logical Methods in Computer Science Vol. 2 (4:6) 2006, pp. 1 22 www.lmcs-online.org Submitted Feb. 27, 2006 Published Nov. 3, 2006 POSITIONAL DETERMINACY OF GAMES WITH INFINITELY MANY PRIORITIES ERICH

More information

Solving Partial-Information Stochastic Parity Games

Solving Partial-Information Stochastic Parity Games Solving Partial-Information Stochastic Parity ames Sumit Nain and Moshe Y. Vardi Department of Computer Science, Rice University, Houston, Texas, 77005 Email: {nain,vardi}@cs.rice.edu Abstract We study

More information

Pushdown games with unboundedness and regular conditions

Pushdown games with unboundedness and regular conditions Pushdown games with unboundedness and regular conditions Alexis-Julien Bouquet, Olivier Serre, Igor Walukiewicz To cite this version: Alexis-Julien Bouquet, Olivier Serre, Igor Walukiewicz. Pushdown games

More information

Games with Costs and Delays

Games with Costs and Delays Games with Costs and Delays Martin Zimmermann Saarland University June 20th, 2017 LICS 2017, Reykjavik, Iceland Martin Zimmermann Saarland University Games with Costs and Delays 1/14 Gale-Stewart Games

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 26, 2003 Computational Properties 1 Satisfiability Problem: Given a modal µ-calculus formula Φ, is Φ satisfiable?

More information

Author: Vivek Kulkarni ( )

Author: Vivek Kulkarni ( ) Author: Vivek Kulkarni ( vivek_kulkarni@yahoo.com ) Chapter-2: Finite State Machines Solutions for Review Questions @ Oxford University Press 2013. All rights reserved. 1 Q.1 Construct Mealy and Moore

More information

Boundedness Games. Séminaire de l équipe MoVe, LIF, Marseille, May 2nd, Nathanaël Fijalkow. Institute of Informatics, Warsaw University Poland

Boundedness Games. Séminaire de l équipe MoVe, LIF, Marseille, May 2nd, Nathanaël Fijalkow. Institute of Informatics, Warsaw University Poland Boundedness Games Séminaire de l équipe MoVe, LIF, Marseille, May 2nd, 2013 Nathanaël Fijalkow Institute of Informatics, Warsaw University Poland LIAFA, Université Paris 7 Denis Diderot France (based on

More information

Weak Alternating Automata Are Not That Weak

Weak Alternating Automata Are Not That Weak Weak Alternating Automata Are Not That Weak Orna Kupferman Hebrew University Moshe Y. Vardi Rice University Abstract Automata on infinite words are used for specification and verification of nonterminating

More information

Generalized Parity Games

Generalized Parity Games Generalized Parity Games Krishnendu Chatterjee 1, Thomas A. Henzinger 1,2, and Nir Piterman 2 1 University of California, Berkeley, USA 2 EPFL, Switzerland c krish@eecs.berkeley.edu, {tah,nir.piterman}@epfl.ch

More information

UNIT-I. Strings, Alphabets, Language and Operations

UNIT-I. Strings, Alphabets, Language and Operations UNIT-I Strings, Alphabets, Language and Operations Strings of characters are fundamental building blocks in computer science. Alphabet is defined as a non empty finite set or nonempty set of symbols. The

More information

Synthesis of Winning Strategies for Interaction under Partial Information

Synthesis of Winning Strategies for Interaction under Partial Information Synthesis of Winning Strategies for Interaction under Partial Information Oberseminar Informatik Bernd Puchala RWTH Aachen University June 10th, 2013 1 Introduction Interaction Strategy Synthesis 2 Main

More information

Finite-Delay Strategies In Infinite Games

Finite-Delay Strategies In Infinite Games Finite-Delay Strategies In Infinite Games von Wenyun Quan Matrikelnummer: 25389 Diplomarbeit im Studiengang Informatik Betreuer: Prof. Dr. Dr.h.c. Wolfgang Thomas Lehrstuhl für Informatik 7 Logik und Theorie

More information

Pushdown Games with Unboundedness and Regular Conditions

Pushdown Games with Unboundedness and Regular Conditions Pushdown Games with Unboundedness and Regular Conditions Alexis-Julien Bouquet 1, Oliver Serre 2, and Igor Walukiewicz 1 1 LaBRI, Université Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex,

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information

Automata-Theoretic LTL Model-Checking

Automata-Theoretic LTL Model-Checking Automata-Theoretic LTL Model-Checking Arie Gurfinkel arie@cmu.edu SEI/CMU Automata-Theoretic LTL Model-Checking p.1 LTL - Linear Time Logic (Pn 77) Determines Patterns on Infinite Traces Atomic Propositions

More information

Trading Bounds for Memory in Games with Counters

Trading Bounds for Memory in Games with Counters Trading Bounds for Memory in Games with Counters Nathanaël Fijalkow 1,2, Florian Horn 1, Denis Kuperberg 2,3, and Micha l Skrzypczak 1,2 1 LIAFA, Université Paris 7 2 Institute of Informatics, University

More information

Randomness for Free. 1 Introduction. Krishnendu Chatterjee 1, Laurent Doyen 2, Hugo Gimbert 3, and Thomas A. Henzinger 1

Randomness for Free. 1 Introduction. Krishnendu Chatterjee 1, Laurent Doyen 2, Hugo Gimbert 3, and Thomas A. Henzinger 1 Randomness for Free Krishnendu Chatterjee 1, Laurent Doyen 2, Hugo Gimbert 3, and Thomas A. Henzinger 1 1 IST Austria (Institute of Science and Technology Austria) 2 LSV, ENS Cachan & CNRS, France 3 LaBri

More information

arxiv: v2 [cs.lo] 9 Apr 2012

arxiv: v2 [cs.lo] 9 Apr 2012 Mean-Payoff Pushdown Games Krishnendu Chatterjee 1 and Yaron Velner 2 1 IST Austria 2 Tel Aviv University, Israel arxiv:1201.2829v2 [cs.lo] 9 Apr 2012 Abstract. Two-player games on graphs are central in

More information

Weak Cost Monadic Logic over Infinite Trees

Weak Cost Monadic Logic over Infinite Trees Weak Cost Monadic Logic over Infinite Trees Michael Vanden Boom Department of Computer Science University of Oxford MFCS 011 Warsaw Cost monadic second-order logic (cost MSO) Syntax First-order logic with

More information

Theory of computation: initial remarks (Chapter 11)

Theory of computation: initial remarks (Chapter 11) Theory of computation: initial remarks (Chapter 11) For many purposes, computation is elegantly modeled with simple mathematical objects: Turing machines, finite automata, pushdown automata, and such.

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) September,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.  ETH Zürich (D-ITET) September, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 24 2015 Last week was all about Deterministic Finite Automaton We saw three main

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

Finite State Machines 2

Finite State Machines 2 Finite State Machines 2 Joseph Spring School of Computer Science 1COM0044 Foundations of Computation 1 Discussion Points In the last lecture we looked at: 1. Abstract Machines 2. Finite State Machines

More information

The Complexity of Stochastic Müller Games

The Complexity of Stochastic Müller Games The Complexity of Stochastic Müller Games Krishnendu Chatterjee Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2007-110 http://www.eecs.berkeley.edu/pubs/techrpts/2007/eecs-2007-110.html

More information

Synthesis of Asynchronous Systems

Synthesis of Asynchronous Systems Synthesis of Asynchronous Systems Sven Schewe and Bernd Finkbeiner Universität des Saarlandes, 66123 Saarbrücken, Germany {schewe finkbeiner}@cs.uni-sb.de Abstract. This paper addresses the problem of

More information

Generalized Parity Games

Generalized Parity Games Generalized Parity Games Krishnendu Chatterjee Thomas A. Henzinger Nir Piterman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-144

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 458 (2012) 49 60 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Energy parity games Krishnendu

More information

Definition of Büchi Automata

Definition of Büchi Automata Büchi Automata Definition of Büchi Automata Let Σ = {a,b,...} be a finite alphabet. By Σ ω we denote the set of all infinite words over Σ. A non-deterministic Büchi automaton (NBA) over Σ is a tuple A

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

Games with Costs and Delays

Games with Costs and Delays Games with Costs and Delays Martin Zimmermann Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany Email: zimmermann@react.uni-saarland.de Abstract We demonstrate the usefulness of adding

More information

Synthesis of Finite-state and Definable Winning Strategies

Synthesis of Finite-state and Definable Winning Strategies LIPIcs Leibniz International Proceedings in Informatics Synthesis of Finite-state and Definable Winning Strategies Alexander Rabinovich The Blavatnik School of Computer Science, Tel Aviv University, Israel

More information

Synthesis weakness of standard approach. Rational Synthesis

Synthesis weakness of standard approach. Rational Synthesis 1 Synthesis weakness of standard approach Rational Synthesis 3 Overview Introduction to formal verification Reactive systems Verification Synthesis Introduction to Formal Verification of Reactive Systems

More information

A Survey of Stochastic ω-regular Games

A Survey of Stochastic ω-regular Games A Survey of Stochastic ω-regular Games Krishnendu Chatterjee Thomas A. Henzinger EECS, University of California, Berkeley, USA Computer and Communication Sciences, EPFL, Switzerland {c krish,tah}@eecs.berkeley.edu

More information

Quantitative Reductions and Vertex-Ranked Infinite Games

Quantitative Reductions and Vertex-Ranked Infinite Games Quantitative Reductions and Vertex-Ranked Infinite Games Alexander Weinert Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany weinert@react.uni-saarland.de Abstract. We introduce quantitative

More information

The Small Progress Measures algorithm for Parity games

The Small Progress Measures algorithm for Parity games The Small Progress Measures algorithm for Parity games Material: Small Progress Measures for Solving Parity Games, Marcin Jurdziński Jeroen J.A. Keiren jkeiren@win.tue.nl http://www.win.tue.nl/ jkeiren

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

Games with Imperfect Information: Theory and Algorithms

Games with Imperfect Information: Theory and Algorithms Games with Imperfect Information: Theory and Algorithms Laurent Doyen 1 and Jean-François Raskin 2 1 LSV, ENS Cachan & CNRS, France 2 Université Libre de Bruxelles (ULB), Belgium Abstract. We study observation-based

More information

Robot Games of Degree Two

Robot Games of Degree Two Robot Games of Degree Two V. Halava 1,2 R. Niskanen 2 I. Potapov 2 1 Department of Mathematics and Statistics University of Turku, Finland 2 Department of Computer Science University of Liverpool, UK 9th

More information

CS 208: Automata Theory and Logic

CS 208: Automata Theory and Logic CS 28: Automata Theory and Logic b a a start A x(la(x) y(x < y) L b (y)) B b Department of Computer Science and Engineering, Indian Institute of Technology Bombay of 32 Nondeterminism Alternation 2 of

More information

Quasi-Weak Cost Automata

Quasi-Weak Cost Automata Quasi-Weak Cost Automata A New Variant of Weakness Denis Kuperberg 1 Michael Vanden Boom 2 1 LIAFA/CNRS/Université Paris 7, Denis Diderot, France 2 Department of Computer Science, University of Oxford,

More information

Theory of computation: initial remarks (Chapter 11)

Theory of computation: initial remarks (Chapter 11) Theory of computation: initial remarks (Chapter 11) For many purposes, computation is elegantly modeled with simple mathematical objects: Turing machines, finite automata, pushdown automata, and such.

More information

Decidable and Expressive Classes of Probabilistic Automata

Decidable and Expressive Classes of Probabilistic Automata Decidable and Expressive Classes of Probabilistic Automata Yue Ben a, Rohit Chadha b, A. Prasad Sistla a, Mahesh Viswanathan c a University of Illinois at Chicago, USA b University of Missouri, USA c University

More information

Topological extension of parity automata

Topological extension of parity automata Topological extension of parity automata Micha l Skrzypczak University of Warsaw Institute of Informatics Banacha 2 02-097 Warsaw, Poland Abstract The paper presents a concept of a coloring an extension

More information

On Promptness in Parity Games (preprint version)

On Promptness in Parity Games (preprint version) Fundamenta Informaticae XXI (2X) 28 DOI.3233/FI-22- IOS Press On Promptness in Parity Games (preprint version) Fabio Mogavero Aniello Murano Loredana Sorrentino Università degli Studi di Napoli Federico

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 2 January 5, 2018 January 5, 2018 CS21 Lecture 2 1 Outline Finite Automata Nondeterministic Finite Automata Closure under regular operations NFA, FA equivalence

More information

Uniformization in Automata Theory

Uniformization in Automata Theory Uniformization in Automata Theory Arnaud Carayol Laboratoire d Informatique Gaspard Monge, Université Paris-Est & CNRS arnaud.carayol@univ-mlv.fr Christof Löding RWTH Aachen, Informatik 7, Aachen, Germany

More information

Two-Way Cost Automata and Cost Logics over Infinite Trees

Two-Way Cost Automata and Cost Logics over Infinite Trees Two-Way Cost Automata and Cost Logics over Infinite Trees Achim Blumensath TU Darmstadt blumensath@mathematik.tudarmstadt.de Thomas Colcombet Université Paris Diderot thomas.colcombet@liafa.univ-parisdiderot.fr

More information

Monadic second-order logic on tree-like structures

Monadic second-order logic on tree-like structures Monadic second-order logic on tree-like structures Igor Walukiewicz Institute of Informatics, Warsaw University Banacha 2, 02-097 Warsaw, POLAND igw@mimuw.edu.pl Abstract An operation M which constructs

More information

Faster Pseudopolynomial Algorithms for Mean-Payoff Games

Faster Pseudopolynomial Algorithms for Mean-Payoff Games Faster Pseudopolynomial Algorithms for Mean-Payoff Games 1 Faster Pseudopolynomial Algorithms for Mean-Payoff Games L. Doyen, R. Gentilini, and J.-F. Raskin Univ. Libre de Bruxelles Faster Pseudopolynomial

More information

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,

More information

Complexity of infinite tree languages

Complexity of infinite tree languages Complexity of infinite tree languages when automata meet topology Damian Niwiński University of Warsaw joint work with André Arnold, Szczepan Hummel, and Henryk Michalewski Liverpool, October 2010 1 Example

More information

Automata and Reactive Systems

Automata and Reactive Systems Automata and Reactive Systems Lecture WS 2002/2003 Prof. Dr. W. Thomas RWTH Aachen Preliminary version (Last change March 20, 2003) Translated and revised by S. N. Cho and S. Wöhrle German version by M.

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automata (FA or DFA) CHAPTER Regular Languages Contents definitions, examples, designing, regular operations Non-deterministic Finite Automata (NFA) definitions, euivalence of NFAs and DFAs, closure

More information

From Monadic Second-Order Definable String Transformations to Transducers

From Monadic Second-Order Definable String Transformations to Transducers From Monadic Second-Order Definable String Transformations to Transducers Rajeev Alur 1 Antoine Durand-Gasselin 2 Ashutosh Trivedi 3 1 University of Pennsylvania 2 LIAFA, Université Paris Diderot 3 Indian

More information

Lecture 2: Connecting the Three Models

Lecture 2: Connecting the Three Models IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 2: Connecting the Three Models David Mix Barrington and Alexis Maciel July 18, 2000

More information

Finite Automata. Finite Automata

Finite Automata. Finite Automata Finite Automata Finite Automata Formal Specification of Languages Generators Grammars Context-free Regular Regular Expressions Recognizers Parsers, Push-down Automata Context Free Grammar Finite State

More information

Finite Automata and Languages

Finite Automata and Languages CS62, IIT BOMBAY Finite Automata and Languages Ashutosh Trivedi Department of Computer Science and Engineering, IIT Bombay CS62: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (2

More information

Peled, Vardi, & Yannakakis: Black Box Checking

Peled, Vardi, & Yannakakis: Black Box Checking Peled, Vardi, & Yannakakis: Black Box Checking Martin Leucker leucker@it.uu.se Department of Computer Systems,, Sweden Plan Preliminaries State identification and verification Conformance Testing Extended

More information

Büchi Automata and Linear Temporal Logic

Büchi Automata and Linear Temporal Logic Büchi Automata and Linear Temporal Logic Joshua D. Guttman Worcester Polytechnic Institute 18 February 2010 Guttman ( WPI ) Büchi & LTL 18 Feb 10 1 / 10 Büchi Automata Definition A Büchi automaton is a

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 14 SMALL REVIEW FOR FINAL SOME Y/N QUESTIONS Q1 Given Σ =, there is L over Σ Yes: = {e} and L = {e} Σ Q2 There are uncountably

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

On Recognizable Languages of Infinite Pictures

On Recognizable Languages of Infinite Pictures On Recognizable Languages of Infinite Pictures Equipe de Logique Mathématique CNRS and Université Paris 7 LIF, Marseille, Avril 2009 Pictures Pictures are two-dimensional words. Let Σ be a finite alphabet

More information

Perfect-information Stochastic Parity Games

Perfect-information Stochastic Parity Games Perfect-information Stochastic Parity Games Wies law Zielonka LIAFA, case 7014 Université Paris 7 2, Place Jussieu 75251 Paris Cedex 05, France zielonka@liafa.jussieu.fr Abstract. We show that in perfect-information

More information

On Recognizable Languages of Infinite Pictures

On Recognizable Languages of Infinite Pictures On Recognizable Languages of Infinite Pictures Equipe de Logique Mathématique CNRS and Université Paris 7 JAF 28, Fontainebleau, Juin 2009 Pictures Pictures are two-dimensional words. Let Σ be a finite

More information

Distributed games with causal memory are decidable for series-parallel systems

Distributed games with causal memory are decidable for series-parallel systems Distributed games with causal memory are decidable for series-parallel systems Paul Gastin, enjamin Lerman, Marc Zeitoun Firstname.Name@liafa.jussieu.fr LIF, Université Paris 7, UMR CNRS 7089 FSTTCS, dec.

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages COMP/MATH 300 Topics for Spring 2017 June 5, 2017 Review and Regular Languages Exam I I. Introductory and review information from Chapter 0 II. Problems and Languages A. Computable problems can be expressed

More information

Finite Automata. Seungjin Choi

Finite Automata. Seungjin Choi Finite Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 28 Outline

More information

Measuring Permissivity in Finite Games

Measuring Permissivity in Finite Games Measuring Permissivity in Finite Games Patricia Bouyer, Marie Duflot, Nicolas Markey, and Gabriel Renault 3 LSV, CNRS & ENS Cachan, France {bouyer,markey}@lsv.ens-cachan.fr LACL, Université Paris, France

More information

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1 Unit 6 Non Regular Languages The Pumping Lemma Reading: Sipser, chapter 1 1 Are all languages regular? No! Most of the languages are not regular! Why? A finite automaton has limited memory. How can we

More information

Towards a Theory of Information Flow in the Finitary Process Soup

Towards a Theory of Information Flow in the Finitary Process Soup Towards a Theory of in the Finitary Process Department of Computer Science and Complexity Sciences Center University of California at Davis June 1, 2010 Goals Analyze model of evolutionary self-organization

More information

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages CSci 311, Models of Computation Chapter 4 Properties of Regular Languages H. Conrad Cunningham 29 December 2015 Contents Introduction................................. 1 4.1 Closure Properties of Regular

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Parity games played on transition graphs of one-counter processes

Parity games played on transition graphs of one-counter processes Parity games played on transition graphs of one-counter processes Olivier Serre To cite this version: Olivier Serre. Parity games played on transition graphs of one-counter processes. L. Aceto and A. Ingolfsdottir.

More information

The Pumping Lemma. for all n 0, u 1 v n u 2 L (i.e. u 1 u 2 L, u 1 vu 2 L [but we knew that anyway], u 1 vvu 2 L, u 1 vvvu 2 L, etc.

The Pumping Lemma. for all n 0, u 1 v n u 2 L (i.e. u 1 u 2 L, u 1 vu 2 L [but we knew that anyway], u 1 vvu 2 L, u 1 vvvu 2 L, etc. The Pumping Lemma For every regular language L, there is a number l 1 satisfying the pumping lemma property: All w L with w l can be expressed as a concatenation of three strings, w = u 1 vu 2, where u

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information