Transformation of Dirac Spinor under Boosts & 3-Rotations

Size: px
Start display at page:

Download "Transformation of Dirac Spinor under Boosts & 3-Rotations"

Transcription

1 January 016 Volume 7 Issue 1 pp Article Transformation of Dirac Spinor under Boosts P. Lam-Estrada 1, M. R. Maldonado-Ramírez 1, J. López-Bonilla * & R. López-Vázquez 1 Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional (IPN), Edif. 9, Col. Lindavista CP 07738, México DF ESIME-Zacatenco, IPN, Edif. 5, 1er. Piso, Lindavista 07738, México DF Abstract We exhibit the transformation rule for the 4-spinor of Dirac under 3-rotations and boosts. Keywords: Dirac equation, 4-spinor, homogeneous Lorentz group, Weyl equations. 1. Introduction In the Dirac equation for spin-1/ particles [1-3] [(x μ ) = (t, x, y, z), ħ = c = 1]: (iγ μ μ m 0 )ψ = 0, i = 1, μ =, (1) μ ψ is a 4-spinor with the γ μ matrices verifying the anticommutator [4-6]: {γ μ, γ ν } = g μν I 4x4, (g μν ) = Diag(1, 1, 1, 1). () Here we consider the options: a) Dirac-Pauli (or standard) representation [7]. γ 0 = ( I 0 0 I ), γj = ( 0 σ j σ j 0 ), j = 1,, 3, γ5 i γ 0 γ 1 γ γ 3 = ( 0 I ), (3) I 0 with the Cayley [8]-Sylvester [9]-Pauli [10] matrices: σ 1 = ( ), σ = ( 0 i i 0 ), σ 3 = ( 1 0 ), (4) 0 1 b) Weyl (or chiral) representation [3, 11-13]. x * Correspondence: J. López-Bonilla, ESIME-Zacatenco-IPN, Edif. 5, Col. Lindavista CP 07738, México DF jlopezb@ipn.mx ISSN:

2 January 016 Volume 7 Issue 1 pp γ 0 = ( 0 I I 0 ), γj = ( 0 σ j σ j 0 ), j = 1,, 3, γ5 = ( I 0 ), (5) 0 I to study the transformation law of ψ under the homogeneous Lorentz group [14-16]: x μ = L μ ν x ν, (6) which implies the existence [4, 17] of a non-singular matrix S such that: L μα S γ α = γ μ S, (7) and we obtain the relativistic invariance of (1) if the Dirac spinor obeys the transformation rule: ψ = S ψ. (8) In this work we deduce the structure of S for boosts and 3-rotations, working with the representations (3) and (5).. Construction of S First we consider infinitesimal Lorentz transformations, besides L is an orthogonal matrix (L μ αl να = g μν ) [14], then it differs infinitesimally from the unit matrix by a skewsymmetric matrix [18]: L μα = g μα + ε F μα, F βν = F νβ, S = I + ε Q, ε 1, (9) and we must determine Q with the constraint required by (7) via the commutator: [γ μ, Q] = F μβ γ β = 1 F αβ(δ μ α γ β δ μ β γ α ) = 1 4 F αβ[γ μ, γ α γ β ] = [γ μ, 1 4 F αβ γ α γ β ], that is, Q = 1 4 F αβ γ α γ β, hence for a finite Lorentz transformation [we take ε = 1 N ]: S = lim N (I + ε 4 F μν γ μ γ ν ) N = exp ( 1 4 F μν γ μ γ ν ). (10) Therefore, given L we have F μν, then (8) and (10) allow to construct the new 4-spinor. ISSN:

3 January 016 Volume 7 Issue 1 pp Rotations in three dimensions For rotations around of the axes X, Y, Z, the matrix (F μν ) is given by [3, 19]: ij 1 θ 1 = θ 1 ( ), ij θ = θ ( ), ij 3 θ 3 = θ 3 ( ), (11) respectively, then in the Dirac-Pauli and Weyl representations the matrix (10) takes the form: S = ( exp (i σ θ ) 0 0 exp ( i σ θ ). (1) ) 4. Boosts In this case, for boosts in the directions X, Y, Z, the matrix (F μ ν) has the structure [3, 1]: ik 1 φ 1 = φ 1 ( ), ik φ = φ ( ), ik 3 φ 3 = φ 3 ( ), (13) respectively, where tanh φ k = v k. We note that the full matrix of Lorentz transformations of rotations and boosts adopts the expression: 0 φ 1 φ φ 3 (L μ φ ν) = exp(ij θ + ik φ ) = exp ( 1 0 θ 3 θ ), (14) φ θ 3 0 θ 1 φ 3 θ θ 1 0 where only one rotation or one boost angle can be applied at any one time [1]. In (14) we see six parameters for the homogeneous Lorentz group. ISSN:

4 January 016 Volume 7 Issue 1 pp We employ (13) into (10) to obtain: S = ( cosh (φ k ) I sinh (φ k )σ k sinh ( φ k )σ k cosh ( φ ) Dirac-Pauli scheme, (15) k ) I = ( exp ( 1 σ φ ) 0 0 exp ( 1 σ φ ) Weyl scheme, (16) ) hence, in the representation (5), for rotations and boosts the matrix S acquires the general structure [3, 1]: S = ( exp [1 σ (iθ φ )] 0 0 exp ([ 1 σ (iθ + φ )] ). (17) 5. Weyl spinors We write the Dirac spinor in the form: ψ 1 ψ ψ 3 ψ = ( ) = ( ), (18) ψ L ψ 4 where ψ R and ψ L are called Weyl spinors [1, 0], then with (8) and (17) it is immediate to deduce their transformation laws (in the chiral scheme) under an arbitrary Lorentz mapping (14) [3]: ψ R ψ R = exp [ 1 σ (iθ φ )] ψ R, ψ L = exp [ 1 σ (iθ + φ )] ψ L, (19) and they do not preserve parity (they are not invariant with respect to the change x x), hence they were assumed to represent neutrinos, which are all left-handed (described by ψ L ) while antineutrinos are all right-handed (described by ψ R ). The Dirac spinor, being composed of both spinors, is fully parity-preserving [1]. The standard representation necessarily mixes the Weyl spinors under Lorentz transformations, so their distinction is not noticeable; ψ R and ψ L are ISSN:

5 January 016 Volume 7 Issue 1 pp dotted and undotted -spinors, respectively, that is, they correspond to the representations ( 1, 0) and (0, 1 ) of the Lorentz group [3]. In fact [1]: ξ1 ψ R = ( ξ ), ψ L = ( η 1 η ), (0) and we can consider (19) with θ 1 0, therefore: ( η 1 η ) = U 1 ( η1 η ), U 1 = ( cos ( θ 1 ) i sin(θ 1 ) i sin( θ 1 ) cos (θ 1 ) ), det U 1 = 1, (1) because [] η 1 = ε A1 η A = η and η = ε A η A = η 1 ; besides: (ξ 1 ξ ) = (ξ 1 ξ )U 1. () Similarly, from (19) for φ 1 0: T ψ R = T ψr U η 1, ( η ) = U ( η1 η ), U = ( cosh ( φ 1 ) sinh (φ 1 ) sinh ( φ 1 ) cosh (φ 1 ) ), det U = 1, (3) thus (1), () and (3) show [] the undotted and dotted character of ψ L and ψ R, respectively. The matrix exp ( 1 σ φ ) is not unitary, hence we have above a finite-dimensional and nonunitary representation of the non-compact Lorentz group, however, it has infinite-dimensional unitary representations [3]. If we employ (5) and (18) in the Dirac equation (1) for massless particles, we obtain the Weyl equations [3, 11, 1] ( 0 σ j j )ψ L = 0 and ( 0 + σ j j )ψ R = 0, that is: (p 0 + σ p )ψ L = 0, (p 0 σ p )ψ R = 0, (4) thus ψ L (ψ R ) are eigenstates of negative (positive) helicity, which tells us how closely aligned the spin of a particle is with its direction of motion. ISSN:

6 January 016 Volume 7 Issue 1 pp References 1. B. Thaller, The Dirac equation, Springer-Verlag, Berlin (199). S. Weinberg, The quantum theory of fields.i, Cambridge University Press (1995) Chap L. H. Ryder, Quantum field theory, Cambridge University Press (1996) Chap. 4. R. H. Good Jr., Properties of the Dirac matrices, Rev. Mod. Phys. 7, No. (1955) E. Piña G., Vector representation of interacting Dirac equation, Int. J. Theor. Phys. 40, No. 1 (001) J. López-Bonilla, L. Rosales, A. Zúñiga-Segundo, Dirac matrices via quaternions, J. Sci. Res. (India) 53 (009) J. Leite-Lopes, Introduction to quantum electrodynamics, Trillas, Mexico (1977) Chaps. 4, 7 and A. Cayley, A memoir on the theory of matrices, London Phil. Trans. 148 (1858) J. Sylvester, On quaternions, nonions and sedenions, John Hopkins Circ. 3 (1884) W. Pauli, Zur quantenmechanik des magnetischen electrons, Zeits. für Physik 43 (197) D. McMahon, Quantum field theory, McGraw-Hill, New York (008) 1. W. Straub, Lorentz transformation of Weyl spinors, Jan 11, M. D. Schwartz, Quantum field theory and the standard model, Cambridge University Press (014) Chaps. 10 and J. L. Synge, Relativity: the special theory, North-Holland, Amsterdam (1965) Chap Z. Ahsan, J. López-Bonilla, B. Man Tuladhar, Lorentz transformations via Pauli matrices, J. of Advances in Natural Sciences, No. 1 (014) B. Carvajal G., I. Guerrero M., J. López-Bonilla, Quaternions, x complex matrices and Lorentz transformations, Bibechana (Nepal) 1 (015) W. Pauli, Contributions mathématiques a la théorie de Dirac, Ann. Inst. Henri Poincaré 6 (1936) J. L. Synge, Classical dynamics, Handbuch der Physik 3, Part 1, Springer, Berlin (1960) p J. López-Bonilla, R. López-Vázquez, J. C. Prajapati, 3-rotations via the Olinde Rodrigues-Cartan and Hamilton-Cayley expressions, 6, No. 11 (015) J. López-Bonilla, R. López-Vázquez, Square root of an operator: Laplacian & Weyl and Dirac equations, Information Sciences and Computing (India) V013, No., October 1. M. Carmeli, S. Malin, Theory of spinors: An introduction, World Scientific, Singapore (000) Chap. 5. A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, G. R. Pérez-Teruel, Faraday tensor and Maxwell spinor, 6, No. (015) ISSN:

Faraday Tensor & Maxwell Spinor (Part I)

Faraday Tensor & Maxwell Spinor (Part I) February 2015 Volume 6 Issue 2 pp. 88-97 Faraday Tensor & Maxwell Spinor (Part I) A. Hernández-Galeana #, R. López-Vázquez #, J. López-Bonilla * & G. R. Pérez-Teruel & 88 Article # Escuela Superior de

More information

Matrix Approach to Petrov Classification

Matrix Approach to Petrov Classification Matrix Approach to Petrov Classification B. E. Carvajal-Gámez 1, J. López-Bonilla *2 & R. López-Vázquez 2 151 Article 1 SEPI-ESCOM, Instituto Politécnico Nacional (IPN), Av. Bátiz S/N, 07738, México DF

More information

Singular Value Decomposition

Singular Value Decomposition The Bulletin of Society for Mathematical Services and Standards Online: 2014-09-01 ISSN: 2277-8020, Vol. 11, pp 13-20 doi:10.18052/www.scipress.com/bsmass.11.13 2014 SciPress Ltd., Switzerland Singular

More information

Moore-Penrose s inverse and solutions of linear systems

Moore-Penrose s inverse and solutions of linear systems Available online at www.worldscientificnews.com WSN 101 (2018) 246-252 EISSN 2392-2192 SHORT COMMUNICATION Moore-Penrose s inverse and solutions of linear systems J. López-Bonilla*, R. López-Vázquez, S.

More information

Newman-Penrose s formalism

Newman-Penrose s formalism Available online at www.worldscientificnews.com WSN 96 (2018) 1-12 EISSN 2392-2192 Newman-Penrose s formalism P. Lam-Estrada 1, J. López-Bonilla 2, *, R. López-Vázquez 2, S. Vidal-Beltrán 2 1 ESFM, Instituto

More information

Singular Factorization of an Arbitrary Matrix

Singular Factorization of an Arbitrary Matrix TUTA/IOE/PCU Journal of the Institute of Engineering, 2016, 12(1): 77-86 TUTA/IOE/PCU Printed in Nepal 77 Singular Factorization of an Arbitrary Matrix Gyan Bahadur Thapa 1, P. Lam-Estrada 2, J. López-Bonilla

More information

On the Faddeev-Sominsky s algorithm

On the Faddeev-Sominsky s algorithm Available online at www.worldscientificnews.com WSN 106 (2018) 238-244 EISSN 2392-2192 SHORT COMMUNICATION On the Faddeev-Sominsky s algorithm H. Torres-Silva 1, J. López-Bonilla 2, *, S. Vidal-Beltrán

More information

E 2 = p 2 + m 2. [J i, J j ] = iɛ ijk J k

E 2 = p 2 + m 2. [J i, J j ] = iɛ ijk J k 3.1. KLEIN GORDON April 17, 2015 Lecture XXXI Relativsitic Quantum Mechanics 3.1 Klein Gordon Before we get to the Dirac equation, let s consider the most straightforward derivation of a relativistically

More information

L = e i `J` i `K` D (1/2,0) (, )=e z /2 (10.253)

L = e i `J` i `K` D (1/2,0) (, )=e z /2 (10.253) 44 Group Theory The matrix D (/,) that represents the Lorentz transformation (.4) L = e i `J` i `K` (.5) is D (/,) (, )=exp( i / /). (.5) And so the generic D (/,) matrix is D (/,) (, )=e z / (.53) with

More information

Maxwell-Lorentz Matrix

Maxwell-Lorentz Matrix Available online at www.worldscientificnews.com WSN 96 (218) 59-82 EISSN 2392-2192 Maxwell-Lorent Matrix J. Yaljá Montiel-Pére 1, J. Pendleton 2, J. Lópe-Bonilla 3, *, S. Vidal-Beltrán 3 1 Centro de Investigación

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

Vector field in the reciprocal space

Vector field in the reciprocal space Available online at www.worldscientificnews.com WSN 97 (2018) 278-284 EISSN 2392-2192 SHORT COMMUNICATION Vector field in the reciprocal space H. Torres-Silva 1, V. Barrera-Figueroa 2, J. López-Bonilla

More information

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b) 4 Version of February 4, 005 CHAPTER. DIRAC EQUATION (0, 0) is a scalar. (/, 0) is a left-handed spinor. (0, /) is a right-handed spinor. (/, /) is a vector. Before discussing spinors in detail, let us

More information

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 10 The Dirac equation WS2010/11: Introduction to Nuclear and Particle Physics The Dirac equation The Dirac equation is a relativistic quantum mechanical wave equation formulated by British physicist

More information

11 Spinor solutions and CPT

11 Spinor solutions and CPT 11 Spinor solutions and CPT 184 In the previous chapter, we cataloged the irreducible representations of the Lorentz group O(1, 3. We found that in addition to the obvious tensor representations, φ, A

More information

Rotation Eigenvectors and Spin 1/2

Rotation Eigenvectors and Spin 1/2 Rotation Eigenvectors and Spin 1/2 Richard Shurtleff March 28, 1999 Abstract It is an easily deduced fact that any four-component spin 1/2 state for a massive particle is a linear combination of pairs

More information

Disclaimer. [disclaimer]

Disclaimer. [disclaimer] Disclaimer This is a problem set (as turned in) for the module physics755. This problem set is not reviewed by a tutor. This is just what I have turned in. All problem sets for this module can be found

More information

Lecture 9/10 (February 19/24, 2014) DIRAC EQUATION(III) i 2. ( x) σ = = Equation 66 is similar to the rotation of two-component Pauli spinor ( ) ( )

Lecture 9/10 (February 19/24, 2014) DIRAC EQUATION(III) i 2. ( x) σ = = Equation 66 is similar to the rotation of two-component Pauli spinor ( ) ( ) P47 For a Lorentz boost along the x-axis, Lecture 9/ (February 9/4, 4) DIRAC EQUATION(III) i ψ ωσ ψ ω exp α ψ ( x) ( x ) exp ( x) (65) where tanh ω β, cosh ω γ, sinh ω βγ β imilarly, for a rotation around

More information

msqm 2011/8/14 21:35 page 189 #197

msqm 2011/8/14 21:35 page 189 #197 msqm 2011/8/14 21:35 page 189 #197 Bibliography Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Edition, (Oxford University Press, London, 1958). Feynman, R. P. and A. P. Hibbs, Quantum Mechanics

More information

Introduction to Neutrino Physics. TRAN Minh Tâm

Introduction to Neutrino Physics. TRAN Minh Tâm Introduction to Neutrino Physics TRAN Minh Tâm LPHE/IPEP/SB/EPFL This first lecture is a phenomenological introduction to the following lessons which will go into details of the most recent experimental

More information

Landau-Lifshitz equation of motion for a charged particle revisited

Landau-Lifshitz equation of motion for a charged particle revisited Annales de la Fondation Louis de Broglie, Volume 30 no 3-4, 2005 283 Landau-Lifshitz equation of motion for a charged particle revisited G. Ares de Parga, R. Mares and S. Dominguez Escuela Superior de

More information

The Homogenous Lorentz Group

The Homogenous Lorentz Group The Homogenous Lorentz Group Thomas Wening February 3, 216 Contents 1 Proper Lorentz Transforms 1 2 Four Vectors 2 3 Basic Properties of the Transformations 3 4 Connection to SL(2, C) 5 5 Generators of

More information

Exercises Symmetries in Particle Physics

Exercises Symmetries in Particle Physics Exercises Symmetries in Particle Physics 1. A particle is moving in an external field. Which components of the momentum p and the angular momentum L are conserved? a) Field of an infinite homogeneous plane.

More information

1.7 Plane-wave Solutions of the Dirac Equation

1.7 Plane-wave Solutions of the Dirac Equation 0 Version of February 7, 005 CHAPTER. DIRAC EQUATION It is evident that W µ is translationally invariant, [P µ, W ν ] 0. W is a Lorentz scalar, [J µν, W ], as you will explicitly show in homework. Here

More information

Appendix C Lorentz group and the Dirac algebra

Appendix C Lorentz group and the Dirac algebra Appendix C Lorentz group and the Dirac algebra This appendix provides a review and summary of the Lorentz group, its properties, and the properties of its infinitesimal generators. It then reviews representations

More information

Generalized Neutrino Equations

Generalized Neutrino Equations Generalized Neutrino Equations arxiv:quant-ph/001107v 1 Jan 016 Valeriy V. Dvoeglazov UAF, Universidad Autónoma de Zacatecas Apartado Postal 636, Zacatecas 98061 Zac., México E-mail: valeri@fisica.uaz.edu.mx

More information

Little groups and Maxwell-type tensors for massive and massless particles

Little groups and Maxwell-type tensors for massive and massless particles EUROPHYSICS LETTERS 15 November 1997 Europhys. Lett., 40 (4), pp. 375-380 (1997) Little groups and Maxwell-type tensors for massive and massless particles S. Başkal 1 and Y. S. Kim 2 1 Department of Physics,

More information

The Lorentz and Poincaré Groups in Relativistic Field Theory

The Lorentz and Poincaré Groups in Relativistic Field Theory The and s in Relativistic Field Theory Term Project Nicolás Fernández González University of California Santa Cruz June 2015 1 / 14 the Our first encounter with the group is in special relativity it composed

More information

Chapter 17 The bilinear covariant fields of the Dirac electron. from my book: Understanding Relativistic Quantum Field Theory.

Chapter 17 The bilinear covariant fields of the Dirac electron. from my book: Understanding Relativistic Quantum Field Theory. Chapter 17 The bilinear covariant fields of the Dirac electron from my book: Understanding Relativistic Quantum Field Theory Hans de Vries November 10, 008 Chapter Contents 17 The bilinear covariant fields

More information

Plan for the rest of the semester. ψ a

Plan for the rest of the semester. ψ a Plan for the rest of the semester ϕ ψ a ϕ(x) e iα(x) ϕ(x) 167 Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: and

More information

Physics 218 Polarization sum for massless spin-one particles Winter 2016

Physics 218 Polarization sum for massless spin-one particles Winter 2016 Physics 18 Polarization sum for massless spin-one particles Winter 016 We first consider a massless spin-1 particle moving in the z-direction with four-momentum k µ = E(1; 0, 0, 1). The textbook expressions

More information

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama Lorentz-covariant spectrum of single-particle states and their field theory Physics 30A, Spring 007, Hitoshi Murayama 1 Poincaré Symmetry In order to understand the number of degrees of freedom we need

More information

Differentiation of a Fourier series

Differentiation of a Fourier series Available online at www.worldscientificnews.com WSN 102 (2018) 188-192 EISSN 2392-2192 SHORT COMMUNICATION Differentiation of a Fourier series R. Cruz-Santiago, J. López-Bonilla, R. López-Vázquez ESIME-Zacatenco,

More information

10 Lorentz Group and Special Relativity

10 Lorentz Group and Special Relativity Physics 129 Lecture 16 Caltech, 02/27/18 Reference: Jones, Groups, Representations, and Physics, Chapter 10. 10 Lorentz Group and Special Relativity Special relativity says, physics laws should look the

More information

Physics 221AB Spring 1997 Notes 36 Lorentz Transformations in Quantum Mechanics and the Covariance of the Dirac Equation

Physics 221AB Spring 1997 Notes 36 Lorentz Transformations in Quantum Mechanics and the Covariance of the Dirac Equation Physics 221AB Spring 1997 Notes 36 Lorentz Transformations in Quantum Mechanics and the Covariance of the Dirac Equation These notes supplement Chapter 2 of Bjorken and Drell, which concerns the covariance

More information

Representations of Lorentz Group

Representations of Lorentz Group Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: How do we find the smallest (irreducible) representations of the

More information

Spinor Formulation of Relativistic Quantum Mechanics

Spinor Formulation of Relativistic Quantum Mechanics Chapter Spinor Formulation of Relativistic Quantum Mechanics. The Lorentz Transformation of the Dirac Bispinor We will provide in the following a new formulation of the Dirac equation in the chiral representation

More information

Wigner s Little Groups

Wigner s Little Groups Wigner s Little Groups Y. S. Kim Center for Fundamental Physics, University of Maryland, College Park, Maryland 2742, U.S.A. e-mail: yskim@umd.edu Abstract Wigner s little groups are subgroups of the Lorentz

More information

FEJÉR KERNEL: ITS ASSOCIATED POLYNOMIALS

FEJÉR KERNEL: ITS ASSOCIATED POLYNOMIALS Boletín de Matemáticas Nueva Serie, Volumen XV No. (008), pp. 14 18 EJÉR KERNEL: ITS ASSOCIATE POLYNOMIALS MARTHA GALAZ-LARIOS (*) RICARO GARCÍA-OLIVO (**) JOSÉ LUIS LÓPEZ-BONILLA (***) Abstract. We show

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

A Brief Introduction to Relativistic Quantum Mechanics

A Brief Introduction to Relativistic Quantum Mechanics A Brief Introduction to Relativistic Quantum Mechanics Hsin-Chia Cheng, U.C. Davis 1 Introduction In Physics 215AB, you learned non-relativistic quantum mechanics, e.g., Schrödinger equation, E = p2 2m

More information

On the quantum theory of rotating electrons

On the quantum theory of rotating electrons Zur Quantentheorie des rotierenden Elektrons Zeit. f. Phys. 8 (98) 85-867. On the quantum theory of rotating electrons By Friedrich Möglich in Berlin-Lichterfelde. (Received on April 98.) Translated by

More information

On Linear and Non-Linear Representations of the Generalized Poincaré Groups in the Class of Lie Vector Fields

On Linear and Non-Linear Representations of the Generalized Poincaré Groups in the Class of Lie Vector Fields Journal of Nonlinear Mathematical Physics ISSN: 1402-9251 (Print) 1776-0852 (Online) Journal homepage: http://www.tandfonline.com/loi/tnmp20 On Linear and Non-Linear Representations of the Generalized

More information

0 T (L int (x 1 )...L int (x n )) = i

0 T (L int (x 1 )...L int (x n )) = i LORENTZ INVARIANT RENORMALIZATION IN CAUSAL PERTURBATION THEORY K. BRESSER, G. PINTER AND D. PRANGE II. Institut für Theoretische Physik Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany e-mail:

More information

Particle Notes. Ryan D. Reece

Particle Notes. Ryan D. Reece Particle Notes Ryan D. Reece July 9, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation that

More information

Spin one matter elds. November 2015

Spin one matter elds. November 2015 Spin one matter elds M. Napsuciale, S. Rodriguez, R.Ferro-Hernández, S. Gomez-Ávila Universidad de Guanajuato Mexican Workshop on Particles and Fields November 2015 M. Napsuciale, S. Rodriguez, R.Ferro-Hernández,

More information

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra Chapter 1 LORENTZ/POINCARE INVARIANCE 1.1 The Lorentz Algebra The requirement of relativistic invariance on any fundamental physical system amounts to invariance under Lorentz Transformations. These transformations

More information

Spinors in Curved Space

Spinors in Curved Space December 5, 2008 Tetrads The problem: How to put gravity into a Lagrangian density? The problem: How to put gravity into a Lagrangian density? The solution: The Principle of General Covariance The problem:

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Relativistic Spin Operator with Observers in Motion

Relativistic Spin Operator with Observers in Motion EJTP 7, No. 3 00 6 7 Electronic Journal of Theoretical Physics Relativistic Spin Operator with Observers in Motion J P Singh Department of Management Studies, Indian Institute of Technology Roorkee, Roorkee

More information

ISSN Article

ISSN Article Symmetry 00,, 776-809; doi:0.3390/sym04776 OPEN ACCESS symmetry ISSN 073-8994 www.mdpi.com/journal/symmetry Article A Direct Road to Majorana Fields Andreas Aste Department of Physics, University of Basel,

More information

Lecture 4 - Dirac Spinors

Lecture 4 - Dirac Spinors Lecture 4 - Dirac Spinors Schrödinger & Klein-Gordon Equations Dirac Equation Gamma & Pauli spin matrices Solutions of Dirac Equation Fermion & Antifermion states Left and Right-handedness Non-Relativistic

More information

Chapter 16 The relativistic Dirac equation. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 16 The relativistic Dirac equation. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 6 The relativistic Dirac equation from my book: Understanding Relativistic Quantum Field Theory Hans de Vries November, 28 2 Chapter Contents 6 The relativistic Dirac equation 6. The linearized

More information

Lorentz and Poincaré groups

Lorentz and Poincaré groups HAPTER VIII Lorentz and Poincaré groups onsider the four-dimensional real vector space R 4. Its vectors will generically be denoted in a sans-serif font, as e.g. x. Assuming a basis has been chosen, the

More information

A Note on Incompatibility of the Dirac-like Field Operator with the Majorana Anzatz

A Note on Incompatibility of the Dirac-like Field Operator with the Majorana Anzatz A Note on Incompatibility of the Dirac-like Field Operator with the Majorana Anzatz Valeriy V. Dvoeglazov UAF, Universidad Autónoma de Zacatecas, México E-mail: valeri@fisica.uaz.edu.mx Abstract We investigate

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Stress-energy tensor is the most important object in a field theory and have been studied

Stress-energy tensor is the most important object in a field theory and have been studied Chapter 1 Introduction Stress-energy tensor is the most important object in a field theory and have been studied extensively [1-6]. In particular, the finiteness of stress-energy tensor has received great

More information

Dirac Equation with Self Interaction Induced by Torsion: Minkowski Space-Time

Dirac Equation with Self Interaction Induced by Torsion: Minkowski Space-Time Advanced Studies in Theoretical Physics Vol. 9, 15, no. 15, 71-78 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/astp.15.5986 Dirac Equation with Self Interaction Induced by Torsion: Minkowski Space-Time

More information

Introduction to relativistic quantum mechanics

Introduction to relativistic quantum mechanics Introduction to relativistic quantum mechanics. Tensor notation In this book, we will most often use so-called natural units, which means that we have set c = and =. Furthermore, a general 4-vector will

More information

Weyl equation for temperature fields induced by attosecond laser pulses

Weyl equation for temperature fields induced by attosecond laser pulses arxiv:cond-mat/0409076v1 [cond-mat.other 3 Sep 004 Weyl equation for temperature fields induced by attosecond laser pulses Janina Marciak-Kozlowska, Miroslaw Kozlowski Institute of Electron Technology,

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

A New Formalism of Arbitrary Spin Particle Equations. Abstract

A New Formalism of Arbitrary Spin Particle Equations. Abstract A New Formalism of Arbitrary Spin Particle Equations S.R. Shi Huiyang Radio and TV station,daishui,huiyang,huizhou,guangdong,china,56 (Dated: October 4, 6) Abstract In this paper, a new formalism of arbitrary

More information

On the non-relativistic limit of charge conjugation in QED

On the non-relativistic limit of charge conjugation in QED arxiv:1001.0757v3 [hep-th] 20 Jun 2010 On the non-relativistic limit of charge conjugation in QED B. Carballo Pérez and M. Socolovsky Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,

More information

Contravariant and covariant vectors

Contravariant and covariant vectors Faculty of Engineering and Physical Sciences Department of Physics Module PHY08 Special Relativity Tensors You should have acquired familiarity with the following ideas and formulae in attempting the questions

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Quantum Physics 2006/07

Quantum Physics 2006/07 Quantum Physics 6/7 Lecture 7: More on the Dirac Equation In the last lecture we showed that the Dirac equation for a free particle i h t ψr, t = i hc α + β mc ψr, t has plane wave solutions ψr, t = exp

More information

A Further Analysis of the Blackbody Radiation

A Further Analysis of the Blackbody Radiation Apeiron, Vol. 17, No. 2, April 2010 59 A Further Analysis of the Blackbody Radiation G. Ares de Parga and F. Gutiérrez-Mejía Dept. de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14. As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14 Majorana spinors March 15, 2012 So far, we have only considered massless, two-component

More information

The Lorentz and Poincaré groups. By Joel Oredsson

The Lorentz and Poincaré groups. By Joel Oredsson The Lorentz and Poincaré groups By Joel Oredsson The Principle of Special Rela=vity: The laws of nature should be covariant with respect to the transforma=ons between iner=al reference frames. x µ x' µ

More information

232A Lecture Notes Representation Theory of Lorentz Group

232A Lecture Notes Representation Theory of Lorentz Group 232A Lecture Notes Representation Theory of Lorentz Group 1 Symmetries in Physics Symmetries play crucial roles in physics. Noether s theorem relates symmetries of the system to conservation laws. In quantum

More information

Unitary rotations. October 28, 2014

Unitary rotations. October 28, 2014 Unitary rotations October 8, 04 The special unitary group in dimensions It turns out that all orthogonal groups SO n), rotations in n real dimensions) may be written as special cases of rotations in a

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Hidden structures in quantum mechanics

Hidden structures in quantum mechanics Journal of Generalized Lie Theory and Applications Vol. 3 (2009), No. 1, 33 38 Hidden structures in quantum mechanics Vladimir DZHUNUSHALIEV 1 Department of Physics and Microelectronics Engineering, Kyrgyz-Russian

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Chisholm-Caianiello-Fubini Identities for S = 1 Barut-Muzinich-Williams Matrices

Chisholm-Caianiello-Fubini Identities for S = 1 Barut-Muzinich-Williams Matrices Chisholm-Caianiello-Fubini Identities for S = 1 Barut-Muzinich-Williams Matrices M. de G. Caldera Cabral and V. V. Dvoeglazov UAF Universidad Autónoma de Zacatecas Apartado Postal 636 Suc. 3 Cruces Zacatecas

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Quaternionic Electron Theory: Geometry, Algebra and Dirac s Spinors

Quaternionic Electron Theory: Geometry, Algebra and Dirac s Spinors Quaternionic Electron Theory: Geometry, Algebra and Dirac s Spinors Stefano De Leo a,b and Waldyr A Rodrigues, Jr b a Dipartimento di Fisica, Università degli Studi Lecce and INFN, Sezione di Lecce via

More information

Tutorial 5 Clifford Algebra and so(n)

Tutorial 5 Clifford Algebra and so(n) Tutorial 5 Clifford Algebra and so(n) 1 Definition of Clifford Algebra A set of N Hermitian matrices γ 1, γ,..., γ N obeying the anti-commutator γ i, γ j } = δ ij I (1) is the basis for an algebra called

More information

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of

More information

129 Lecture Notes More on Dirac Equation

129 Lecture Notes More on Dirac Equation 19 Lecture Notes More on Dirac Equation 1 Ultra-relativistic Limit We have solved the Diraction in the Lecture Notes on Relativistic Quantum Mechanics, and saw that the upper lower two components are large

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Quaternions, semi-vectors, and spinors

Quaternions, semi-vectors, and spinors Quaternionen, Semivectoren, und Spinoren, Zeit. Phys. 95 (935), 337-354. Quaternions, semi-vectors, and spinors By J. Blaton in Wilno (Received on 3 April 935) Translated by D. H. Delphenich The representation

More information

Research Article Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

Research Article Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation Advances in Mathematical Physics Volume 2011, Article ID 680367, 10 pages doi:10.1155/2011/680367 Research Article Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation A. A.

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

4-Space Dirac Theory and LENR

4-Space Dirac Theory and LENR J. Condensed Matter Nucl. Sci. 2 (2009) 7 12 Research Article 4-Space Dirac Theory and LENR A. B. Evans Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand

More information

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Jens Boos jboos@perimeterinstitute.ca Perimeter Institute for Theoretical Physics Friday, Dec 4, 2015

More information

The remainder term in Fourier series and its relationship with the Basel problem

The remainder term in Fourier series and its relationship with the Basel problem Annales Mathematicae et Informaticae 34 (2007) pp. 7 28 http://www.ektf.hu/tanszek/matematika/ami The remainder term in Fourier series and its relationship with the Basel problem V. Barrera-Figueroa a,

More information

H&M Chapter 5 Review of Dirac Equation

H&M Chapter 5 Review of Dirac Equation HM Chapter 5 Review of Dirac Equation Dirac s Quandary Notation Reminder Dirac Equation for free particle Mostly an exercise in notation Define currents Make a complete list of all possible currents Aside

More information

Particle Physics Dr M.A. Thomson Part II, Lent Term 2004 HANDOUT V

Particle Physics Dr M.A. Thomson Part II, Lent Term 2004 HANDOUT V Particle Physics Dr M.A. Thomson (ifl μ @ μ m)ψ = Part II, Lent Term 24 HANDOUT V Dr M.A. Thomson Lent 24 2 Spin, Helicity and the Dirac Equation Upto this point we have taken a hands-off approach to spin.

More information

7 Quantized Free Dirac Fields

7 Quantized Free Dirac Fields 7 Quantized Free Dirac Fields 7.1 The Dirac Equation and Quantum Field Theory The Dirac equation is a relativistic wave equation which describes the quantum dynamics of spinors. We will see in this section

More information

Lecture notes: Quantum gates in matrix and ladder operator forms

Lecture notes: Quantum gates in matrix and ladder operator forms Phys 7 Topics in Particles & Fields Spring 3 Lecture v.. Lecture notes: Quantum gates in matrix and ladder operator forms Jeffrey Yepez Department of Physics and Astronomy University of Hawai i at Manoa

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

D-Branes at Finite Temperature in TFD

D-Branes at Finite Temperature in TFD D-Branes at Finite Temperature in TFD arxiv:hep-th/0308114v1 18 Aug 2003 M. C. B. Abdalla a, A. L. Gadelha a, I. V. Vancea b January 8, 2014 a Instituto de Física Teórica, Universidade Estadual Paulista

More information