Higher-order Graph Cuts

Size: px
Start display at page:

Download "Higher-order Graph Cuts"

Transcription

1 ACCV2014 Area Chairs Workshop Sep. 3, 2014 Nanyang Technological University, Singapore 1 Higher-order Graph Cuts Hiroshi Ishikawa Department of Computer Science & Engineering Waseda University

2 Labeling problem Original Noise-added Denoised Assign a label to each pixel Pixel Label 2

3 Energy minimization Original Noise-added Denoised, Globally optimizeable using graph cuts Greig, Porteous and Seheult 89 3

4 First-order (pairwise) energy Good (Low Energy) Bad (High Energy) 12 Bad 12 Bad 40 Good 40 Good 4

5 Higher-order energy Good (Low Energy) Bad (High Energy) Better (Lower Energy) Worse (Higher Energy) A B C D 5

6 Higher-order energy Better (Lower Energy) Worse (Higher Energy) A B C D A: 15 B: 12 C: 1 D: 0 A: 16 B: 6 C: 5 D: 1 6

7 Higher-order energy,,,, Better (Lower Energy) Worse (Higher Energy) A B C D 7

8 Functions of binary variables Pseudo-Boolean function (PBF) Function of binary ( or ) variables Can always write it uniquely as a polynomial One variable : Two variables : Three variables : th order binary MRF = th degree PBF 8

9 Reducing higher-order energy Convert any higher-order binary energy C into an equivalent first-order energy Adds variables More than 2 labels Fusion moves Ishikawa CVPR 2009, PAMI

10 New! Convert many higher-order binary energies C into an equivalent first-order energy Without adding variables How? Ishikawa CVPR

11 Example: a cubic term :cubic (3 rd degree),, coefficient: Define new function: i.e., value is added only when 11

12 Example: a cubic term Define new function: i.e., value is added only when New coefficient (replace with ): So is now quadratic (2 nd degree) Similarly, we can reduce the degree by changing one of the 8 possible values But and are different functions! 12

13 When can we do this?,, Different only when Suppose is a potential in are three of the variables in If, and For minimizer of,, then, we can replace with without changing the minimizer 13

14 ELC Excludable Local Configuration (ELC) A (usually) locally-testable sufficient condition for local configuration to be not part of global minimizer Excludable as a part of global minimizer ELC may not exist May take time to find Approximation Just use the local configuration the largest value with 14

15 Experiment: 4 th deg. FoE denoising Original Noise added 4 th degree 15

16 Experiment: 4 th deg. FoE denoising Number of variables after conversion 0 ELC+HOCR ELC+Fix et. al Approx. ELC HOCR Fix et. al 16

17 Experiment: 4 th deg. FoE denoising Energy ELC+HO CR ELC Approx. HOCR Fix et al Iterations 17

18 Experiment: 4 th deg. FoE denoising Energy HOCR ELC+HO CR Fix et al. ELC Approx Time (sec.) 18

19 Experiment: 4 th deg. FoE denoising % pixels labeled ELC Approx. 100 ELC+HOCR Fix et al HOCR Iterations 19

20 Experiment: 4 th deg. FoE denoising ELC exists: 3 rd degree: 96.12% 4 th degree: 99.60% Approximation: Guessed configuration is in fact an ELC 3 rd degree: 88% of the time 4 th degree: 97% of the time Even if it is not an ELC, it is not part of maximizer 3 rd degree: 99.98% 4 th degree: % % of (labeled) pixels correctly labeled 20

21 Conclusion Higher-order energy minimization Unary, Pairwise, Triple,. Binary labels: reduce to first order Then use graph cuts Multiple labels: use Fusion Move Reducing to first order Before: add variables New: no variables added Faster Much less memory Code available: 21

Higher-Order Clique Reduction Without Auxiliary Variables

Higher-Order Clique Reduction Without Auxiliary Variables Higher-Order Clique Reduction Without Auxiliary Variables Hiroshi Ishikawa Department of Computer Science and Engineering Waseda University Okubo 3-4-1, Shinjuku, Tokyo, Japan hfs@waseda.jp Abstract We

More information

Higher-Order Clique Reduction in Binary Graph Cut

Higher-Order Clique Reduction in Binary Graph Cut CVPR009: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami Beach, Florida. June 0-5, 009. Hiroshi Ishikawa Nagoya City University Department of Information and Biological

More information

MANY problems in computer vision, such as segmentation,

MANY problems in computer vision, such as segmentation, 134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 6, JUNE 011 Transformation of General Binary MRF Minimization to the First-Order Case Hiroshi Ishikawa, Member, IEEE Abstract

More information

Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation. B. A. Zalesky

Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation. B. A. Zalesky Multiresolution Graph Cut Methods in Image Processing and Gibbs Estimation B. A. Zalesky 1 2 1. Plan of Talk 1. Introduction 2. Multiresolution Network Flow Minimum Cut Algorithm 3. Integer Minimization

More information

A Graph Cut Algorithm for Higher-order Markov Random Fields

A Graph Cut Algorithm for Higher-order Markov Random Fields A Graph Cut Algorithm for Higher-order Markov Random Fields Alexander Fix Cornell University Aritanan Gruber Rutgers University Endre Boros Rutgers University Ramin Zabih Cornell University Abstract Higher-order

More information

Minimizing Count-based High Order Terms in Markov Random Fields

Minimizing Count-based High Order Terms in Markov Random Fields EMMCVPR 2011, St. Petersburg Minimizing Count-based High Order Terms in Markov Random Fields Thomas Schoenemann Center for Mathematical Sciences Lund University, Sweden Abstract. We present a technique

More information

Energy minimization via graph-cuts

Energy minimization via graph-cuts Energy minimization via graph-cuts Nikos Komodakis Ecole des Ponts ParisTech, LIGM Traitement de l information et vision artificielle Binary energy minimization We will first consider binary MRFs: Graph

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Generalized Roof Duality for Pseudo-Boolean Optimization

Generalized Roof Duality for Pseudo-Boolean Optimization Generalized Roof Duality for Pseudo-Boolean Optimization Fredrik Kahl Petter Strandmark Centre for Mathematical Sciences, Lund University, Sweden {fredrik,petter}@maths.lth.se Abstract The number of applications

More information

Higher-Order Energies for Image Segmentation

Higher-Order Energies for Image Segmentation IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Higher-Order Energies for Image Segmentation Jianbing Shen, Senior Member, IEEE, Jianteng Peng, Xingping Dong, Ling Shao, Senior Member, IEEE, and Fatih Porikli,

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Downloaded from

Downloaded from Question 1: Exercise 2.1 The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) Page 1 of 24 (iv) (v) (v) Page

More information

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2 Grouping with Bias Stella X. Yu, Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition What Is It About? Incorporating prior knowledge into grouping Unitary

More information

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Image labelling Problems Assign a label to each image pixel Geometry Estimation Image Denoising

More information

Reformulations of nonlinear binary optimization problems

Reformulations of nonlinear binary optimization problems 1 / 36 Reformulations of nonlinear binary optimization problems Yves Crama HEC Management School, University of Liège, Belgium Koper, May 2018 2 / 36 Nonlinear 0-1 optimization Outline 1 Nonlinear 0-1

More information

Maximum 3-SAT as QUBO

Maximum 3-SAT as QUBO Maximum 3-SAT as QUBO Michael J. Dinneen 1 Semester 2, 2016 1/15 1 Slides mostly based on Alex Fowler s and Rong (Richard) Wang s notes. Boolean Formula 2/15 A Boolean variable is a variable that can take

More information

9.5. Polynomial and Rational Inequalities. Objectives. Solve quadratic inequalities. Solve polynomial inequalities of degree 3 or greater.

9.5. Polynomial and Rational Inequalities. Objectives. Solve quadratic inequalities. Solve polynomial inequalities of degree 3 or greater. Chapter 9 Section 5 9.5 Polynomial and Rational Inequalities Objectives 1 3 Solve quadratic inequalities. Solve polynomial inequalities of degree 3 or greater. Solve rational inequalities. Objective 1

More information

Energy Minimization via Graph Cuts

Energy Minimization via Graph Cuts Energy Minimization via Graph Cuts Xiaowei Zhou, June 11, 2010, Journal Club Presentation 1 outline Introduction MAP formulation for vision problems Min-cut and Max-flow Problem Energy Minimization via

More information

Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification

Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification Sanjiv Kumar and Martial Hebert The Robotics Institute, Carnegie Mellon University Pittsburgh, PA 15213,

More information

On Partial Optimality in Multi-label MRFs

On Partial Optimality in Multi-label MRFs On Partial Optimality in Multi-label MRFs P. Kohli 1 A. Shekhovtsov 2 C. Rother 1 V. Kolmogorov 3 P. Torr 4 1 Microsoft Research Cambridge 2 Czech Technical University in Prague 3 University College London

More information

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts June 23 rd 2008 Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts Christian Wolf Laboratoire d InfoRmatique en Image et Systèmes

More information

Discriminative Fields for Modeling Spatial Dependencies in Natural Images

Discriminative Fields for Modeling Spatial Dependencies in Natural Images Discriminative Fields for Modeling Spatial Dependencies in Natural Images Sanjiv Kumar and Martial Hebert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 {skumar,hebert}@ri.cmu.edu

More information

Markov Random Fields for Computer Vision (Part 1)

Markov Random Fields for Computer Vision (Part 1) Markov Random Fields for Computer Vision (Part 1) Machine Learning Summer School (MLSS 2011) Stephen Gould stephen.gould@anu.edu.au Australian National University 13 17 June, 2011 Stephen Gould 1/23 Pixel

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

MAP Estimation Algorithms in Computer Vision - Part II

MAP Estimation Algorithms in Computer Vision - Part II MAP Estimation Algorithms in Comuter Vision - Part II M. Pawan Kumar, University of Oford Pushmeet Kohli, Microsoft Research Eamle: Image Segmentation E() = c i i + c ij i (1- j ) i i,j E: {0,1} n R 0

More information

Basics on the Graphcut Algorithm. Application for the Computation of the Mode of the Ising Model

Basics on the Graphcut Algorithm. Application for the Computation of the Mode of the Ising Model Basics on the Graphcut Algorithm. Application for the Computation of the Mode of the Ising Model Bruno Galerne bruno.galerne@parisdescartes.fr MAP5, Université Paris Descartes Master MVA Cours Méthodes

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015 Course 16:198:520: Introduction To Artificial Intelligence Lecture 9 Markov Networks Abdeslam Boularias Monday, October 14, 2015 1 / 58 Overview Bayesian networks, presented in the previous lecture, are

More information

A note on the primal-dual method for the semi-metric labeling problem

A note on the primal-dual method for the semi-metric labeling problem A note on the primal-dual method for the semi-metric labeling problem Vladimir Kolmogorov vnk@adastral.ucl.ac.uk Technical report June 4, 2007 Abstract Recently, Komodakis et al. [6] developed the FastPD

More information

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point

polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point polynomial function polynomial function of degree n leading coefficient leading-term test quartic function turning point quadratic form repeated zero multiplicity Graph Transformations of Monomial Functions

More information

P,NP, NP-Hard and NP-Complete

P,NP, NP-Hard and NP-Complete P,NP, NP-Hard and NP-Complete We can categorize the problem space into two parts Solvable Problems Unsolvable problems 7/11/2011 1 Halting Problem Given a description of a program and a finite input, decide

More information

Part 7: Structured Prediction and Energy Minimization (2/2)

Part 7: Structured Prediction and Energy Minimization (2/2) Part 7: Structured Prediction and Energy Minimization (2/2) Colorado Springs, 25th June 2011 G: Worst-case Complexity Hard problem Generality Optimality Worst-case complexity Integrality Determinism G:

More information

Separation Techniques for Constrained Nonlinear 0 1 Programming

Separation Techniques for Constrained Nonlinear 0 1 Programming Separation Techniques for Constrained Nonlinear 0 1 Programming Christoph Buchheim Computer Science Department, University of Cologne and DEIS, University of Bologna MIP 2008, Columbia University, New

More information

Joint Optimization of Segmentation and Appearance Models

Joint Optimization of Segmentation and Appearance Models Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization

More information

Quadratic Programming Relaxations for Metric Labeling and Markov Random Field MAP Estimation

Quadratic Programming Relaxations for Metric Labeling and Markov Random Field MAP Estimation Quadratic Programming Relaations for Metric Labeling and Markov Random Field MAP Estimation Pradeep Ravikumar John Lafferty School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,

More information

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Knapsack Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Goal: find a subset of items of maximum profit such that the item subset fits in the bag Knapsack X: item set

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

A Cubic Regression Group Activity 4 STEM Project Week #7

A Cubic Regression Group Activity 4 STEM Project Week #7 A Cubic Regression Group Activity 4 STEM Project Week #7 In the first activity we looked at a set of data that was modeled by a line (a linear regression). In the second and third activities we looked

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

Discrete Optimization Lecture 5. M. Pawan Kumar

Discrete Optimization Lecture 5. M. Pawan Kumar Discrete Optimization Lecture 5 M. Pawan Kumar pawan.kumar@ecp.fr Exam Question Type 1 v 1 s v 0 4 2 1 v 4 Q. Find the distance of the shortest path from s=v 0 to all vertices in the graph using Dijkstra

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Semantics of probabilistic models over undirected graphs Parameters of undirected models Example applications COMP-652 and ECSE-608, February 16, 2017 1 Undirected graphical

More information

On Partial Optimality in Multi-label MRFs

On Partial Optimality in Multi-label MRFs Pushmeet Kohli 1 Alexander Shekhovtsov 2 Carsten Rother 1 Vladimir Kolmogorov 3 Philip Torr 4 pkohli@microsoft.com shekhovt@cmp.felk.cvut.cz carrot@microsoft.com vnk@adastral.ucl.ac.uk philiptorr@brookes.ac.uk

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Quadratization of symmetric pseudo-boolean functions

Quadratization of symmetric pseudo-boolean functions of symmetric pseudo-boolean functions Yves Crama with Martin Anthony, Endre Boros and Aritanan Gruber HEC Management School, University of Liège Liblice, April 2013 of symmetric pseudo-boolean functions

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Analysis of Algorithms

Analysis of Algorithms October 1, 2015 Analysis of Algorithms CS 141, Fall 2015 1 Analysis of Algorithms: Issues Correctness/Optimality Running time ( time complexity ) Memory requirements ( space complexity ) Power I/O utilization

More information

MA 1128: Lecture 19 4/20/2018. Quadratic Formula Solving Equations with Graphs

MA 1128: Lecture 19 4/20/2018. Quadratic Formula Solving Equations with Graphs MA 1128: Lecture 19 4/20/2018 Quadratic Formula Solving Equations with Graphs 1 Completing-the-Square Formula One thing you may have noticed when you were completing the square was that you followed the

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Truncated Max-of-Convex Models Technical Report

Truncated Max-of-Convex Models Technical Report Truncated Max-of-Convex Models Technical Report Pankaj Pansari University of Oxford The Alan Turing Institute pankaj@robots.ox.ac.uk M. Pawan Kumar University of Oxford The Alan Turing Institute pawan@robots.ox.ac.uk

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review Kasten, Algebra 2 Finding Zeros (Roots) of Quadratics, Cubics, and Quartics A zero of a polynomial equation is the value of the independent variable (typically x) that, when plugged-in to the equation,

More information

Learning by constraints and SVMs (2)

Learning by constraints and SVMs (2) Statistical Techniques in Robotics (16-831, F12) Lecture#14 (Wednesday ctober 17) Learning by constraints and SVMs (2) Lecturer: Drew Bagnell Scribe: Albert Wu 1 1 Support Vector Ranking Machine pening

More information

Discrete Inference and Learning Lecture 3

Discrete Inference and Learning Lecture 3 Discrete Inference and Learning Lecture 3 MVA 2017 2018 h

More information

( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3

( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3 76 Chapter 3 Section 3.3 Graphs of Polynomial Functions In the previous section we explored the short run behavior of quadratics, a special case of polynomials. In this section we will explore the short

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Random walks for deformable image registration Dana Cobzas

Random walks for deformable image registration Dana Cobzas Random walks for deformable image registration Dana Cobzas with Abhishek Sen, Martin Jagersand, Neil Birkbeck, Karteek Popuri Computing Science, University of Alberta, Edmonton Deformable image registration?t

More information

Probabilistic Graphical Models Lecture Notes Fall 2009

Probabilistic Graphical Models Lecture Notes Fall 2009 Probabilistic Graphical Models Lecture Notes Fall 2009 October 28, 2009 Byoung-Tak Zhang School of omputer Science and Engineering & ognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

Final Examination CS540-2: Introduction to Artificial Intelligence

Final Examination CS540-2: Introduction to Artificial Intelligence Final Examination CS540-2: Introduction to Artificial Intelligence May 9, 2018 LAST NAME: SOLUTIONS FIRST NAME: Directions 1. This exam contains 33 questions worth a total of 100 points 2. Fill in your

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

Pushmeet Kohli Microsoft Research

Pushmeet Kohli Microsoft Research Pushmeet Kohli Microsoft Research E(x) x in {0,1} n Image (D) [Boykov and Jolly 01] [Blake et al. 04] E(x) = c i x i Pixel Colour x in {0,1} n Unary Cost (c i ) Dark (Bg) Bright (Fg) x* = arg min E(x)

More information

Lab 16 Forces: Hooke s Law

Lab 16 Forces: Hooke s Law Lab 16 Forces: Hooke s Law Name Partner s Name 1. Introduction/Theory Consider Figure 1a, which shows a spring in its equilibrium position that is, the spring is neither compressed nor stretched. If we

More information

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. Class X - NCERT Maths EXERCISE NO:.1 Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) (iv) (v)

More information

Quadratic and Polynomial Inequalities in one variable have look like the example below.

Quadratic and Polynomial Inequalities in one variable have look like the example below. Section 8 4: Polynomial Inequalities in One Variable Quadratic and Polynomial Inequalities in one variable have look like the example below. x 2 5x 6 0 (x 2) (x + 4) > 0 x 2 (x 3) > 0 (x 2) 2 (x + 4) 0

More information

3 UNIT 4: QUADRATIC FUNCTIONS -- NO CALCULATOR

3 UNIT 4: QUADRATIC FUNCTIONS -- NO CALCULATOR Name: Algebra Final Exam Review, Part 3 UNIT 4: QUADRATIC FUNCTIONS -- NO CALCULATOR. Solve each of the following equations. Show your steps and find all solutions. a. 3x + 5x = 0 b. x + 5x - 9 = x + c.

More information

Reducing graphs for graph cut segmentation

Reducing graphs for graph cut segmentation for graph cut segmentation Nicolas Lermé 1,2, François Malgouyres 1, Lucas Létocart 2 1 LAGA, 2 LIPN Université Paris 13 CANUM 2010, Carcans-Maubuisson, France June 1, 2010 1/42 Nicolas Lermé, François

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Section 4.1 Polynomial Functions and Models. Copyright 2013 Pearson Education, Inc. All rights reserved

Section 4.1 Polynomial Functions and Models. Copyright 2013 Pearson Education, Inc. All rights reserved Section 4.1 Polynomial Functions and Models Copyright 2013 Pearson Education, Inc. All rights reserved 3 8 ( ) = + (a) f x 3x 4x x (b) ( ) g x 2 x + 3 = x 1 (a) f is a polynomial of degree 8. (b) g is

More information

Partial Fractions. Prerequisites: Solving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division.

Partial Fractions. Prerequisites: Solving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division. Prerequisites: olving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division. Maths Applications: Integration; graph sketching. Real-World Applications:

More information

CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms

CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline CS 4407, Algorithms Growth Functions

More information

Newton s Method and Linear Approximations

Newton s Method and Linear Approximations Newton s Method and Linear Approximations Curves are tricky. Lines aren t. Newton s Method and Linear Approximations Newton s Method for finding roots Goal: Where is f (x) = 0? f (x) = x 7 + 3x 3 + 7x

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

Machine Learning. Classification, Discriminative learning. Marc Toussaint University of Stuttgart Summer 2015

Machine Learning. Classification, Discriminative learning. Marc Toussaint University of Stuttgart Summer 2015 Machine Learning Classification, Discriminative learning Structured output, structured input, discriminative function, joint input-output features, Likelihood Maximization, Logistic regression, binary

More information

Revisiting Uncertainty in Graph Cut Solutions

Revisiting Uncertainty in Graph Cut Solutions Revisiting Uncertainty in Graph Cut Solutions Daniel Tarlow Dept. of Computer Science University of Toronto dtarlow@cs.toronto.edu Ryan P. Adams School of Engineering and Applied Sciences Harvard University

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

UNDERSTANDING ENGINEERING MATHEMATICS

UNDERSTANDING ENGINEERING MATHEMATICS UNDERSTANDING ENGINEERING MATHEMATICS JOHN BIRD WORKED SOLUTIONS TO EXERCISES 1 INTRODUCTION In Understanding Engineering Mathematic there are over 750 further problems arranged regularly throughout the

More information

Markov Random Fields and Bayesian Image Analysis. Wei Liu Advisor: Tom Fletcher

Markov Random Fields and Bayesian Image Analysis. Wei Liu Advisor: Tom Fletcher Markov Random Fields and Bayesian Image Analysis Wei Liu Advisor: Tom Fletcher 1 Markov Random Field: Application Overview Awate and Whitaker 2006 2 Markov Random Field: Application Overview 3 Markov Random

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 3x 4 2x 3 3x 2 x 7 b. x 1 c. 0.2x 1.x 2 3.2x 3 d. 20 16x 2 20x e. x x 2 x 3 x 4 x f. x 2 6x 2x 6 3x 4 8

More information

Results: MCMC Dancers, q=10, n=500

Results: MCMC Dancers, q=10, n=500 Motivation Sampling Methods for Bayesian Inference How to track many INTERACTING targets? A Tutorial Frank Dellaert Results: MCMC Dancers, q=10, n=500 1 Probabilistic Topological Maps Results Real-Time

More information

LEAST SQUARES APPROXIMATION

LEAST SQUARES APPROXIMATION LEAST SQUARES APPROXIMATION One more approach to approximating a function f (x) on an interval a x b is to seek an approximation p(x) with a small average error over the interval of approximation. A convenient

More information

Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter

Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter Radiotherapy Standards Users Group meeting NPL, 5 th June 2007 Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter Mark Bailey, G A Bass, N D Lee, G A Mapp Contents 1. History

More information

Lesson 5: The Graph of the Equation y = f(x)

Lesson 5: The Graph of the Equation y = f(x) Lesson 5: The Graph of the Equation y = f(x) Learning targets: I can identify when a function is increasing, decreasing, positive and negative and use interval notation to describe intervals where the

More information

Week 2: Defining Computation

Week 2: Defining Computation Computational Complexity Theory Summer HSSP 2018 Week 2: Defining Computation Dylan Hendrickson MIT Educational Studies Program 2.1 Turing Machines Turing machines provide a simple, clearly defined way

More information

Computational Complexity

Computational Complexity Computational Complexity Algorithm performance and difficulty of problems So far we have seen problems admitting fast algorithms flow problems, shortest path, spanning tree... and other problems for which

More information

Graph & Geometry Problems in Data Streams

Graph & Geometry Problems in Data Streams Graph & Geometry Problems in Data Streams 2009 Barbados Workshop on Computational Complexity Andrew McGregor Introduction Models: Graph Streams: Stream of edges E = {e 1, e 2,..., e m } describe a graph

More information

Math 120 Winter Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities

Math 120 Winter Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities Math 120 Winter 2009 Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities 1 A polynomial function is any function of the form: y = c 0 + c 1 x + c 2 x 2 +... + c n x n where the

More information

1 Lecture notes Classication. Denition 1. Let z be a set function on the nite set V i.e. z : 2 V R, then z is submodular if

1 Lecture notes Classication. Denition 1. Let z be a set function on the nite set V i.e. z : 2 V R, then z is submodular if Lecture notes 3 Denition. Let z be a set function on the nite set V i.e z : 2 V R, then z is submodular if z A) + z B) z A B) + z A B) A, B V. Denition 2. If z is submodular then z is supermodular. Denition

More information

(b)complete the table to show where the function is positive (above the x axis) or negative (below the x axis) for each interval.

(b)complete the table to show where the function is positive (above the x axis) or negative (below the x axis) for each interval. Lesson 3.4 Graph and Equation of Polynomial Functions Part A: Graph of a Polynomial Function the x intercepts of the graph the zeros of the function the roots of the equation Multiplicity (of a zero) A

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Superdifferential Cuts for Binary Energies

Superdifferential Cuts for Binary Energies Superdifferential Cuts for Binary Energies Tatsunori Taniai University of Tokyo, Japan Yasuyuki Matsushita Osaka University, Japan Takeshi Naemura University of Tokyo, Japan taniai@iis.u-tokyo.ac.jp yasumat@ist.osaka-u.ac.jp

More information

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell CS340 Machine learning Lecture 4 Learning theory Some slides are borrowed from Sebastian Thrun and Stuart Russell Announcement What: Workshop on applying for NSERC scholarships and for entry to graduate

More information

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions Algebra III Chapter 2 Note Packet Name Essential Question: Section 2.1: Polynomial Functions Polynomials -Have nonnegative exponents -Variables ONLY in -General Form n ax + a x +... + ax + ax+ a n n 1

More information

Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps

Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Dhruv Batra TTI Chicago dbatra@ttic.edu Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com Abstract 5 This paper

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

converges to a root, it may not always be the root you have in mind.

converges to a root, it may not always be the root you have in mind. Math 1206 Calculus Sec. 4.9: Newton s Method I. Introduction For linear and quadratic equations there are simple formulas for solving for the roots. For third- and fourth-degree equations there are also

More information

Covariance Matrix Simplification For Efficient Uncertainty Management

Covariance Matrix Simplification For Efficient Uncertainty Management PASEO MaxEnt 2007 Covariance Matrix Simplification For Efficient Uncertainty Management André Jalobeanu, Jorge A. Gutiérrez PASEO Research Group LSIIT (CNRS/ Univ. Strasbourg) - Illkirch, France *part

More information