Lecture Note 5: Velocity of a Rigid Body

Size: px
Start display at page:

Download "Lecture Note 5: Velocity of a Rigid Body"

Transcription

1 ECE5463: Introduction to Robotics Lecture Note 5: Velocity of a Rigid Body Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 1 / 24

2 Outline Introduction Rotational Velocity Change of Reference Frame for Twist (Adjoint Map) Rigid Body Velocity Outline Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 2 / 24

3 Introduction For a moving particle with coordinate p(t) R 3 at time t, its (linear) velocity is simply ṗ(t) A moving rigid body consists of infinitely many particles, all of which may have different velocities. What is the velocity of the rigid body? Let T (t) represent the configuration of a moving rigid body at time t. A point p on the rigid body with (homogeneous) coordinate p b (t) and p s (t) in body and space frames: p b (t) p b, p s (t) = T (t) p b Introduction Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 3 / 24

4 Introduction Velocity of p is d dt p s(t) = T (t)p b T (t) is not a good representation of the velocity of rigid body - There can be 12 nonzero entries for T. - May change over time even when the body is under a constant velocity motion (constant rotation + constant linear motion) Our goal is to find effective ways to represent the rigid body velocity. Introduction Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 4 / 24

5 Outline Introduction Rotational Velocity Change of Reference Frame for Twist (Adjoint Map) Rigid Body Velocity Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 5 / 24

6 Illustrating Example Question: Given the orientation R(t) of a rotating frame as a function of time t, what is the the angular velocity? We start with an example for which we know the answer, then we generalize to obtain a formal answer Example: Suppose {b} starts with an initial orientation R(0) and rotates about ˆx at unit constant speed (i.e. we know the angular velocity at time t > 0 is ω = (1, 0, 0) T ), where R(0) = Rot(ˆx; θ) = c θ s θ 0 s θ c θ Consider a point p rigidly attached to frame {b} with coordinates p s(t) and p b (t) in {s} and {b} frames. Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 6 / 24

7 Illustrating Example (Continued) p s (t) = R(t)p b ṗ s (t) = Ṙ(t)p b Since we know the motion in this example, we must have ṗ s (t) = ω p s (t), where ω = (1, 0, 0) Conclusion: Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 7 / 24

8 Properties of Rotation Matrices Property: For any ω R 3 and R SO(3), we have R[ω]R T = [Rw] Property: Let R(t) SO(3) be differentiable in t, then Ṙ(t)R 1 (t) and 1 R (t)ṙ(t) are both skew symmetric, i.e. they are in so(3). Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 8 / 24

9 Rotational Velocity Representation Rotational Velocity in space frame: Let R sb (t) be the orientation of a rotating frame {b} at time t. Then the (instantaneous) angular velocity vector w of frame {b} is given by 1 [ω s ] = ṘsbRsb where ω s is the {s}-frame coordinate of w. Note the angular velocity w is a free vector, which can be represented in different frames. Its coordinates ω c and ω d in frames {c} and {d} satisfy ω c = R cd ω d Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 9 / 24

10 Rotational Velocity in Body Frame Rotational velocity in body frame: Consider the same set up as the previous slide where R sb (t) is the orientation of the rotating frame {b}. - ω b denotes the body-frame representation of w, i.e. ω b = R bs (t)ω s = R 1 sb (t)ωs [ω b ] = R 1 sb Ṙsb - Note: ω b is NOT the angular velocity relative to a moving frame. It is rather the velocity relative to the stationary frame that is instantaneously coincident with the rotating body frame. Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 10 / 24

11 Example of Rotational Velocity θ(t) cos θ(t) sin θ(t) 0 Figure 2.10: Rotational R(t) = motion sin θ(t) of a one cos θ(t) degree of 0 freedo Example 2.4. Rotational motion of a one degre manipulator Consider the motion of the one degree of freedom man in Figure Let θ(t) be the angle of rotation about configuration. The trajectory of the manipulator is given cos θ(t) sin θ(t) 0 R(t) = sin θ(t) cos θ(t) The spatial velocity is 2 θ sin θ θ cos θ cos θ sin θ 3 0 Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 11 / 24

12 Outline Introduction Rotational Velocity Change of Reference Frame for Twist (Adjoint Map) Rigid Body Velocity Adjoint Representation Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 12 / 24

13 Change of Reference Frame for Twist Given two frames {c} and {d} with T = (R, p) representing the configuration of {d} relative to {c}. The same rigid body motion can be represented in {c} or in {d} using the twist V c = (ω c, v c) or V d = (ω d, v d ), respectively. How do these two twists relate to each other? Adjoint Representation Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 13 / 24

14 Change of Reference Frame for Twist (Continued) [ ωc v c ] [ R 0 = [p]r R ] [ ωd v d ] Adjoint Representation Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 14 / 24

15 Adjoint Map Given T = (R, p) SE(3), its adjoint representation (adjoint map) [Ad T ] is [ ] R 0 [Ad T ] = [p]r R Adjoint map changes reference frames for twist vector. If T is configuration of {d} relative to {c}, then the twists V c and V d in two frames are related by V c = [Ad T ]V d or equilvalently [V c ] = T [V d ]T 1 Properties of Adjoint: - Given T 1, T 2 SE(3) and V = (ω, v), we have [Ad T1 ][Ad T2 ]V = [Ad T1 T 2 ]V - For any T SE(3), [Ad T ] 1 = [Ad T 1] Adjoint Representation Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 15 / 24

16 Example: Change reference frame for twist Two frames {a} and {b} and configuration of {b} relative to {a} is T = (R, p 0) with R = , p 0 = (0, 2, 0) Adjoint Representation Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 16 / 24

17 Example: Change reference frame for Twist (Continued) Adjoint Representation Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 17 / 24

18 Outline Introduction Rotational Velocity Change of Reference Frame for Twist (Adjoint Map) Rigid Body Velocity Rigid Body Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 18 / 24

19 Derivation of Spatial Velocity of a Rigid Body Question: Given configuration T sb (t) = (R sb (t), p sb (t)) of a moving rigid body, how to represent/find the velocity of the rigid body? Similar to the rotational velocity, we consider a point q attached to the body and derive its differential equation in {s} frame. q s (t) = R sb (t)q b + p sb (t) q s (t) = ω s q s (t) + v s Rigid Body Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 19 / 24

20 Spatial Twist and Body Twist Given T sb (t) = (R(t), p(t)). Spatial velocity in space frame (called spatial twist) is given by V s = (ω s, v s ), with [ω s ] = ṘRT, v s = ṗ + ω s ( p) Change reference frame to body frame will lead to body twist: V b = (ω b, v b ) = [Ad Tbs ]V s, where [ω b ] = R T Ṙ, v b = R T ṗ Rigid Body Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 20 / 24

21 Spatial Twist and Body Twist: Interpretations ω b and ω s is the angular velocity expressed in {b} and {s}, respectively. v b is the linear velocity of the origin of {b} expressed in {b}; v s is the linear Rigid-Body Motions and Twist velocity of the origin of {s} expressed in {s} {s} p {b} ṗ vs Figure 3.17: Physical interpretation of vs. The initial (solid line) and displace (dashed line) configurations of a rigid body. in the body frame, or simply the body twist, 6 to be [ ] ωb Vb = R 6. (3.70 vb Just as it is convenient to have a skew-symmetric matrix representation of a angular velocity vector, it is convenient to have a matrix representation of twist, as shown in Equation (3.69). We will stretch the [ ] notation, writing Rigid Body Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 21 / 24

22 Example of Spatial/Body Twist I θ B l 0 A l 1 l 2 cos θ(t) sin θ(t) 0 l 2 sin θ(t) Figure 2.11: sinrigid θ(t) bodycos motion θ(t) generated 0 lby rotation about a fixed T (t) = 1 + l 2 cos θ(t) l 0 0 Using the calculation of ω s from the previous example, we have l1 θ 0 v s = 0 ω s = 0. 0 θ Note that v s is precisely the velocity of a point attached to the rigid as it travels through the origin of the A coordinate frame. The body velocity is [ ] V b v b = ω b v b = R T ṗ ω b = (R T Ṙ), which gives l2 θ 0 Rigid Body Velocity Lecture 5 (ECE5463 Sp18) b Wei b Zhang(OSU) 22 / 24

23 Rigid-Body Moti Example of Spatial/Body Twist II ŷ s ˆx b vb ŷ b {b} {s} v s ˆx s r w Figure 3.18: The twist corresponding to the instantaneous motion o a three-wheeledrvehicle s = (2, can 1, be0), visualized r b = (2, as 1.4, an angular 0), w=2 velocity rad/s w abo w = 2 rad/s about an axis out of the page 0 at 1the point 0 r0.4 in the pla the figure, we can write r as rt sb s = = (2, 1, 00) or0r b = 1 (2, 1.4, 0 0), w a or ω b = (0, 0, 2), and T sb as [ ] Rsb p T sb = sb = From the figure and simple geometry, we get v s = ω s ( r s ) = r s ω s = ( 2, 4, 0), v b = ω b ( r b ) = r b ω b = (2.8, 4, 0), and thus obtain the twists V s and V b : Rigid Body Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 23 / 24

24 More Discussions Rigid Body Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 24 / 24

Lecture Note 7: Velocity Kinematics and Jacobian

Lecture Note 7: Velocity Kinematics and Jacobian ECE5463: Introduction to Robotics Lecture Note 7: Velocity Kinematics and Jacobian Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018

More information

Lecture Note 4: General Rigid Body Motion

Lecture Note 4: General Rigid Body Motion ECE5463: Introduction to Robotics Lecture Note 4: General Rigid Body Motion Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture

More information

Lecture Note 7: Velocity Kinematics and Jacobian

Lecture Note 7: Velocity Kinematics and Jacobian ECE5463: Introduction to Robotics Lecture Note 7: Velocity Kinematics and Jacobian Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018

More information

Lecture Note 8: Inverse Kinematics

Lecture Note 8: Inverse Kinematics ECE5463: Introduction to Robotics Lecture Note 8: Inverse Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 8 (ECE5463

More information

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation ECE5463: Introduction to Robotics Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio,

More information

Lecture Note 1: Background

Lecture Note 1: Background ECE5463: Introduction to Robotics Lecture Note 1: Background Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 1 (ECE5463 Sp18)

More information

Lecture Note 8: Inverse Kinematics

Lecture Note 8: Inverse Kinematics ECE5463: Introduction to Robotics Lecture Note 8: Inverse Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 8 (ECE5463

More information

Robotics, Geometry and Control - Rigid body motion and geometry

Robotics, Geometry and Control - Rigid body motion and geometry Robotics, Geometry and Control - Rigid body motion and geometry Ravi Banavar 1 1 Systems and Control Engineering IIT Bombay HYCON-EECI Graduate School - Spring 2008 The material for these slides is largely

More information

Position and orientation of rigid bodies

Position and orientation of rigid bodies Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal Reference Frames RF A A p AB B RF B rigid body position: A p AB

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body Engineering Mechanics: Dynamics 12e Chapter 20 3D Kinematics of a Rigid Body Chapter Objectives Kinematics of a body subjected to rotation about a fixed axis and general plane motion. Relative-motion analysis

More information

2-D Motion of Rigid Bodies - Kinematics

2-D Motion of Rigid Bodies - Kinematics 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/28/2007 Lecture 7 2-D Motion of Rigid Bodies - Kinematics Kinematics of Rigid Bodies Williams 3-3 (No method of instant centers)

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15 Kinematics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Kinematics Semester 1, 2014-15 1 / 15 Introduction The kinematic quantities used are: position r, linear velocity

More information

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation ECE5463: Introduction to Robotics Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio,

More information

Kinematics. Basilio Bona. October DAUIN - Politecnico di Torino. Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October / 15

Kinematics. Basilio Bona. October DAUIN - Politecnico di Torino. Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October / 15 Kinematics Basilio Bona DAUIN - Politecnico di Torino October 2013 Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October 2013 1 / 15 Introduction The kinematic quantities used are: position r,

More information

University of California, Berkeley Department of Mechanical Engineering ME 104, Fall Midterm Exam 1 Solutions

University of California, Berkeley Department of Mechanical Engineering ME 104, Fall Midterm Exam 1 Solutions University of California, Berkeley Department of Mechanical Engineering ME 104, Fall 2013 Midterm Exam 1 Solutions 1. (20 points) (a) For a particle undergoing a rectilinear motion, the position, velocity,

More information

Exercise 1b: Differential Kinematics of the ABB IRB 120

Exercise 1b: Differential Kinematics of the ABB IRB 120 Exercise 1b: Differential Kinematics of the ABB IRB 120 Marco Hutter, Michael Blösch, Dario Bellicoso, Samuel Bachmann October 5, 2016 Abstract The aim of this exercise is to calculate the differential

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

Non-holonomic constraint example A unicycle

Non-holonomic constraint example A unicycle Non-holonomic constraint example A unicycle A unicycle (in gray) moves on a plane; its motion is given by three coordinates: position x, y and orientation θ. The instantaneous velocity v = [ ẋ ẏ ] is along

More information

Lecture D16-2D Rigid Body Kinematics

Lecture D16-2D Rigid Body Kinematics J. Peraire 16.07 Dynamics Fall 2004 Version 1.2 Lecture D16-2D Rigid Body Kinematics In this lecture, we will start from the general relative motion concepts introduced in lectures D11 and D12, and then

More information

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008 Robotics & Automation Lecture 06 Serial Kinematic Chain, Forward Kinematics John T. Wen September 11, 2008 So Far... We have covered rigid body rotational kinematics: representations of SO(3), change of

More information

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15 Kinematics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Kinematics Semester 1, 2016-17 1 / 15 Introduction The kinematic quantities used to represent a body frame are: position

More information

27. Impact Mechanics of Manipulation

27. Impact Mechanics of Manipulation 27. Impact Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 27. Mechanics of Manipulation p.1 Lecture 27. Impact Chapter 1 Manipulation 1

More information

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame. Robotics I September, 7 Exercise Consider the rigid body in Fig., a thin rod of length L. The rod will be rotated by an angle α around the z axis, then by an angle β around the resulting x axis, and finally

More information

Final Exam December 15, 2014

Final Exam December 15, 2014 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use the ME approved calculator only during the exam. Usage of mobile phones

More information

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS DYNAMICS OF SERIAL ROBOTIC MANIPULATORS NOMENCLATURE AND BASIC DEFINITION We consider here a mechanical system composed of r rigid bodies and denote: M i 6x6 inertia dyads of the ith body. Wi 6 x 6 angular-velocity

More information

Chapter 3 + some notes on counting the number of degrees of freedom

Chapter 3 + some notes on counting the number of degrees of freedom Chapter 3 + some notes on counting the number of degrees of freedom Minimum number of independent parameters = Some number of dependent parameters minus the number of relationships (equations) you can

More information

Edwin Soeryadjaya Problem Theoretical 3: Mirage

Edwin Soeryadjaya Problem Theoretical 3: Mirage The refractive index of the air varies with temperature. Cold air is denser than warm air and has therefore a greater refractive index. Thus a temperature gradient in the atmosphere is always associated

More information

Exam 2 October 17, 2013

Exam 2 October 17, 2013 Exam 2 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use an approved calculator during the exam. Usage of mobile phones and other

More information

Kinematics. Chapter Multi-Body Systems

Kinematics. Chapter Multi-Body Systems Chapter 2 Kinematics This chapter first introduces multi-body systems in conceptual terms. It then describes the concept of a Euclidean frame in the material world, following the concept of a Euclidean

More information

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian c Anton Shiriaev. 5EL158: Lecture 7 p. 1/?? Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian

More information

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

13 Path Planning Cubic Path P 2 P 1. θ 2

13 Path Planning Cubic Path P 2 P 1. θ 2 13 Path Planning Path planning includes three tasks: 1 Defining a geometric curve for the end-effector between two points. 2 Defining a rotational motion between two orientations. 3 Defining a time function

More information

9 Kinetics of 3D rigid bodies - rotating frames

9 Kinetics of 3D rigid bodies - rotating frames 9 Kinetics of 3D rigid bodies - rotating frames 9. Consider the two gears depicted in the figure. The gear B of radius R B is fixed to the ground, while the gear A of mass m A and radius R A turns freely

More information

Dynamics of Open Chains

Dynamics of Open Chains Chapter 9 Dynamics of Open Chains According to Newton s second law of motion, any change in the velocity of a rigid body is caused by external forces and torques In this chapter we study once again the

More information

5. Nonholonomic constraint Mechanics of Manipulation

5. Nonholonomic constraint Mechanics of Manipulation 5. Nonholonomic constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 5. Mechanics of Manipulation p.1 Lecture 5. Nonholonomic constraint.

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable Rigid Object Chapter 10 Rotation of a Rigid Object about a Fixed Axis A rigid object is one that is nondeformable The relative locations of all particles making up the object remain constant All real objects

More information

A geometric interpretation of the homogeneous coordinates is given in the following Figure.

A geometric interpretation of the homogeneous coordinates is given in the following Figure. Introduction Homogeneous coordinates are an augmented representation of points and lines in R n spaces, embedding them in R n+1, hence using n + 1 parameters. This representation is useful in dealing with

More information

Module II: Relativity and Electrodynamics

Module II: Relativity and Electrodynamics Module II: Relativity and Electrodynamics Lecture 2: Lorentz transformations of observables Amol Dighe TIFR, Mumbai Outline Length, time, velocity, acceleration Transformations of electric and magnetic

More information

Rough Plane Analysis. Contents

Rough Plane Analysis. Contents Rough Plane Analysis David Eberly, Geometric Tools, Redmond WA 9805 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2012 2013 MECHANICS AND MODELLING MTH-1C32 Time allowed: 2 Hours Attempt QUESTIONS 1 AND 2 and THREE other questions. Notes are

More information

Inverse differential kinematics Statics and force transformations

Inverse differential kinematics Statics and force transformations Robotics 1 Inverse differential kinematics Statics and force transformations Prof Alessandro De Luca Robotics 1 1 Inversion of differential kinematics! find the joint velocity vector that realizes a desired

More information

MSMS Basilio Bona DAUIN PoliTo

MSMS Basilio Bona DAUIN PoliTo MSMS 214-215 Basilio Bona DAUIN PoliTo Problem 2 The planar system illustrated in Figure 1 consists of a bar B and a wheel W moving (no friction, no sliding) along the bar; the bar can rotate around an

More information

Lecture 10. Rigid Body Transformation & C-Space Obstacles. CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University

Lecture 10. Rigid Body Transformation & C-Space Obstacles. CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University CS 460/560 Introduction to Computational Robotics Fall 017, Rutgers University Lecture 10 Rigid Body Transformation & C-Space Obstacles Instructor: Jingjin Yu Outline Rigid body, links, and joints Task

More information

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz Theoretical physics Deterministic chaos in classical physics Martin Scholtz scholtzzz@gmail.com Fundamental physical theories and role of classical mechanics. Intuitive characteristics of chaos. Newton

More information

PHYSICS I. Lecture 1. Charudatt Kadolkar. Jul-Nov IIT Guwahati

PHYSICS I. Lecture 1. Charudatt Kadolkar. Jul-Nov IIT Guwahati PHYSICS I Lecture 1 Charudatt Kadolkar IIT Guwahati Jul-Nov 2014 Section 1 Introduction to the Course Syllabus Topics Classical Mechanics: Kinetic Energy rest mass energy Syllabus Topics Classical Mechanics:

More information

Linearize a non-linear system at an appropriately chosen point to derive an LTI system with A, B,C, D matrices

Linearize a non-linear system at an appropriately chosen point to derive an LTI system with A, B,C, D matrices Dr. J. Tani, Prof. Dr. E. Frazzoli 151-0591-00 Control Systems I (HS 2018) Exercise Set 2 Topic: Modeling, Linearization Discussion: 5. 10. 2018 Learning objectives: The student can mousavis@ethz.ch, 4th

More information

Hamiltonian. March 30, 2013

Hamiltonian. March 30, 2013 Hamiltonian March 3, 213 Contents 1 Variational problem as a constrained problem 1 1.1 Differential constaint......................... 1 1.2 Canonic form............................. 2 1.3 Hamiltonian..............................

More information

Sliding Manipulation of Rigid Bodies on a Controlled 6-DoF Plate

Sliding Manipulation of Rigid Bodies on a Controlled 6-DoF Plate Robotics: Science and Systems 211 Los Angeles, CA, USA, June 27-3, 211 Sliding Manipulation of Rigid Bodies on a Controlled 6-DoF Plate Thomas H. Vose, Paul Umbanhowar, and Kevin M. Lynch Abstract We model

More information

Robotics. Islam S. M. Khalil. September 19, German University in Cairo

Robotics. Islam S. M. Khalil. September 19, German University in Cairo Robotics German University in Cairo September 19, 2016 Angular Velocity Let b l, b 2, and b 3 form a right-handed set of mutually perpendicular unit vectors fixed in a rigid body B moving in a reference

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

Static Equilibrium. University of Arizona J. H. Burge

Static Equilibrium. University of Arizona J. H. Burge Static Equilibrium Static Equilibrium Definition: When forces acting on an object which is at rest are balanced, then the object is in a state of static equilibrium. - No translations - No rotations In

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

12. Rigid Body Dynamics I

12. Rigid Body Dynamics I University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 015 1. Rigid Body Dynamics I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

EE 565: Position, Navigation and Timing

EE 565: Position, Navigation and Timing EE 565: Position, Navigation and Timing Navigation Mathematics: Angular and Linear Velocity Kevin Wedeward Aly El-Osery Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA In Collaboration

More information

Chapter 3 HW Solution

Chapter 3 HW Solution Chapter 3 HW Solution Problem 3.6: I placed an xy coordinate system at a convenient point (origin doesn t really matter). y 173 x The positions of both planes are given by r B = v B ti + 173j mi (1) r

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Advanced Robotic Manipulation Handout CS37A (Spring 017 Solution Set # Problem 1 - Redundant robot control The goal of this problem is to familiarize you with the control of a robot that is redundant with

More information

Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics September 1, 2005 Chapter

More information

2.4 Models of Oscillation

2.4 Models of Oscillation 2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are

More information

12. Foundations of Statics Mechanics of Manipulation

12. Foundations of Statics Mechanics of Manipulation 12. Foundations of Statics Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 12. Mechanics of Manipulation p.1 Lecture 12. Foundations of statics.

More information

MODERN ROBOTICS MECHANICS, PLANNING, AND CONTROL. Practice Exercises. Contributions from Tito Fernandez, Kevin Lynch, Huan Weng, and Zack Woodruff

MODERN ROBOTICS MECHANICS, PLANNING, AND CONTROL. Practice Exercises. Contributions from Tito Fernandez, Kevin Lynch, Huan Weng, and Zack Woodruff MODERN ROBOTICS MECHANICS, PLANNING, AND CONTROL Practice Exercises Contributions from Tito Fernandez, Kevin Lynch, Huan Weng, and Zack Woodruff December 6, 2018 This is a supplemental document to Modern

More information

Lecture 4: Exponentials & Twists

Lecture 4: Exponentials & Twists ME 50.646 Introduction Lecture 4: Exponentials & Twists Noah J. Cowan Fall 017 1 Skew symmetric matrices Let so(n) :={S R n n : S = S T } denote the skew symmetric matrices. Note that given any matrix,

More information

PHYSICS - 1 (Lecture -1)

PHYSICS - 1 (Lecture -1) PHYSICS - 1 (Lecture -1) Santabrata Das Department of Physics Indian Institute of Technology Guwahati sbdas@iitg.ernet.in, Room #: 006 30 July, 2014 Santabrata Das (IITG) PH 101, July-November 30 July,

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Physics 351 Monday, April 3, 2017

Physics 351 Monday, April 3, 2017 Physics 351 Monday, April 3, 2017 This weekend you read Chapter 11 (coupled oscillators, normal modes, etc.), but it will take us another day or two to finish Chapter 10 in class: Euler angles; Lagrangian

More information

Lagrangian Dynamics: Derivations of Lagrange s Equations

Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and Degrees of Freedom 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 4/9/007 Lecture 15 Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and

More information

Dynamics. 1 Copyright c 2015 Roderic Grupen

Dynamics. 1 Copyright c 2015 Roderic Grupen Dynamics The branch of physics that treats the action of force on bodies in motion or at rest; kinetics, kinematics, and statics, collectively. Websters dictionary Outline Conservation of Momentum Inertia

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Seventh Edition CHAPTER CHAPTER 7 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Plane Motion of Rigid Bodies: Energy and Momentum Methods

More information

Chapter 1. Rigid Body Kinematics. 1.1 Introduction

Chapter 1. Rigid Body Kinematics. 1.1 Introduction Chapter 1 Rigid Body Kinematics 1.1 Introduction This chapter builds up the basic language and tools to describe the motion of a rigid body this is called rigid body kinematics. This material will be the

More information

Lecture Notes Multibody Dynamics B, wb1413

Lecture Notes Multibody Dynamics B, wb1413 Lecture Notes Multibody Dynamics B, wb1413 A. L. Schwab & Guido M.J. Delhaes Laboratory for Engineering Mechanics Mechanical Engineering Delft University of Technolgy The Netherlands June 9, 29 Contents

More information

Lecture 1 From Continuous-Time to Discrete-Time

Lecture 1 From Continuous-Time to Discrete-Time Lecture From Continuous-Time to Discrete-Time Outline. Continuous and Discrete-Time Signals and Systems................. What is a signal?................................2 What is a system?.............................

More information

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow Lecture AC-1 Aircraft Dynamics Copy right 23 by Jon at h an H ow 1 Spring 23 16.61 AC 1 2 Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft

More information

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT FLÁIO SILESTRE DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT LECTURE NOTES LAGRANGIAN MECHANICS APPLIED TO RIGID-BODY DYNAMICS IMAGE CREDITS: BOEING FLÁIO SILESTRE Introduction Lagrangian Mechanics shall be

More information

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations Central force motion/kepler problem This short note summarizes our discussion in the lectures of various aspects of the motion under central force, in particular, the Kepler problem of inverse square-law

More information

Position: Angular position =! = s r. Displacement: Angular displacement =!" = " 2

Position: Angular position =! = s r. Displacement: Angular displacement =! =  2 Chapter 11 Rotation Perfectly Rigid Objects fixed shape throughout motion Rotation of rigid bodies about a fixed axis of rotation. In pure rotational motion: every point on the body moves in a circle who

More information

Problem 1 Problem 2 Problem 3 Problem 4 Total

Problem 1 Problem 2 Problem 3 Problem 4 Total Name Section THE PENNSYLVANIA STATE UNIVERSITY Department of Engineering Science and Mechanics Engineering Mechanics 12 Final Exam May 5, 2003 8:00 9:50 am (110 minutes) Problem 1 Problem 2 Problem 3 Problem

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part-1 Today,

More information

Figure 5.28 (a) Spring-restrained cylinder, (b) Kinematic variables, (c) Free-body diagram

Figure 5.28 (a) Spring-restrained cylinder, (b) Kinematic variables, (c) Free-body diagram Lecture 30. MORE GENERAL-MOTION/ROLLING- WITHOUT-SLIPPING EXAMPLES A Cylinder, Restrained by a Spring and Rolling on a Plane Figure 5.28 (a) Spring-restrained cylinder, (b) Kinematic variables, (c) Free-body

More information

MEAM 520. More Velocity Kinematics

MEAM 520. More Velocity Kinematics MEAM 520 More Velocity Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 12: October

More information

1 Motion of a single particle - Linear momentum, work and energy principle

1 Motion of a single particle - Linear momentum, work and energy principle 1 Motion of a single particle - Linear momentum, work and energy principle 1.1 In-class problem A block of mass m slides down a frictionless incline (see Fig.). The block is released at height h above

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc. Prof. O. B. Wright, Autumn 007 Mechanics Lecture 9 More on rigid bodies, coupled vibrations Principal axes of the inertia tensor If the symmetry axes of a uniform symmetric body coincide with the coordinate

More information

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics DIFFERENTIAL KINEMATICS relationship between joint velocities and end-effector velocities Geometric Jacobian Analytical Jacobian Kinematic singularities Kinematic redundancy Inverse differential kinematics

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 OUTCOME 3 BE ABLE TO DETERMINE RELATIVE AND RESULTANT VELOCITY IN ENGINEERING SYSTEMS Resultant

More information

MATHEMATICAL MODELLING, MECHANICS AND MOD- ELLING MTHA4004Y

MATHEMATICAL MODELLING, MECHANICS AND MOD- ELLING MTHA4004Y UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 MATHEMATICAL MODELLING, MECHANICS AND MOD- ELLING MTHA4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 and 2, and ONE other

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe May 3, 2004 Prof. Alan Guth PROBLEM SET 6 EXTRA CREDIT PROBLEM SET CAN BE HANDED IN THROUGH: Thursday, May 13,

More information

Physics 170 Week 9 Lecture 2

Physics 170 Week 9 Lecture 2 Physics 170 Week 9 Lecture 2 http://www.phas.ubc.ca/ gordonws/170 Physics 170 Week 9 Lecture 2 1 Textbook Chapter 1: Section 1.6 Physics 170 Week 9 Lecture 2 2 Learning Goals: We will solve an example

More information

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ]

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ] PROLEM 15.113 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that

More information

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is Linear Algebra, Spring 206 Homework 3 Name: Problem : (3 points) Recall that the dot product of two vectors in R 3 is a x b y = ax + by + cz, c z and this is essentially the same as the matrix multiplication

More information

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS ROBOTICS: ADVANCED CONCEPTS & ANALYSIS MODULE 5 VELOCITY AND STATIC ANALYSIS OF MANIPULATORS Ashitava Ghosal 1 1 Department of Mechanical Engineering & Centre for Product Design and Manufacture Indian

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

16.333: Lecture #3. Frame Rotations. Euler Angles. Quaternions

16.333: Lecture #3. Frame Rotations. Euler Angles. Quaternions 16.333: Lecture #3 Frame Rotations Euler Angles Quaternions Fall 2004 16.333 3 1 Euler Angles For general applications in 3D, often need to perform 3 separate rotations to relate our inertial frame to

More information

Section 13.4 The Cross Product

Section 13.4 The Cross Product Section 13.4 The Cross Product Multiplying Vectors 2 In this section we consider the more technical multiplication which can be defined on vectors in 3-space (but not vectors in 2-space). 1. Basic Definitions

More information

Classical Dynamics: Question Sheet

Classical Dynamics: Question Sheet Pt 1B Advanced Physics Lent 5 Classical Dynamics: Question Sheet J. Ellis Questions are graded A to C in increasing order of difficulty. Energy Method 1(B) A ladder of length l rests against a wall at

More information