Some properties of the true self-repelling motion

Size: px
Start display at page:

Download "Some properties of the true self-repelling motion"

Transcription

1 Some properties of the true self-repelling motion L. Dumaz Statistical laboratory, University of Cambridge Bath-Paris branching structures meeting, June the 9th, / 20

2 What is a (real-valued) self-repelling process? If (X t ) t 0 is a one-dimensional continuous process, define its occupation time measure: For all t 0, for all borel set A, µ t (A) = t 1 {Xs A}ds 0 2 / 20

3 What is a (real-valued) self-repelling process? If (X t ) t 0 is a one-dimensional continuous process, define its occupation time measure: For all t 0, for all borel set A, µ t (A) = t 1 {Xs A}ds 0 Assumption: This measure has a density i.e. µ t ([x, x + ε]) ε 0 ε L t (x) 2 / 20

4 What is a (real-valued) self-repelling process? If (X t ) t 0 is a one-dimensional continuous process, define its occupation time measure: For all t 0, for all borel set A, µ t (A) = t 1 {Xs A}ds 0 Assumption: This measure has a density i.e. µ t ([x, x + ε]) ε 0 ε L t (x) L t : R R + is called local time. 2 / 20

5 What is a (real-valued) self-repelling process? Heuristical (vague) definition: (X t ) t is called self-repulsive when: (X t, L t ( )) t is a Markov process. (X t ) t prefers to go to the less visited places pushed away from x R where L t (x) is large. 3 / 20

6 Process with its local time Note that we can consider the dimensional process (X t, H t ) := (X t, L t (X t )) 4 / 20

7 Process with its local time Note that we can consider the dimensional process (X t, H t ) is a space filling curve. (X t, H t ) := (X t, L t (X t )) 4 / 20

8 Process with its local time Note that we can consider the dimensional process (X t, H t ) is a space filling curve. (X t, H t ) := (X t, L t (X t )) local time H t := L t (X t ) Time t L t (x) position X t x Figure : Picture at time t: X t and its local time L t ( ) 4 / 20

9 A first example: Brownian polymers Brownian polymers were introduced by Durrett and Rogers in dx t = (b L t (X t + )) 0 dt + db t 5 / 20

10 A first example: Brownian polymers Brownian polymers were introduced by Durrett and Rogers in dx t = (b L t (X t + )) 0 dt + db t Possible case: b = b (ε) is an approximation of the Dirac function at 0. dx t = (b (ε) L t (X t + )) 0 dt + db t 5 / 20

11 A first example: Brownian polymers Brownian polymers were introduced by Durrett and Rogers in dx t = (b L t (X t + )) 0 dt + db t Possible case: b = b (ε) is an approximation of the Dirac function at 0. dx t = (b (ε) L t (X t + )) 0 dt + db t What happens when ε 0? Should converge to the true self-repelling motion (introduced after). 5 / 20

12 A first example: Brownian polymers Time t L t (x) position X t x Figure : Picture at time t: X t and its local time L t ( ) 6 / 20

13 A first example: Brownian polymers Time t L t (x) position X t x Figure : Picture at time t: X t and its local time L t ( ) 7 / 20

14 TSRM definition and first properties Results of the papers of B. Toth - W. Werner 1998 and F. Soucaliuc - B. Toth - W. Werner / 20

15 Short introduction to the true self-repelling motion (TSRM) B. Tóth and W. Werner constructed a one-dimensional continuous self-repelling process (X t, t 0) called the true self-repelling motion (TSRM). 9 / 20

16 Short introduction to the true self-repelling motion (TSRM) B. Tóth and W. Werner constructed a one-dimensional continuous self-repelling process (X t, t 0) called the true self-repelling motion (TSRM). For the construction, they used a family of coalescing reflected Brownian motions in the upper half plane now called Brownian Web. The TSRM is defined as the trace of the contour of the tree of these coalescing Brownian motions. 9 / 20

17 TSRM construction Take the Brownian Web (Λ x,h, (x, h) R R + ). 10 / 20

18 TSRM construction Take the Brownian Web (Λ x,h, (x, h) R R + ). Let us consider the process (X t, H t ) starting at (0, 0) which traces the contour of the tree of these coalescing Brownian motions. space-filling curve. 10 / 20

19 TSRM construction Take the Brownian Web (Λ x,h, (x, h) R R + ). Let us consider the process (X t, H t ) starting at (0, 0) which traces the contour of the tree of these coalescing Brownian motions. space-filling curve. Parametrization: by the area it has swept. For every (x, h) in the upper half plane, the process (X t, H t ) visits the point (x, h) at the random time t = T x,h := R Λ x,h(y)dy TSRM = first coordinate (X t ). 10 / 20

20 Some first properties The TSRM is unusual compared to more classical processes. 11 / 20

21 Some first properties The TSRM is unusual compared to more classical processes. First properties (etablished by Bálint Tóth and Wendelin Werner): Continuity and recurrence. Scaling and local variation: For all a > 0, (X at, t 0) and (a 2/3 X t, t 0) have the same distribution and the TSRM is of finite variation of order 3/2. 11 / 20

22 Some first properties The TSRM is unusual compared to more classical processes. First properties (etablished by Bálint Tóth and Wendelin Werner): Continuity and recurrence. Scaling and local variation: For all a > 0, (X at, t 0) and (a 2/3 X t, t 0) have the same distribution and the TSRM is of finite variation of order 3/2. Local time: The TSRM admits a local time L t ( ) and a.s., for every (x, h) R R +, the Brownian Web curves corresponds to the local time at times T x,h (strong Ray Knight theorem). It implies H t = L t (X t ). 11 / 20

23 Some first properties Markov property: (X t, L t ( )) t is a Markov process. 12 / 20

24 Some first properties Markov property: (X t, L t ( )) t is a Markov process. Localization: Interaction is local: the law of X just after t depends only on L t around the point X t. Moreover, we have a dynamical equation: 1 dx t = lim ε 0 2ε (L t(x t + ε) L t (X t ε)) dt. Limit holds in the probability sense. 12 / 20

25 My contributions 13 / 20

26 Large deviations of the TSRM TSRM is an unusual process and it gives motivation to study some of its finest properties to discover the features it shares/does not share with the other processes. Proposition (L.D.) When x, P(X 1 > x) = exp( κx 3 + O(ln(x))) for some explicit κ (in terms of zeros of Airy function). When h, P(H 1 > h) = exp( 8h 3 /9 + O(ln(h))). 14 / 20

27 Law of the iterated logarithm Pushing forward those results permits to derive a LIL for the TSRM when both t is large and t is small: Proposition (L.D.) a.s., lim sup t 0 t 2/3 (ln(ln(1/t))) 1/3 X t = 1/κ 1/3. 15 / 20

28 Marginal distributions In a joint work with Bálint Tóth, we computed the marginal distributions of this process. Proposition (L.D., B. Tóth) The density of X 1 denoted by ν 1 (x) is equal to: ν 1 (x) = k=1 3 2/3 2 7/3 ( ) Γ(2/3) 2 a k Γ(1/3) 3 f 2/3 (2 1/3 a k x ) where the scaling factors a k are the zeros of the derivative of the Airy function and f 2/3 is the Mittag-Leffler s function. The density of H 1 denoted by ν 2 (h) is equal to: ν 2 (h) = 2 61/3 π Γ(1/3) 2 exp( (8h 3 )/9)U(1/6, 2/3; (8h 3 )/9) where U is the hypergeometric function. 16 / 20

29 Marginal distributions Figure : Density of X 1 (displacement at time 1) 17 / 20

30 A clever (self-repelling) burglar What is the conditional law of the position X 1 knowing L 1 ( )? Figure : On the left (X t, t [0, 1]), and on the right the local time L 1 ( ) 18 / 20

31 A clever (self-repelling) burglar What is the conditional law of the position X 1 knowing L 1 ( )? Figure : On the left (X t, t [0, 1]), and on the right the local time L 1 ( ) 18 / 20

32 A clever (self-repelling) burglar What is the conditional law of the position X 1 knowing L 1 ( )? Fast points Figure : On the left (X t, t [0, 1]), and on the right the local time L 1 ( ) 18 / 20

33 Result Proposition (L.D.) The conditional law of X 1 knowing its local time at time 1, L 1 ( ), is uniform on the interval I defined by: Figure : Definition of I 19 / 20

34 Thank you! 20 / 20

Infinitely iterated Brownian motion

Infinitely iterated Brownian motion Mathematics department Uppsala University (Joint work with Nicolas Curien) This talk was given in June 2013, at the Mittag-Leffler Institute in Stockholm, as part of the Symposium in honour of Olav Kallenberg

More information

Invariance Principle for Variable Speed Random Walks on Trees

Invariance Principle for Variable Speed Random Walks on Trees Invariance Principle for Variable Speed Random Walks on Trees Wolfgang Löhr, University of Duisburg-Essen joint work with Siva Athreya and Anita Winter Stochastic Analysis and Applications Thoku University,

More information

Kolmogorov Equations and Markov Processes

Kolmogorov Equations and Markov Processes Kolmogorov Equations and Markov Processes May 3, 013 1 Transition measures and functions Consider a stochastic process {X(t)} t 0 whose state space is a product of intervals contained in R n. We define

More information

4.5 The critical BGW tree

4.5 The critical BGW tree 4.5. THE CRITICAL BGW TREE 61 4.5 The critical BGW tree 4.5.1 The rooted BGW tree as a metric space We begin by recalling that a BGW tree T T with root is a graph in which the vertices are a subset of

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part I Manuela Girotti based on M. Girotti s PhD thesis and A. Kuijlaars notes from Les Houches Winter School 202 Contents Point Processes

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Logarithmic scaling of planar random walk s local times

Logarithmic scaling of planar random walk s local times Logarithmic scaling of planar random walk s local times Péter Nándori * and Zeyu Shen ** * Department of Mathematics, University of Maryland ** Courant Institute, New York University October 9, 2015 Abstract

More information

THE WORK OF WENDELIN WERNER

THE WORK OF WENDELIN WERNER THE WORK OF WENDELIN WERNER International Congress of Mathematicians Madrid August 22, 2006 C. M. Newman Courant Institute of Mathematical Sciences New York University It is my pleasure to report on some

More information

Continuous time true self-avoiding random walk on Z

Continuous time true self-avoiding random walk on Z ALEA, Lat. Am. J. Probab. Math. Stat. 8, 59 75 211 Continuous time true self-avoiding random walk on Z Bálint Tóth and Bálint Vető Institute of Mathematics, Budapest University of Technology BME Egry József

More information

The Azéma-Yor Embedding in Non-Singular Diffusions

The Azéma-Yor Embedding in Non-Singular Diffusions Stochastic Process. Appl. Vol. 96, No. 2, 2001, 305-312 Research Report No. 406, 1999, Dept. Theoret. Statist. Aarhus The Azéma-Yor Embedding in Non-Singular Diffusions J. L. Pedersen and G. Peskir Let

More information

Lecture 19 : Brownian motion: Path properties I

Lecture 19 : Brownian motion: Path properties I Lecture 19 : Brownian motion: Path properties I MATH275B - Winter 2012 Lecturer: Sebastien Roch References: [Dur10, Section 8.1], [Lig10, Section 1.5, 1.6], [MP10, Section 1.1, 1.2]. 1 Invariance We begin

More information

LogFeller et Ray Knight

LogFeller et Ray Knight LogFeller et Ray Knight Etienne Pardoux joint work with V. Le and A. Wakolbinger Etienne Pardoux (Marseille) MANEGE, 18/1/1 1 / 16 Feller s branching diffusion with logistic growth We consider the diffusion

More information

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT A MODEL FOR HE LONG-ERM OPIMAL CAPACIY LEVEL OF AN INVESMEN PROJEC ARNE LØKKA AND MIHAIL ZERVOS Abstract. We consider an investment project that produces a single commodity. he project s operation yields

More information

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION DAVAR KHOSHNEVISAN, DAVID A. LEVIN, AND ZHAN SHI ABSTRACT. We present an extreme-value analysis of the classical law of the iterated logarithm LIL

More information

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Diffusions Andrey Sarantsev University of California, Santa Barbara March 27, 2017 Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Brownian Motion on R d Spinning measure µ: probability

More information

GENERALIZED RAY KNIGHT THEORY AND LIMIT THEOREMS FOR SELF-INTERACTING RANDOM WALKS ON Z 1. Hungarian Academy of Sciences

GENERALIZED RAY KNIGHT THEORY AND LIMIT THEOREMS FOR SELF-INTERACTING RANDOM WALKS ON Z 1. Hungarian Academy of Sciences The Annals of Probability 1996, Vol. 24, No. 3, 1324 1367 GENERALIZED RAY KNIGHT THEORY AND LIMIT THEOREMS FOR SELF-INTERACTING RANDOM WALKS ON Z 1 By Bálint Tóth Hungarian Academy of Sciences We consider

More information

Bootstrap random walks

Bootstrap random walks Bootstrap random walks Kais Hamza Monash University Joint work with Andrea Collevecchio & Meng Shi Introduction The two and three dimensional processes Higher Iterations An extension any (prime) number

More information

Introduction to self-similar growth-fragmentations

Introduction to self-similar growth-fragmentations Introduction to self-similar growth-fragmentations Quan Shi CIMAT, 11-15 December, 2017 Quan Shi Growth-Fragmentations CIMAT, 11-15 December, 2017 1 / 34 Literature Jean Bertoin, Compensated fragmentation

More information

A mathematical framework for Exact Milestoning

A mathematical framework for Exact Milestoning A mathematical framework for Exact Milestoning David Aristoff (joint work with Juan M. Bello-Rivas and Ron Elber) Colorado State University July 2015 D. Aristoff (Colorado State University) July 2015 1

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Latent voter model on random regular graphs

Latent voter model on random regular graphs Latent voter model on random regular graphs Shirshendu Chatterjee Cornell University (visiting Duke U.) Work in progress with Rick Durrett April 25, 2011 Outline Definition of voter model and duality with

More information

Goodness of fit test for ergodic diffusion processes

Goodness of fit test for ergodic diffusion processes Ann Inst Stat Math (29) 6:99 928 DOI.7/s463-7-62- Goodness of fit test for ergodic diffusion processes Ilia Negri Yoichi Nishiyama Received: 22 December 26 / Revised: July 27 / Published online: 2 January

More information

Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators. ( Wroclaw 2006) P.Maheux (Orléans. France)

Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators. ( Wroclaw 2006) P.Maheux (Orléans. France) Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators ( Wroclaw 006) P.Maheux (Orléans. France) joint work with A.Bendikov. European Network (HARP) (to appear in T.A.M.S)

More information

Approximations of displacement interpolations by entropic interpolations

Approximations of displacement interpolations by entropic interpolations Approximations of displacement interpolations by entropic interpolations Christian Léonard Université Paris Ouest Mokaplan 10 décembre 2015 Interpolations in P(X ) X : Riemannian manifold (state space)

More information

On the quantiles of the Brownian motion and their hitting times.

On the quantiles of the Brownian motion and their hitting times. On the quantiles of the Brownian motion and their hitting times. Angelos Dassios London School of Economics May 23 Abstract The distribution of the α-quantile of a Brownian motion on an interval [, t]

More information

Law of the iterated logarithm for pure jump Lévy processes

Law of the iterated logarithm for pure jump Lévy processes Law of the iterated logarithm for pure jump Lévy processes Elena Shmileva, St.Petersburg Electrotechnical University July 12, 2010 limsup LIL, liminf LIL Let X (t), t (0, ) be a Lévy process. There are

More information

Practical conditions on Markov chains for weak convergence of tail empirical processes

Practical conditions on Markov chains for weak convergence of tail empirical processes Practical conditions on Markov chains for weak convergence of tail empirical processes Olivier Wintenberger University of Copenhagen and Paris VI Joint work with Rafa l Kulik and Philippe Soulier Toronto,

More information

A limit theorem for the moments in space of Browian local time increments

A limit theorem for the moments in space of Browian local time increments A limit theorem for the moments in space of Browian local time increments Simon Campese LMS EPSRC Durham Symposium July 18, 2017 Motivation Theorem (Marcus, Rosen, 2006) As h 0, L x+h t L x t h q dx a.s.

More information

arxiv:math/ v1 [math.pr] 21 Dec 2001

arxiv:math/ v1 [math.pr] 21 Dec 2001 Monte Carlo Tests of SLE Predictions for the 2D Self-Avoiding Walk arxiv:math/0112246v1 [math.pr] 21 Dec 2001 Tom Kennedy Departments of Mathematics and Physics University of Arizona, Tucson, AZ, 85721

More information

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria Weak Leiden University Amsterdam, 13 November 2013 Outline 1 2 3 4 5 6 7 Definition Definition Let µ, µ 1, µ 2,... be probability measures on (R, B). It is said that µ n converges weakly to µ, and we then

More information

Plan 1. This talk: (a) Percolation and criticality (b) Conformal invariance Brownian motion (BM) and percolation (c) Loop-erased random walk (LERW) (d

Plan 1. This talk: (a) Percolation and criticality (b) Conformal invariance Brownian motion (BM) and percolation (c) Loop-erased random walk (LERW) (d Percolation, Brownian Motion and SLE Oded Schramm The Weizmann Institute of Science and Microsoft Research Plan 1. This talk: (a) Percolation and criticality (b) Conformal invariance Brownian motion (BM)

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

Limit theorems for dependent regularly varying functions of Markov chains

Limit theorems for dependent regularly varying functions of Markov chains Limit theorems for functions of with extremal linear behavior Limit theorems for dependent regularly varying functions of In collaboration with T. Mikosch Olivier Wintenberger wintenberger@ceremade.dauphine.fr

More information

Erdős-Renyi random graphs basics

Erdős-Renyi random graphs basics Erdős-Renyi random graphs basics Nathanaël Berestycki U.B.C. - class on percolation We take n vertices and a number p = p(n) with < p < 1. Let G(n, p(n)) be the graph such that there is an edge between

More information

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main Path Decomposition of Markov Processes Götz Kersting University of Frankfurt/Main joint work with Kaya Memisoglu, Jim Pitman 1 A Brownian path with positive drift 50 40 30 20 10 0 0 200 400 600 800 1000-10

More information

THE CENTER OF MASS OF THE ISE AND THE WIENER INDEX OF TREES

THE CENTER OF MASS OF THE ISE AND THE WIENER INDEX OF TREES Elect. Comm. in Probab. 9 (24), 78 87 ELECTRONIC COMMUNICATIONS in PROBABILITY THE CENTER OF MASS OF THE ISE AND THE WIENER INDEX OF TREES SVANTE JANSON Departement of Mathematics, Uppsala University,

More information

On conformally invariant CLE explorations

On conformally invariant CLE explorations On conformally invariant CLE explorations Wendelin Werner Hao Wu arxiv:1112.1211v2 [math.pr] 17 Dec 2012 Abstract We study some conformally invariant dynamic ways to construct the Conformal Loop Ensembles

More information

Strong Markov property of determinantal processes associated with extended kernels

Strong Markov property of determinantal processes associated with extended kernels Strong Markov property of determinantal processes associated with extended kernels Hideki Tanemura Chiba university (Chiba, Japan) (November 22, 2013) Hideki Tanemura (Chiba univ.) () Markov process (November

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

Weak quenched limiting distributions of a one-dimensional random walk in a random environment

Weak quenched limiting distributions of a one-dimensional random walk in a random environment Weak quenched limiting distributions of a one-dimensional random walk in a random environment Jonathon Peterson Cornell University Department of Mathematics Joint work with Gennady Samorodnitsky September

More information

Reversibility of Some Chordal SLE(κ; ρ) Traces

Reversibility of Some Chordal SLE(κ; ρ) Traces Reversibility of Some Chordal SLE(κ; ρ Traces Dapeng Zhan May 14, 010 Abstract We prove that, for κ (0, 4 and ρ (κ 4/, the chordal SLE(κ; ρ trace started from (0; 0 + or (0; 0 satisfies the reversibility

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 7 9/5/013 The Reflection Principle. The Distribution of the Maximum. Brownian motion with drift Content. 1. Quick intro to stopping times.

More information

arxiv: v1 [math.pr] 14 Aug 2017

arxiv: v1 [math.pr] 14 Aug 2017 Uniqueness of Gibbs Measures for Continuous Hardcore Models arxiv:1708.04263v1 [math.pr] 14 Aug 2017 David Gamarnik Kavita Ramanan Abstract We formulate a continuous version of the well known discrete

More information

Theory of Stochastic Processes 3. Generating functions and their applications

Theory of Stochastic Processes 3. Generating functions and their applications Theory of Stochastic Processes 3. Generating functions and their applications Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo April 20, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Crump Mode Jagers processes with neutral Poissonian mutations

Crump Mode Jagers processes with neutral Poissonian mutations Crump Mode Jagers processes with neutral Poissonian mutations Nicolas Champagnat 1 Amaury Lambert 2 1 INRIA Nancy, équipe TOSCA 2 UPMC Univ Paris 06, Laboratoire de Probabilités et Modèles Aléatoires Paris,

More information

RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL

RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL Elect. Comm. in Probab. 8 (2003)6 16 ELECTRONIC COMMUNICATIONS in PROBABILITY RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL OMER ANGEL Dept. of Mathematics, Weizmann Institute of Science, Rehovot 76100,

More information

Multivariate Risk Processes with Interacting Intensities

Multivariate Risk Processes with Interacting Intensities Multivariate Risk Processes with Interacting Intensities Nicole Bäuerle (joint work with Rudolf Grübel) Luminy, April 2010 Outline Multivariate pure birth processes Multivariate Risk Processes Fluid Limits

More information

Properties of an infinite dimensional EDS system : the Muller s ratchet

Properties of an infinite dimensional EDS system : the Muller s ratchet Properties of an infinite dimensional EDS system : the Muller s ratchet LATP June 5, 2011 A ratchet source : wikipedia Plan 1 Introduction : The model of Haigh 2 3 Hypothesis (Biological) : The population

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

On the submartingale / supermartingale property of diffusions in natural scale

On the submartingale / supermartingale property of diffusions in natural scale On the submartingale / supermartingale property of diffusions in natural scale Alexander Gushchin Mikhail Urusov Mihail Zervos November 13, 214 Abstract Kotani 5 has characterised the martingale property

More information

Convoluted Brownian motions: a class of remarkable Gaussian processes

Convoluted Brownian motions: a class of remarkable Gaussian processes Convoluted Brownian motions: a class of remarkable Gaussian processes Sylvie Roelly Random models with applications in the natural sciences Bogotá, December 11-15, 217 S. Roelly (Universität Potsdam) 1

More information

Strong Markov property of determinatal processes

Strong Markov property of determinatal processes Strong Markov property of determinatal processes Hideki Tanemura Chiba university (Chiba, Japan) (August 2, 2013) Hideki Tanemura (Chiba univ.) () Markov process (August 2, 2013) 1 / 27 Introduction The

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa.

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa. PATH FUNCTIONALS OVER WASSERSTEIN SPACES Giuseppe Buttazzo Dipartimento di Matematica Università di Pisa buttazzo@dm.unipi.it http://cvgmt.sns.it ENS Ker-Lann October 21-23, 2004 Several natural structures

More information

Approximation of BSDEs using least-squares regression and Malliavin weights

Approximation of BSDEs using least-squares regression and Malliavin weights Approximation of BSDEs using least-squares regression and Malliavin weights Plamen Turkedjiev (turkedji@math.hu-berlin.de) 3rd July, 2012 Joint work with Prof. Emmanuel Gobet (E cole Polytechnique) Plamen

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

The Favorite Point of a Poisson Process

The Favorite Point of a Poisson Process The Favorite Point of a Poisson Process Davar Khoshnevisan & Thomas M. Lewis University of Utah and Furman University Abstract. In this paper we consider the most visited site, X t, of a Poisson process

More information

Riemann-Lebesgue Lemma. Some pictures.

Riemann-Lebesgue Lemma. Some pictures. Riemann-Lebesgue Lemma. Some pictures. Definition Let f be a differentiable, complex-valued function on R such that f t) dt is convergent. For such a function define f λ) = the Fourier Transform of f.

More information

Conditional Distributions

Conditional Distributions Conditional Distributions The goal is to provide a general definition of the conditional distribution of Y given X, when (X, Y ) are jointly distributed. Let F be a distribution function on R. Let G(,

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

The Contour Process of Crump-Mode-Jagers Branching Processes

The Contour Process of Crump-Mode-Jagers Branching Processes The Contour Process of Crump-Mode-Jagers Branching Processes Emmanuel Schertzer (LPMA Paris 6), with Florian Simatos (ISAE Toulouse) June 24, 2015 Crump-Mode-Jagers trees Crump Mode Jagers (CMJ) branching

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

1 Independent increments

1 Independent increments Tel Aviv University, 2008 Brownian motion 1 1 Independent increments 1a Three convolution semigroups........... 1 1b Independent increments.............. 2 1c Continuous time................... 3 1d Bad

More information

The propagation of chaos for a rarefied gas of hard spheres

The propagation of chaos for a rarefied gas of hard spheres The propagation of chaos for a rarefied gas of hard spheres Ryan Denlinger 1 1 University of Texas at Austin 35th Annual Western States Mathematical Physics Meeting Caltech February 13, 2017 Ryan Denlinger

More information

process on the hierarchical group

process on the hierarchical group Intertwining of Markov processes and the contact process on the hierarchical group April 27, 2010 Outline Intertwining of Markov processes Outline Intertwining of Markov processes First passage times of

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

A Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow

A Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow A Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow Adriano FESTA Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

More information

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3.

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3. 1. GAUSSIAN PROCESSES A Gaussian process on a set T is a collection of random variables X =(X t ) t T on a common probability space such that for any n 1 and any t 1,...,t n T, the vector (X(t 1 ),...,X(t

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

A stochastic particle system for the Burgers equation.

A stochastic particle system for the Burgers equation. A stochastic particle system for the Burgers equation. Alexei Novikov Department of Mathematics Penn State University with Gautam Iyer (Carnegie Mellon) supported by NSF Burgers equation t u t + u x u

More information

Branching Brownian motion seen from the tip

Branching Brownian motion seen from the tip Branching Brownian motion seen from the tip J. Berestycki 1 1 Laboratoire de Probabilité et Modèles Aléatoires, UPMC, Paris 09/02/2011 Joint work with Elie Aidekon, Eric Brunet and Zhan Shi J Berestycki

More information

arxiv: v2 [math.oc] 30 Sep 2015

arxiv: v2 [math.oc] 30 Sep 2015 Symmetry, Integrability and Geometry: Methods and Applications Moments and Legendre Fourier Series for Measures Supported on Curves Jean B. LASSERRE SIGMA 11 (215), 77, 1 pages arxiv:158.6884v2 [math.oc]

More information

SRB measures for non-uniformly hyperbolic systems

SRB measures for non-uniformly hyperbolic systems SRB measures for non-uniformly hyperbolic systems Vaughn Climenhaga University of Maryland October 21, 2010 Joint work with Dmitry Dolgopyat and Yakov Pesin 1 and classical results Definition of SRB measure

More information

LAN property for ergodic jump-diffusion processes with discrete observations

LAN property for ergodic jump-diffusion processes with discrete observations LAN property for ergodic jump-diffusion processes with discrete observations Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Arturo Kohatsu-Higa (Ritsumeikan University, Japan) &

More information

Information and Credit Risk

Information and Credit Risk Information and Credit Risk M. L. Bedini Université de Bretagne Occidentale, Brest - Friedrich Schiller Universität, Jena Jena, March 2011 M. L. Bedini (Université de Bretagne Occidentale, Brest Information

More information

Convergence of Multivariate Quantile Surfaces

Convergence of Multivariate Quantile Surfaces Convergence of Multivariate Quantile Surfaces Adil Ahidar Institut de Mathématiques de Toulouse - CERFACS August 30, 2013 Adil Ahidar (Institut de Mathématiques de Toulouse Convergence - CERFACS) of Multivariate

More information

7.1 Coupling from the Past

7.1 Coupling from the Past Georgia Tech Fall 2006 Markov Chain Monte Carlo Methods Lecture 7: September 12, 2006 Coupling from the Past Eric Vigoda 7.1 Coupling from the Past 7.1.1 Introduction We saw in the last lecture how Markov

More information

Random trees and applications

Random trees and applications Probability Surveys Vol. 2 25) 245 311 ISSN: 1549-5787 DOI: 1.1214/15495785114 Random trees and applications Jean-François Le Gall DMA-ENS, 45 rue d Ulm, 755 PARIS, FRANCE e-mail: legall@dma.ens.fr Abstract:

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

2 Chance constrained programming

2 Chance constrained programming 2 Chance constrained programming In this Chapter we give a brief introduction to chance constrained programming. The goals are to motivate the subject and to give the reader an idea of the related difficulties.

More information

An Introduction to Percolation

An Introduction to Percolation An Introduction to Percolation Michael J. Kozdron University of Regina http://stat.math.uregina.ca/ kozdron/ Colloquium Department of Mathematics & Statistics September 28, 2007 Abstract Percolation was

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009 A new approach for investment performance measurement 3rd WCMF, Santa Barbara November 2009 Thaleia Zariphopoulou University of Oxford, Oxford-Man Institute and The University of Texas at Austin 1 Performance

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

A slow transient diusion in a drifted stable potential

A slow transient diusion in a drifted stable potential A slow transient diusion in a drifted stable potential Arvind Singh Université Paris VI Abstract We consider a diusion process X in a random potential V of the form V x = S x δx, where δ is a positive

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond.

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Include Only If Paper Has a Subtitle Department of Mathematics and Statistics What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Math Graduate Seminar March 2, 2011 Outline

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

Mouvement brownien branchant avec sélection

Mouvement brownien branchant avec sélection Mouvement brownien branchant avec sélection Soutenance de thèse de Pascal MAILLARD effectuée sous la direction de Zhan SHI Jury Brigitte CHAUVIN, Francis COMETS, Bernard DERRIDA, Yueyun HU, Andreas KYPRIANOU,

More information

TMS165/MSA350 Stochastic Calculus, Lecture on Applications

TMS165/MSA350 Stochastic Calculus, Lecture on Applications TMS165/MSA35 Stochastic Calculus, Lecture on Applications In this lecture we demonstrate how statistical methods such as the maximum likelihood method likelihood ratio estimation can be applied to the

More information

ERRATA: Probabilistic Techniques in Analysis

ERRATA: Probabilistic Techniques in Analysis ERRATA: Probabilistic Techniques in Analysis ERRATA 1 Updated April 25, 26 Page 3, line 13. A 1,..., A n are independent if P(A i1 A ij ) = P(A 1 ) P(A ij ) for every subset {i 1,..., i j } of {1,...,

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information