On the distance between homotopy classes of maps between spheres


 Brice Flynn
 1 years ago
 Views:
Transcription
1 On the distance between homotopy classes of maps between spheres Shay Levi and Itai Shafrir February 18, 214 Department of Mathematics, Technion  I.I.T., 32 Haifa, ISRAEL Dedicated with great respect to Haim Brezis on the occasion of his 7th birthday Abstract Certain Sobolev spaces of maps between manifolds can be written as a disjoint union of homotopy classes. Rubinstein and Shafrir computed the distance between homotopy classes in the spaces W 1,p S 1, S 1 ), for different values of p, and in the space W 1,2 Ω, S 1 ), for certain multiply connected two dimensional domains Ω. We generalize some of these results to higher dimensions. Somewhat surprisingly we find that in W 1,p S 2, S 2 ), with p > 2, the distance between any two distinct homotopy classes equals a universal positive constant cp). A similar result holds in W 1,p S n, S n ), for any n 2 and p > n. 1 Introduction Sobolev spaces of maps from a domain or a manifold with values in spheres appear naturally in Geometry and Analysis, especially in the study of harmonic maps. Motivation to study such maps comes from several areas of Physics like Liquid Crystals and Superconductivity. In general, decomposition of the relevant space W 1,p D, S n ) where D is either a domain or a manifold) into homotopy classes is a very subtle issue see [2, 3, 6, 7, 8, 9]). In some cases a decomposition of the form W 1,p D, S n ) = E d, 1.1) d of the space into a disjoint union of homotopy classes, holds, where d is either an integer or a vector of integers. Such partitions for Sobolev spaces of mappings between two Riemannian manifolds were developed by B. White [18]). The existence of such a partition for maps from a 1
2 two dimensional disk to S 2 for p = 2) was proved by Brezis and Coron who used it to establish existence of certain harmonic maps. Rubinstein and Sternberg [13] used such a partition for maps from the solid torus to S 1 to explain persistent currents in Superconductivity and in a later work, with Kim [1], to predict new structures in Liquid Crystals here again p = 2). The partition 1.1) where D is a multiply connected domain, m = 1 and p = 2, arises naturally in the study by Bethuel, Brezis and Hélein [1] of minimizers of GinzburgLandau type energy in this case d is a vector of length n, where n is the number of holes). Usually partitions like 1.1) are used to prove existence of nontrivial pharmonic maps, as minimizers of the penergy within a specific homotopy classes. The study of the distance between two distinct homotopy classes seems to be initiated by Rubinstein and Shafrir in [12]. They considered two classes of maps. The first is H 1 S 1, S 1 ) = W 1,2 S 1, S 1 ) = E d = : deg u = d}, d Z d Z{u where for any two integers d 1 d 2 the distance δd 1, d 2 ) between the homotopy classes E d1 E d2 is defined by { } δ 2 d 1, d 2 ) = inf u 1 u 2 ) 2 : u 1 E d1, u 2 E d2. 1.2) S 1 Rubinstein and Shafrir found an explicit formula for δ d 1, d 2 ), namely and δ 2 d 1, d 2 ) = 8d 2 d 1 ) ) π They also proved analogous formula for different values of p. Here we study the distance between homotopy classes of selfmaps of spheres in higher dimension. Since the case of maps from S n to S n turns out to be essentially the same for any n 2, we restrict ourselves below to the case n = 2 see Section 3 for details on the ndimensional case). A welldefined notion of degree for maps in W 1,p S 2, S 2) exists only for p 2 see Section 2 for details). We then have W 1,p S 2, S 2) = d Z E d = d Z {u : deg u = d}. The distance between E d1 and E d2 is defined by { } δp p d 1, d 2 ) = inf u 1 u 2 ) p : u 1 E d1, u 2 E d2. S 2 We compute explicitly δ p d 1, d 2 ), and somewhat surprisingly, the results are quite different from those of [12] for the case n = 1. First, in the case p = 2 we found in Theorem 2 that δ 2 d 1, d 2 ) = for every d 1, d 2 Z. Second, when p > 2, for every pair d 1 d 2, the distance δ p d 1, d 2 ) equals a 2
3 fixed positive value independently of the degrees) that is given explicitly by 2 C p, where C p = 2π) 1/p π Γ Γ p 2 2p 2 2p 3 2p 2 ) ) 1 1/p see Theorem 3). The constant C p arises as the best constant in a Sobolev type inequality on two dimensional spheres, which is due to Talenti [17]. A brief explanation for the value 2 C p goes as follows. It is not difficult to see that for any two maps, u 1 E d1 and u 2 E d2, the scalar) function v = u 2 u 1 must take both the value and 2 somewhere we assume here for simplicity that d 2 d 1 ). Then, Talenti s inequality applied to v yields, u 1 u 2 ) p v p max v min S2 S2 v = 2. S 2 S C 2 p C p This is essentially the proof of the lower bound of Theorem 3. The proof of the upper bound uses an explicit construction based on the profile of the optimal function in Talenti s inequality. The main difference from the case n = 1 is explained by the extra dimension, that allows us to construct maps possessing kaxial symmetry, i.e., maps of the form uϕ, θ) = sin Φϕ) coskθ), sin Φϕ) sinkθ), cos Φϕ)). The degrees of these maps are the result of rotations around the zaxis that do not affect the distance between the maps, see the proof of Theorem 3 for details. The rather straightforward generalization of the above results to maps between higher dimensional spheres is given in Section 3. Remark 1. The M.Sc. thesis [11] also contains a generalization of the above results for the distance between homotopy classes of maps in W 1,p S 2, Σ ), where Σ = K is a surface which is the boundary of a convex body K R 2 of class C 2 + see [14]). There it is proved that for p > 2 we have δ p d 1, d 2 ) = W C p, where W is the width of the convex body K i.e., the minimal distance between two parallel planes bounding K, see [14] for details). In [11] one can find also generalization of the result of [12] for W 1,p S 1, S 1 ) to the case of the space W 1,p S 1, C), where the closed curve C is the boundary of convex body in R 2. Acknowledgment. The research of I.S. was partially supported by by the Technion V.P.R. Fund. 2 Maps from S 2 to S 2 Let S 2 = { x R 3 : x x x 2 3 = 1 } denote the unit sphere in R 3. Denote the north and south poles by N =,, 1) and S =,, 1). With a slight abuse of notation each v : S 2 R can be also viewed as a map from [, π] [, 2π] to R such that v, θ) and v π, θ) are independent 3
4 of θ and also v ϕ, ) = v ϕ, 2π) for all < ϕ < π. Hence we can also write any u : S 2 S 2 as u = v 1, v 2, v 3 ) where v i : [, π] [, 2π] R. Here θ longitude) and ϕ colatitude) are geographical coordinates on S 2. Thus x 1 = cos θ sin ϕ, x 2 = sin θ sin ϕ, x 3 = cos ϕ, where θ 2π, ϕ π. Note that H 2 dx) = sin ϕ dϕdθ where x runs over S 2 and H 2 denotes the Hausdorff 2 dimensional measure on S 2. We also have v i = u = vi ) sin ϕ ϕ v v v 3 2. ) 2 v i, i = 1, 2, 3, θ Note that for p > 2, W 1,p S 2, S 2) C 1 2/p S 2, S 2), so that each u W 1,p S 2, S 2) has a welldefined degree. For p = 2 the degree is still welldefined thanks to the density of C 1 S 2, S 2) in the Sobolev space H 1 S 2, S 2) [15]). This is a special case of the VMO degree that was developed by Brezis and Nirenberg in [4]. Thus, for p 2 we may write W 1,p S 2, S 2) = E d = : deg u = d}. d Z d Z{u The distance between E d1 and E d2 is defined by { } δp p d 1, d 2 ) = inf u 1 u 2 ) p : u 1 E d1, u 2 E d2. 2.1) S 2 In this Section we will compute δ p d 1, d 2 ) for any p 2 and d 1, d 2 Z. Interestingly, in contrast with the case of maps between S 1 to S 1 studied in [12], we will show that in dimension two and higher) δ p d 1, d 2 ) is the same for any d 1 d 2. It turns out that the computation of the distance between the homotopy classes is related to the best constant in a certain Sobolev type inequality on the sphere. We recall below the relevant result which is due to Talenti [17]). Theorem 1. Let p > 2. If v W 1,p S 2, R ), then max v min v C p v L S 2 S 2 p S 2 ), 2.2) 4
5 where C p = 2π) 1/p π Γ Γ p 2 2p 2 2p 3 2p 2 ) ) 1 1/p. Inequality 2.2) is sharp. Let v be a smooth map from S 2 to R. Without loss of generality we assume v. Let V t) be the level sets of v, V t) := { x S 2 : v x) > t }. The distribution function of v is given by µ t) = H 2 V t)). Let v s) = χ [,µt)] s) dt, denote the decreasing rearrangement of v in the sense of Hardy and Littlewood  i.e., the decreasing rightcontinuous map from [, 4π] into [, ) which is equidistributed with v. It can be shown that v is locally Lipschitz continuous. The spherical symmetric rearrangement v of v is a function from S 2 to [, ) which is equidistributed with v and whose level sets are concentric spherical caps. Hence, if ϕ is the colatitude of x and B ϕ) is the area of the cap which is intercepted on S 2 by a circular cone having its vertex in the center of S 2 and aperture 2ϕ, then v x) = v B ϕ)) = v 4π sin 2 ϕ 2 ). 2.3) An important property of v is that it does not increase the L p  norm of the gradient. In fact, the following Lemma is a special case of a symmetrization theorem from [16]: Lemma 1. If p 1 then v L p S 2 ) 4π [ ] v = L [s 4π s)] p/2 dv p p S 2 ) ds s) ds We give below a sketch of proof for Theorem 1. For convenience, we assume v. By the definition of v, max S 2 v = v ), min S 2 Hence, Hölder inequality gives max S 2 v min v S 2 v = v 4π ) and max v min v = S 2 S 2 4π [s 4π s)] p/2p 1) ds 1 1/p 4π 1/p [ ] dv ds s) ds. 4π [ ] [s 4π s)] p/2 dv p ds s) ds. 1/p. 2.4) 5
6 Inequality 2.2) follows from Lemma 1 since the first term on the R.H.S of 2.4) equals C p. Remark 2. An inspection shows that equality holds in 2.2) if and only if v satisfies v s) = c 1 1 [t 1 t)] p/2p 1) dt + c 2, 2.5) s/4π for some constants c 1 and c 2. Using 2.2) we deduce the following corollary. Corollary 1. Equality holds in 2.2) for a radially symmetric function v : S 2 R if and only if v satisfies v x) = c 1 where ϕ is the colatitude of x and c 1, c 2 are constants. For p > 2 we define the function f = f p) : [, π] [, 1] by f ϕ) = π π ϕ sin t) 1/p 1) dt + c 2, 2.6) ϕ 1 sin t) dt) 1/p 1) sin t) 1/p 1) dt. 2.7) Let v x) := f ϕ), where x S 2 and ϕ is the colatitude of x. The function f will be useful later in the proof of the upper bound for δ p. We have v N) = f ) = and v S) = f π) = 1. From Corollary 1 equality holds in 2.2) for the function v. Thus, π v Lp S 2 ) = 2π f ϕ) ) p sin ϕ dϕ = C 1 p. 2.8) Lemma 2. For d 1, d 2 Z, d 1 d 2, p 2, let u 1 and u 2 be two continuous maps in W 1,p S 2, S 2) with deg u i = d i, i = 1, 2. Then, there is a point x S 2 such that u 2 x) = u 1 x). Proof. We claim that there exist x S 2 and t, 1) such that t u 1 x) + 1 t ) u 2 x)) =. 2.9) Indeed, otherwise, the map I : [, 1] S 2 S 2 given by I t, x) = tu 1 x) + 1 t) u 2 x)) tu 1 x) + 1 t) u 2 x)), would be a homotopy between u 1 and u 2. Since dim S 2) is even, deg u 2 ) = d 2. Hence d 1 = 6
7 d 2, contradicting our initial assumption. From 2.9) we get t u 1 x) = 1 t ) u 2 x)). Therefore, t = 1 2 and the result follows from 2.9). Note that the continuity assumption is needed only for p = 2 since for p > 2 every u W 1,p S 2, S 2) has a continuous representative. Lemma 3. If d 1 d 2, p 2, then δ p d 1 + k, d 2 + k) δ p d 1, d 2 ), k Z. Proof. Take any u 1 E d1, u 2 E d2. We may assume without loss of generality that u 1, u 2 are smooth maps. Since d 1 d 2, by Lemma 2 there is a point x S 2 such that u 1 x) = u 2 x). We may choose the coordinates axes in the domain and in the range of the maps u i such that x = S and u 1 x) = u 2 x) = S. Thus, u 1 S) = u 2 S) = S. For a small > define the maps ũ i = ũ ) i, i = 1, 2, on S 2 by ) π u i π ũ i ϕ, θ) = ϕ, θ [ sin π π ϕ)] cos kθ), sin [ π π ϕ)] sin kθ), cos [ π π ϕ)]) ϕ The maps ũ i belong to E di+k, i = 1, 2, and satisfy S 2 ũ 2 ũ 1 ) p = 2π dθ = π π π 2π π u 2 π ϕ, θ) u π 1 π ϕ, θ)) p sin ϕ dϕ dθ π u 2 ϕ, θ) u 1 ϕ, θ)) p sin π π Since the maps u 1, u 2 are smooth and sin π π ϕ) sin ϕ) + for ϕ π, we get ũ 2 ũ 1 ) p 2π 2 M p + u 2 u 1 ) p, S 2 S 2 where M := u 2 u 1 ) L S 2 ) <. Hence lim ũ 2 ũ 1 ) p S 2 u 2 u 1 ) p. S 2 The result follows since u i can be chosen arbitrarily in E di. Now we treat the case p = 2. Theorem 2. For every d 1, d 2 Z we have δ 2 d 1, d 2 ) =. ϕ [, π ], π, π]. 2.1) ϕ ) d ϕ. Proof. We begin with a brief description of our strategy. It would be enough to deal with the case where one of the degrees is zero, and then use Lemma 3 to deduce the general case. We shall construct two maps, both with m axial symmetry, one of degree zero and the second one of degree m = d 2 d 1. On a small sphere of order on S 2, centered at the north pole, the two maps are identical, each covering the upper hemisphere. On the remaining much larger) part of S 2 one of 7
8 the maps "goes back" from the equator to the north pole, so its degree is zero. On the other hand, the values taken by the second map on that part of S 2 are just the reflection w.r.t. the xy plane of the values taken by the first map. The degree of the second map equals therefore to m and the difference between the two maps has a nonzero component only in the zdirection. Using the fact that a point has zero 2 capacity in dimension two, we can arrange to have arbitrarily small energy contribution from that component. The detailed construction is given below. For any small > define the maps Φ ) i : [, π] [, π] by Φ i ϕ) = Φ ) i ϕ) = π 2 where i = 1, 2. A direct computation yields, We define the maps u i = u ) i π lim π 2 from S 2 to S 2 by ϕ ) ϕ [, ], i log ϕ log 1 1) ϕ, π], log π log 2.11) Φ i ϕ) ) 2 sin ϕ dϕ =. 2.12) u i ϕ, θ) = sin Φ i ϕ) sin mθ), sin Φ i ϕ) cos mθ), cos Φ i ϕ)), i = 1, 2, where ϕ π, θ 2π and m = d 2 d 1. Since u i < c, i = 1, 2, c is a positive constant, independent of ) the maps belong to W 1, S 2, S 2 ) and satisfy u 1 E d2 d 1 and u 2 E. We have Thus,,, ) ϕ [, ], u 2 u 1 =,, 2 cos Φ 2 ϕ)) ϕ, π]. S 2 u 2 u 1 ) π From 2.12), 2.13) and Lemma 3 applied to and d 2 d 1 ) we get π δ 2 d 1, d 2 ) δ 2 d 2 d 1, ) =. Φ 2 ϕ) ) 2 sin ϕ dϕ. 2.13) Remark 3. The above theorem is analogous to a result from [4]see Lemma 6 and Remark 6 there) which states that the distance between homotopy classes in H 1/2 S 1, S 1 ) is always zero. Next we turn to the case p > 2. The lowerbound is given by the following lemma. 8
9 Lemma 4. If d 1 d 2 then for p > 2 we have: δ p d 1, d 2 ) 2 C p. Proof. Take any u 1 E d1, u 2 E d2. Since d 1 d 2 Lemma 2 applied to u 1 and u 2 implies that there is a point x 1 S 2 such that u 2 x 1 ) = u 1 x 1 ). We may assume W.l.o.g. that d 2. We choose the coordinates axes in the range so that u 2 x 1 ) = N. Since d 2, it follows that there is x 2 S 2 such that u 2 x 2 ) = S. Let v 3 : S 2 R be the third component of u 2 u 1. The function v 3 belongs to W 1,p S 2, R ) and satisfies v 3 x 1 ) = 2, v 3 x 2 ). From Theorem 1 we get u 2 u 1 ) L p S 2 ) v 3 L p S 2 ) max S 2 v 3 min S 2 v 3 C p 2 C p. 2.14) Next we prove the main result of this Section. Theorem 3. If d 1 d 2 then for p > 2 we have: δ p d 1, d 2 ) = 2 C p. 2.15) Proof. Thanks to the lower bound of Lemma 4, it is enough to prove that the following upper bound holds, δ p d 1, d 2 ) 2, 2.16) C p for all d 1 d 2. The construction of pairs of maps that realize 2.16) in the limit shares some similarities with the construction used in the proof of Theorem 2. Indeed, once again it is enough to consider the case where one of the degrees is zero and both maps are taken to be equal on a small sphere, whose image by each of the maps is the upper hemisphere. On the remaining part of S 2 one map the one of zero degree) covers again the upper hemisphere while the second map is just the reflection w.r.t. the xyplane of the first one. This time however we arrange so that the difference between the two maps which is in the direction of the zaxis) is equal approximately to f see 2.7)2.8)) which is the profile of the minimizer in Theorem 1. For any small > consider the following approximation F = F ) : [, π] [, 1] of the function f defined in 2.7) ): F ) ϕ) = J ɛ f ϕ)), 2.17) 9
10 where the map J : [f ), 1] [, 1] is a C m+1 map satisfying the following properties: c 2 m < J 1) = 1, J 1) = = J m) 1) =, J f )) =, J f )) = = J m) f )) =, J s) = s, 2f ) s 1, J s) < c, f ) s 1, s) < c1, f m ) s 1, J m+1) s) < c1, 1 m 2 < s 1, J m+1) 2.18) for some constants c, c 1, c 2 independent of ) and m an integer that satisfies m p 2. In fact, we need to construct a function J ɛ on the two intervals [f ), 2f )] and [1, 1] "connecting" the values J f )) = and J 1 ) = 1 to the values J s) = s on the interval [2f ), 1 ], that satisfies the estimates in 2.18). This requires a change of order f ) for J on the interval [f ), 2f )] and of order on the interval [1, 1]. An appropriate J will then have a derivative of order O1). But now the change of order 1 between J f )) and J 2f )) and between J 1 ) = 1 and J 1) = requires J 1 of order max f, 1 ) ) = 1 since f ) p 2 k) p 1 ). Similarly, for higher order derivatives we will get J s) c. Since k 1 what we are requiring is just interpolation between certain given values of the function and some of its derivatives at two pairs of points, it is clear that we can even take a polynomial for J. Using Taylor formula around s = f ) and s = 1 in conjunction with 2.18) yields for s [f ), 1], J s) c m s f )) m, 2.19) J s) c m 1 s)m, 2.2) where c is a constant independent of. For s [ 1 2, 1] we use again Taylor formula around 1 to obtain, implying Define the functions Φ i = J s) = 1 + J m+1) θ) m + 1)! s 1)m+1, θ s, 1), J s) 1 J s)) 1/2 c 1 m/2 s)m 1)/2, s [1, 1]. 2.21) 2 Φ ) i : [, π] [, π], i = 1, 2, by π 2ϕ [, ], π 2ϕ [, ], Φ 1 ϕ) =, Φ2 ϕ) =. 2.22) π arccos F ϕ), π], arccos F ϕ), π], 1
11 Then, define the maps u i = u ) i : S 2 S 2, for i = 1, 2, by u i ϕ, θ) = sin Φ i ϕ) cos kθ), sin Φ i ϕ) sin kθ), cos Φ ) i ϕ), 2.23) where ϕ π, θ 2π and k = d 2 d 1. Next we prove that u 1 E d2 d 1 and u 2 E. Computation of the degrees of u 1 and u 2 gives deg u i = 1 u i u iϕ u iθ = 2πk π Φ i ϕ) sin 4π S 4π Φ i ϕ) dϕ 2 = k [ cos 2 Φ i ) cos Φ ] k i = 1, i π) = i = 2. We will prove that u i W 1, S 2, S 2) W 1,p S 2, S 2) by showing that the derivatives of F and 1 F 2 are bounded. Obviously it is enough to consider the intervals [, + ] and [π, π] for some >. Let be such that f π ) > 1 2. On the interval [, + ] we have From 2.19) we get f ϕ) = sin ϕ) 1/p 1) cϕ 1/p 1), ϕ f ϕ) = c sin t) 1/p 1) dt cϕ p 2)/p 1). F ϕ) = J ɛ f ϕ)) f ϕ) c m f ϕ) f )) m f ϕ) c m f ϕ)) m f ϕ) In the last inequality we used that For the function 1 F 2 we simply have c m ϕmp 2)/p 1)) 1/p 1) m p 2 p 1 1 p 1 = p 2 [ m 1 ] >. p 1 p 2 1 F 2) ϕ) = F F cf c 1 F 2 m. On the interval [π, π] the functions f and f satisfy c m. f ϕ) = sin π ϕ)) 1/p 1) c π ϕ) 1/p 1), π 1 f ϕ) = c sin t) 1/p 1) dt c π ϕ) p 2)/p 1). π ϕ 11
12 Hence, using 2.2) F ϕ) = J ɛ f ϕ)) f ϕ) c m 1 f ϕ)) m f ϕ) c m π ϕ)m[p 2)/p 1)] 1/p 1) c m. Since f π ) > 1 2, from 2.21) we get ) 1 F 2 ϕ) J c f 1 J ) 1/2 c 1 f m/2 ϕ)) m 1)/2 f ϕ) c π ϕ)[m 1)/2] [p 2)/p 1)] 1/p 1) c m/2. m/2 In the last inequality we used that m 1 2 Our next step will be to prove that p 2 p 1 1 p 1 = p 2 [ m 1 2 ]. 2 p 1) p 2 ) p 2 lim u 2 u 1 ) p. 2.24) S C 2 p Note that,, ) ϕ [, ], u 2 u 1 =,, 2F ϕ)) ϕ, π]. Therefore, u 2 u 1 ) p 2 p 2π S 2 Set = 2f ). Note that π F ϕ) ) p sin ϕ dϕ. 2.25) c 1 1/p 1), f [, π ]) [2f ), 1 ]. 2.26) Since + F ϕ) ) + p sin ϕ dϕ c f ϕ) ) + p sin ϕ dϕ c ϕ p/p 1) ϕ dϕ c 1 1/p 1) c [1 1/p 1)]2, 12
13 we have Moreover, lim + F ϕ) ) p sin ϕ dϕ =. 2.27) π π F ϕ) ) π p sin ϕ dϕ c π f ϕ) ) π p sin ϕ dϕ c = c 1 1/p 1) c [1 1/p 1)]2, π π ϕ) p/p 1) π ϕ) dϕ implying that lim π π F ϕ) ) p sin ϕ dϕ =. 2.28) Finally, on [ +, π ], we have by 2.26) and 2.18) that F ϕ) = f ϕ). From 2.8) we obtain π + F ϕ) ) π p sin ϕ dϕ f ϕ) ) p sin ϕ dϕ = 1 2π C p) p. 2.29) From 2.25) and 2.27)2.29) we deduce 2.24). Hence δ p p d 2 d 1, ) 2 C p ) p. Lemma 3 applied to and d 2 d 1 ) yields 2.16). Next we turn to the question of attainability of δ p d 1, d 2 ). Theorem 4. For p > 2, δ p d 1, d 2 ) is not attained for all d 1 d 2. Proof. Assume by negation that there exist maps u 1 E d1 and u 2 E d2 such that u 2 u 1 ) Lp S 2 ) = δ p d 1, d 2 ). We may assume without loss of generality that d 2. As in the proof of Lemma 4 we can find a point x 1 such that u 2 x 1 ) = u 1 x 1 ), and by changing the axes we may assume that u 2 x 1 ) = N. Denote u 2 u 1 = v 1, v 2, v 3). Since d 2, there exists x 2 S 2 such that u 2 x 2 ) = S, implying that v 3 x 2 ). Since δ p is attained, equalities hold in all the inequalities in 2.14). Thus, v 1 Lp S 2 ) = v 2 Lp S 2 ) =, v 3 Lp S 2 ) = 2 C p and min S 2 v 3 =, max S 2 v 3 = 2. Since v 3 x 1 ) = 2 we deduce that v 1 x 1 ) = v 2 x 1 ) =. Therefore, v 1, v 2 and u z 1 x) = u z 2 x) x S 2, 2.3) where u z 1 and u z 2 denote the zcomponents of u 1 and u 2, respectively. Since d 2 and v 3, we deduce from 2.3) that the set {v 3 = } has positive measure we must have v 3 x) = at points x where u x3 2 x) ). Hence, the distribution function of v 3 satisfies µ ) < 4π, and the decreasing 13
14 rearrangement of v 3 satisfies v 3 s) = on the interval µ ), 4π). This contradicts Remark 2 for the function v 3. 3 Generalization to dimension n In this short section we shall show how to generalize the results of Section 2 to maps from S n to S n, for every n 3. Set S n = { x R n+1 : x x x 2 n+1 = 1 }. For p n each u W 1,p S n, S n ) has a well defined degree and we may write again W 1,p S n, S n ) = E d = : deg u = d}. d Z d Z{u Indeed, for p > n the maps in W 1,p S n, S n ) are continuous, while in the limiting case p = n we refer to the VMO degree see [4]). The distance between E d1 and E d2 is defined naturally by { } δp p d 1, d 2 ) = inf u 1 u 2 ) p : u 1 E d1, u 2 E d2. 3.1) S n Denote by ω n = 2πn+1)/2 Γ n+1 2 ) the ndimensional area of the unit nsphere. Theorem 1 for higher dimensional spheres was given by Cianchi in [5]. The generalization of Theorem 5. Let p > n. If v W 1,p S n, R), then max S n v min v S Cn) n p v L p S n ), 3.2) where C n) p = ω n 1 ) 1/p π Γ Γ p n ) 2p 2 2p n 1 2p 2 ) 1 1/p. Inequality 3.2) is sharp. Note that in the proof of Lemma 2 we used the fact that the dimension of S 2 is even. Thus, in the generalizations of Lemma 2 and Lemma 3 to arbitrary n 2 we should take into account the parity of n. The proof of the next Lemma requires an obvious modification of the one of Lemma 2. Lemma 5. Let d 1, d 2 Z, p n and u 1, u 2 two continuous maps in W 1,p S n, S n ) such that deg u i = d i, i = 1, 2. Then, there is a point x S n such that u 2 x) = u 1 x) in the following cases: i) If n is even and d 1 d 2. ii) If n is odd and d 1 d 2. 14
15 Next we state a generalization of Lemma 3. Lemma 6. For p n we have: i) If n is even and d 1 d 2 then δ p d + k, d 2 + k) δ p d 1, d 2 ), k Z. ii) If n is odd then δ p d 1 + k, d 2 + k) = δ p d 1, d 2 ), k Z. Sketch of Proof. We start with some notation. On the ndimensional sphere S n = { x R n+1 : x x x 2 n+1 = 1 } define the spherical coordinates ϕ i [, π], i = 1, 2,..., n 1 and θ [, 2π], where φ i denotes the angle between x and e i+2. Thus, x 1 = cos θ sin ϕ 1 sin ϕ n 1, x 2 = sin θ sin ϕ 1 sin ϕ n 1, x 3 = cos ϕ 1 sin ϕ 2 sin ϕ n 1,. x n = cos ϕ n 2 sin ϕ n 1, x n+1 = cos ϕ n 1. i) Take any u 1 E d1, u 2 E d2 that can be both assumed smooth, without loss of generality. Since d 1 d 2, Lemma 5i) implies that there is a point x S n such that u 1 x) = u 2 x). We may assume without loss of generality that u 1 S) = u 2 S) = S. For any small > define the maps ũ i = ũ ) i, i = 1, 2, on S n by generalizing the definition in 2.1) as follows: ) π u i ϕ 1, ϕ 2,..., ϕ n 2, π ũ i ϕ 1, ϕ 2,..., ϕ n 2, ϕ n 1, θ) = ϕ n 1, θ ϕ n 1 [, π ], v 1, v 2,..., v n+1 ) ϕ n 1 π, π], 3.3) where v j = v j ϕ 1, ϕ 2,..., ϕ n 1, θ), j = 1, 2,..., n + 1, are defined by [ π ] v 1 = cos kθ) sin ϕ 1 sin ϕ n 2 sin π ϕ n 1), [ π ] v 2 = sin kθ) sin ϕ 1 sin ϕ n 2 sin π ϕ n 1), [ π ] v 3 = cos ϕ 1 sin ϕ 2 sin ϕ n 2 sin π ϕ n 1),. [ π ] v n = cos ϕ n 2 sin π ϕ n 1), [ π ] v n+1 = cos π ϕ n 1). 15
16 Hence ũ i E di+k, i = 1, 2, and a direct computation, as in the proof of Lemma 3, yields lim ũ 2 ũ 1 ) p S n u 2 u 1 ) p. S n The result follows since u i can be chosen arbitrarily in E di. ii) Clearly, we may assume that d 1 d 2. By Lemma 5 ii) there is a point x S n such that u 1 x) = u 2 x). As in the proof of i) we get δ p d 1 + k, d 2 + k) δ p d 1, d 2 ), k Z. Since d 1 + k d 2 + k, we can apply again the proof of i) to obtain δ p d 1 + k k, d 2 + k k) δ p d 1 + k, d 2 + k). Our main result for general n 2, generalizing Theorem 2, Theorem 3 and Theorem 4 is: Theorem 6. The distance between homotopy classes in the space W 1,p S n, S n ) p n), satisfies: i) δ n d 1, d 2 ) = for every d 1, d 2 Z. ii) If p > n then δ p d 1, d 2 ) = 2 C n) p for every d 1 d 2 and δ p d 1, d 2 ) is not attained. Sketch of Proof. i) It is enough to show that δ n, m) = for any m, and then apply Lemma 6 to get the result for any pair d 1, d 2. As in the proof of Lemma 6 above, we slightly modify the construction in the proof of Theorem 2 by letting only the θ and ϕ n 1 coordinates to be active. For any small > define the functions Φ i = Φ ) i : [, π] [, π], i = 1, 2, by 2.11). It is easy to verify that π Φ i ϕ) ) n sin n 1 ϕ dϕ =. 3.4) lim Using these functions define the maps u i = u ) i, i = 1, 2, from S n to S n by u i = v i) 1, vi) 2,..., vi) where v i) j = v i) j ϕ 1, ϕ 2,..., ϕ n 1, θ) are defined by v i) 1 = cos mθ) sin ϕ 1 sin ϕ n 2 sin Φ i ϕ n 1 ), v i) 2 = sin mθ) sin ϕ 1 sin ϕ n 2 sin Φ i ϕ n 1 ), v i) 3 = cos ϕ 1 sin ϕ 2 sin ϕ n 2 sin Φ i ϕ n 1 ),. v i) n = cos ϕ n 2 sin Φ i ϕ n 1 ), v i) n+1 = cos Φ i ϕ n 1 ). Using 3.4) we can easy verify that lim u ) S n 1 u ) 2 ) n =, and the result of i) follows. ii) For the proof of the lower bound take any u 1 E d1, u 2 E d2. Since d 1 d 2 Lemma 5 applied to u 1 and u 2 implies that there is a point x 1 S n such that u 2 x 1 ) = u 1 x 1 ) alternatively, we can see directly that such a point exists because otherwise the map I : [, 1] S n S n given by I t, x) = tu 1 x) + 1 t) u 2 x) tu 1 x) + 1 t) u 2 x) 16 n+1 )
17 would be a homotopy between u 1 and u 2 ). The rest of the proof is the same as in the proof of Lemma 4. The proof that δ p d 1, d 2 ) is not attained uses the same argument as in the proof of Theorem 4 References [1] F. Bethuel, H. Brezis and F. Hélein, GinzburgLandau Vortices, Progress in Nonlinear Differential Equations and Their Applications, 13. Birkhäuser, Boston, [2] H. Brezis, The fascinating homotopy structure of Sobolev spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Matem. Appl., Serie 9, vol ), [3] H. Brezis and Y.Y. Li, Topology and Sobolev spaces, J. Funct. Anal ), [4] H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. N.S.) ), [5] A. Cianchi, A sharp form of Poincare type inequalities on balls and spheres, Journal of Applied Mathematics and Physics ), [6] F. Hang and F.H. Lin, Topology of Sobolev mappings, Math. Res. Lett. 8 21), [7] F. Hang and F.H. Lin, Topology of Sobolev mappings II, Acta Math ), [8] F. Hang and F.H. Lin, Topology of Sobolev mappings III, Comm. Pure Appl. Math ), [9] F. Hang and F.H. Lin, Topology of Sobolev mappings IV, Discrete Contin. Dyn. Syst ), [1] Y. Kim, J. Rubinstein and P. Sternberg, Topologically driven patterns in nematic liquid crystals, Journal of Mathematical Physics ), Art [11] S. Levi, On the distance between homotopy classes of maps from the sphere to a convex surface, Master Thesis, Technion  I. I. T., 213, [12] J. Rubinstein and I. Shafrir, The distance between homotopy classes of S 1 valued maps in multiply connected domains, Israel Journal of Mathematics ), [13] J. Rubinstein and P. Sternberg, Homotopy classification of minimizers for Ginzburg Landau functionals in multiply connected domains, Communications in Mathematical Physics ), [14] R. Schneider, Convex Bodies: The BrunnMinkowski Theory, Encyclopedia of Mathematics and its Applications ),
18 [15] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, Journal of Differential Geometry ), [16] E. Sperner jr., Zur Symmetrisierung von Funktionen auf Spharen. Math. Z ), [17] G. Talenti, Some inequalities of Sobolev type on twodimensional spheres, International Series of Numerical Mathematics ), [18] B. White, Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Mathematica ),
DEGREE AND SOBOLEV SPACES. Haïm Brezis Yanyan Li Petru Mironescu Louis Nirenberg. Introduction
Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 13, 1999, 181 190 DEGREE AND SOBOLEV SPACES Haïm Brezis Yanyan Li Petru Mironescu Louis Nirenberg Dedicated to Jürgen
More informationarxiv: v1 [math.ap] 9 Oct 2017
A refined estimate for the topological degree arxiv:70.02994v [math.ap] 9 Oct 207 HoaiMinh Nguyen October 0, 207 Abstract We sharpen an estimate of [4] for the topological degree of continuous maps from
More informationMinimization problems on the HardySobolev inequality
manuscript No. (will be inserted by the editor) Minimization problems on the HardySobolev inequality Masato Hashizume Received: date / Accepted: date Abstract We study minimization problems on HardySobolev
More informationarxiv: v1 [math.fa] 26 Jan 2017
WEAK APPROXIMATION BY BOUNDED SOBOLEV MAPS WITH VALUES INTO COMPLETE MANIFOLDS PIERRE BOUSQUET, AUGUSTO C. PONCE, AND JEAN VAN SCHAFTINGEN arxiv:1701.07627v1 [math.fa] 26 Jan 2017 Abstract. We have recently
More informationASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang
DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 11, Number 1, July 004 pp. 189 04 ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS Tian Ma Department of
More informationSYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction
Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.
More informationDeviation Measures and Normals of Convex Bodies
Beiträge zur Algebra und Geometrie Contributions to Algebra Geometry Volume 45 (2004), No. 1, 155167. Deviation Measures Normals of Convex Bodies Dedicated to Professor August Florian on the occasion
More informationREGULARITY OF THE MINIMIZER FOR THE DWAVE GINZBURGLANDAU ENERGY
METHODS AND APPLICATIONS OF ANALYSIS. c 2003 International Press Vol. 0, No., pp. 08 096, March 2003 005 REGULARITY OF THE MINIMIZER FOR THE DWAVE GINZBURGLANDAU ENERGY TAICHIA LIN AND LIHE WANG Abstract.
More informationDistances between classes of spherevalued Sobolev maps
Distances between classes of spherevalued Sobolev maps Haim Brezis, Petru Mironescu, Itai Shafrir To cite this version: Haim Brezis, Petru Mironescu, Itai Shafrir. Distances between classes of spherevalued
More informationΓCONVERGENCE OF THE GINZBURGLANDAU ENERGY
ΓCONVERGENCE OF THE GINZBURGLANDAU ENERGY IAN TICE. Introduction Difficulties with harmonic maps Let us begin by recalling Dirichlet s principle. Let n, m be integers, Ω R n be an open, bounded set with
More informationHARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.
Electronic Journal of Differential Equations, Vol. 003(003), No. 3, pp. 1 8. ISSN: 1076691. UL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) HADY INEQUALITIES
More informationPoint topological defects in ordered media in dimension two
Point topological defects in ordered media in dimension two David CHIRON Laboratoire J.A. DIEUDONNE, Université de Nice  Sophia Antipolis, Parc Valrose, 68 Nice Cedex, France email : chiron@math.unice.fr
More informationThe Lusin Theorem and Horizontal Graphs in the Heisenberg Group
Analysis and Geometry in Metric Spaces Research Article DOI: 10.2478/agms20130008 AGMS 2013 295301 The Lusin Theorem and Horizontal Graphs in the Heisenberg Group Abstract In this paper we prove that
More informationComplex GinzburgLandau equations in high dimensions and codimension two area minimizing currents
J Eur Math Soc 2, 87 91 c SpringerVerlag & EMS 2000 Erratum FangHua Lin Tristan Rivière Complex GinzburgLandau equations in high dimensions and codimension two area minimizing currents J Eur Math Soc
More informationAn introduction to Birkhoff normal form
An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an
More informationM. Ledoux Université de Toulouse, France
ON MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE AND SOBOLEV INEQUALITIES M. Ledoux Université de Toulouse, France Abstract. Let M be a complete ndimensional Riemanian manifold with nonnegative Ricci curvature
More informationA GinzburgLandau approach to dislocations. Marcello Ponsiglione Sapienza Università di Roma
Marcello Ponsiglione Sapienza Università di Roma Description of a dislocation line A deformed crystal C can be described by The displacement function u : C R 3. The strain function β = u. A dislocation
More informationAnalysis in weighted spaces : preliminary version
Analysis in weighted spaces : preliminary version Frank Pacard To cite this version: Frank Pacard. Analysis in weighted spaces : preliminary version. 3rd cycle. Téhéran (Iran, 2006, pp.75.
More informationThe Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:
Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply
More informationA LOWER BOUND FOR THE GRADIENT OF HARMONIC FUNCTIONS Edi Rosset. 1. Introduction. u xi u xj u xi x j
Electronic Journal of Differential Equations, Vol. 1996(1996) No. 0, pp. 1 7. ISSN 1076691. URL: http://ejde.math.swt.edu (147.6.103.110) telnet (login: ejde), ftp, and gopher access: ejde.math.swt.edu
More informationJUHA KINNUNEN. Harmonic Analysis
JUHA KINNUNEN Harmonic Analysis Department of Mathematics and Systems Analysis, Aalto University 27 Contents CalderónZygmund decomposition. Dyadic subcubes of a cube.........................2 Dyadic cubes
More informationOn the Brezis and Mironescu conjecture concerning a GagliardoNirenberg inequality for fractional Sobolev norms
On the Brezis and Mironescu conjecture concerning a GagliardoNirenberg inequality for fractional Sobolev norms Vladimir Maz ya Tatyana Shaposhnikova Abstract We prove the GagliardoNirenberg type inequality
More informationMATH 426, TOPOLOGY. p 1.
MATH 426, TOPOLOGY THE pnorms In this document we assume an extended real line, where is an element greater than all real numbers; the interval notation [1, ] will be used to mean [1, ) { }. 1. THE p
More informationSYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction
Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 47 59 SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS M. Grossi S. Kesavan F. Pacella M. Ramaswamy
More informationSHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction
SHARP BOUNDARY TRACE INEQUALITIES GILES AUCHMUTY Abstract. This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region R N. The inequalities bound (semi)norms
More informationMULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN
Electronic Journal of Differential Equations, Vol. 016 (016), No. 97, pp. 1 11. ISSN: 1076691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE SOLUTIONS
More informationExistence of Positive Solutions to Semilinear Elliptic Systems Involving Concave and Convex Nonlinearities
Journal of Physical Science Application 5 (2015) 7181 doi: 10.17265/21595348/2015.01.011 D DAVID PUBLISHING Existence of Positive Solutions to Semilinear Elliptic Systems Involving Concave Convex Nonlinearities
More informationBIHARMONIC WAVE MAPS INTO SPHERES
BIHARMONIC WAVE MAPS INTO SPHERES SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT Abstract. A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed.
More informationA onedimensional nonlinear degenerate elliptic equation
USAChile Workshop on Nonlinear Analysis, Electron. J. Diff. Eqns., Conf. 06, 001, pp. 89 99. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu login: ftp)
More informationUNIQUENESS RESULTS ON SURFACES WITH BOUNDARY
UNIQUENESS RESULTS ON SURFACES WITH BOUNDARY XIAODONG WANG. Introduction The following theorem is proved by BidautVeron and Veron [BVV]. Theorem. Let (M n, g) be a compact Riemannian manifold and u C
More informationFrom the BrunnMinkowski inequality to a class of Poincaré type inequalities
arxiv:math/0703584v1 [math.fa] 20 Mar 2007 From the BrunnMinkowski inequality to a class of Poincaré type inequalities Andrea Colesanti Abstract We present an argument which leads from the BrunnMinkowski
More informationSTABILITY RESULTS FOR THE BRUNNMINKOWSKI INEQUALITY
STABILITY RESULTS FOR THE BRUNNMINKOWSKI INEQUALITY ALESSIO FIGALLI 1. Introduction The BrunnMiknowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the
More informationMathematica Bohemica
Mathematica Bohemica Cristian Bereanu; Jean Mawhin Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions Mathematica Bohemica, Vol. 131 (2006),
More informationOn non negative solutions of some quasilinear elliptic inequalities
On non negative solutions of some quasilinear elliptic inequalities Lorenzo D Ambrosio and Enzo Mitidieri September 28 2006 Abstract Let f : R R be a continuous function. We prove that under some additional
More informationSEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT
Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 139, pp. 1 9. ISSN: 10726691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SEMILINEAR ELLIPTIC
More information1 Lyapunov theory of stability
M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability
More informationu xx + u yy = 0. (5.1)
Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The nonhomogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function
More informationSobolev spaces. May 18
Sobolev spaces May 18 2015 1 Weak derivatives The purpose of these notes is to give a very basic introduction to Sobolev spaces. More extensive treatments can e.g. be found in the classical references
More informationMath The Laplacian. 1 Green s Identities, Fundamental Solution
Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external
More informationGINZBURGLANDAU FUNCTIONALS AND RENORMALIZED ENERGY: A REVISED ΓCONVERGENCE APPROACH
GINZBURGLANDAU FUNCTIONALS AND RENORMALIZED ENERGY: A REVISED ΓCONVERGENCE APPROACH ROBERTO ALICANDRO AND MARCELLO PONSIGLIONE Abstract. We give short and selfcontained proofs of Γconvergence results
More informationGRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS
LE MATEMATICHE Vol. LI (1996) Fasc. II, pp. 335347 GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS CARLO SBORDONE Dedicated to Professor Francesco Guglielmino on his 7th birthday W
More information2 A Model, Harmonic Map, Problem
ELLIPTIC SYSTEMS JOHN E. HUTCHINSON Department of Mathematics School of Mathematical Sciences, A.N.U. 1 Introduction Elliptic equations model the behaviour of scalar quantities u, such as temperature or
More informationLECTURE 10: THE ATIYAHGUILLEMINSTERNBERG CONVEXITY THEOREM
LECTURE 10: THE ATIYAHGUILLEMINSTERNBERG CONVEXITY THEOREM Contents 1. The AtiyahGuilleminSternberg Convexity Theorem 1 2. Proof of the AtiyahGuilleminSternberg Convexity theorem 3 3. Morse theory
More informationNonradial solutions to a biharmonic equation with negative exponent
Nonradial solutions to a biharmonic equation with negative exponent Ali Hyder Department of Mathematics, University of British Columbia, Vancouver BC V6TZ2, Canada ali.hyder@math.ubc.ca Juncheng Wei
More informationElliptic stability for stationary Schrödinger equations by Emmanuel Hebey. Part III/VI A priori blowup theories March 2015
Elliptic stability for stationary Schrödinger equations by Emmanuel Hebey Part III/VI A priori blowup theories March 2015 Nonlinear analysis arising from geometry and physics Conference in honor of Professor
More informationPICARD S THEOREM STEFAN FRIEDL
PICARD S THEOREM STEFAN FRIEDL Abstract. We give a summary for the proof of Picard s Theorem. The proof is for the most part an excerpt of [F]. 1. Introduction Definition. Let U C be an open subset. A
More informationEuler Equations: local existence
Euler Equations: local existence Mat 529, Lesson 2. 1 Active scalars formulation We start with a lemma. Lemma 1. Assume that w is a magnetization variable, i.e. t w + u w + ( u) w = 0. If u = Pw then u
More informationBRUNN MINKOWSKI AND ISOPERIMETRIC INEQUALITY IN THE HEISENBERG GROUP
Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 23, 99 19 BRUNN MINKOWSKI AND ISOPERIMETRIC INEQUALITY IN THE HEISENBERG GROUP Roberto Monti Universität Bern, Mathematisches Institut Sidlerstrasse
More informationDr. Allen Back. Nov. 5, 2014
Dr. Allen Back Nov. 5, 2014 12 lectures, 4 recitations left including today. a Most of what remains is vector integration and the integral theorems. b We ll start 7.1, 7.2,4.2 on Friday. c If you are not
More informationSYMMETRY IN REARRANGEMENT OPTIMIZATION PROBLEMS
Electronic Journal of Differential Equations, Vol. 2009(2009), No. 149, pp. 1 10. ISSN: 10726691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SYMMETRY IN REARRANGEMENT
More informationMEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW
MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW GREGORY DRUGAN AND XUAN HIEN NGUYEN Abstract. We present two initial graphs over the entire R n, n 2 for which the mean curvature flow
More informationTopological properties
CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological
More informationComplex Analysis MATH 6300 Fall 2013 Homework 4
Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,
More informationMeasure and Integration: Solutions of CW2
Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost
More informationu( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)
M ath 5 2 7 Fall 2 0 0 9 L ecture 4 ( S ep. 6, 2 0 0 9 ) Properties and Estimates of Laplace s and Poisson s Equations In our last lecture we derived the formulas for the solutions of Poisson s equation
More informationTitle: Localized selfadjointness of Schrödingertype operators on Riemannian manifolds. Proposed running head: Schrödingertype operators on
Title: Localized selfadjointness of Schrödingertype operators on Riemannian manifolds. Proposed running head: Schrödingertype operators on manifolds. Author: Ognjen Milatovic Department Address: Department
More informationON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT
PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 3 1999 ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT M. Guedda Abstract: In this paper we consider the problem u = λ u u + f in, u = u
More informationCompression on the digital unit sphere
16th Conference on Applied Mathematics, Univ. of Central Oklahoma, Electronic Journal of Differential Equations, Conf. 07, 001, pp. 1 4. ISSN: 1076691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
More informationInequalities for the ADMmass and capacity of asymptotically flat manifolds with minimal boundary
Inequalities for the ADMmass and capacity of asymptotically flat manifolds with minimal boundary Fernando Schwartz Abstract. We present some recent developments involving inequalities for the ADMmass
More informationLecture 2: Isoperimetric methods for the curveshortening flow and for the Ricci flow on surfaces
Lecture 2: Isoperimetric methods for the curveshortening flow and for the Ricci flow on surfaces Ben Andrews Mathematical Sciences Institute, Australian National University Winter School of Geometric
More informationVANISHINGCONCENTRATIONCOMPACTNESS ALTERNATIVE FOR THE TRUDINGERMOSER INEQUALITY IN R N
VAISHIGCOCETRATIOCOMPACTESS ALTERATIVE FOR THE TRUDIGERMOSER IEQUALITY I R Abstract. Let 2, a > 0 0 < b. Our aim is to clarify the influence of the constraint S a,b = { u W 1, (R ) u a + u b = 1 } on
More informationBernsteinSzegö Inequalities in Reproducing Kernel Hilbert Spaces ABSTRACT 1. INTRODUCTION
Malaysian Journal of Mathematical Sciences 6(2): 2536 (202) BernsteinSzegö Inequalities in Reproducing Kernel Hilbert Spaces Noli N. Reyes and Rosalio G. Artes Institute of Mathematics, University of
More informationN E W S A N D L E T T E R S
N E W S A N D L E T T E R S 74th Annual William Lowell Putnam Mathematical Competition Editor s Note: Additional solutions will be printed in the Monthly later in the year. PROBLEMS A1. Recall that a regular
More informationMath 225B: Differential Geometry, Final
Math 225B: Differential Geometry, Final Ian Coley March 5, 204 Problem Spring 20,. Show that if X is a smooth vector field on a (smooth) manifold of dimension n and if X p is nonzero for some point of
More informationNECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES
NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)hardy inequality u(x) Cd Ω(x)
More informationAlgebraic Topology Homework 4 Solutions
Algebraic Topology Homework 4 Solutions Here are a few solutions to some of the trickier problems... Recall: Let X be a topological space, A X a subspace of X. Suppose f, g : X X are maps restricting to
More informationSOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD. 1. Dirichlet integral
SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD CRISTIAN E. GUTIÉRREZ FEBRUARY 3, 29. Dirichlet integral Let f C( ) with open and bounded. Let H = {u C ( ) : u = f on } and D(u) = Du(x) 2 dx.
More informationNONLINEAR FREDHOLM ALTERNATIVE FOR THE plaplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 210, pp. 1 7. ISSN: 10726691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NONLINEAR FREDHOLM ALTERNATIVE FOR THE plaplacian
More informationRECONSTRUCTION OF CONVEX BODIES OF REVOLUTION FROM THE AREAS OF THEIR SHADOWS
RECONSTRUCTION OF CONVEX BODIES OF REVOLUTION FROM THE AREAS OF THEIR SHADOWS D. RYABOGIN AND A. ZVAVITCH Abstract. In this note we reconstruct a convex body of revolution from the areas of its shadows
More informationESTIMATES OF LOWER CRITICAL MAGNETIC FIELD AND VORTEX PINNING BY INHOMO GENEITIES IN TYPE II SUPERCONDUCTORS
Chin. Ann. Math. 5B:4(004,493 506. ESTIMATES OF LOWER CRITICAL MAGNETIC FIELD AND VORTEX PINNING BY INHOMO GENEITIES IN TYPE II SUPERCONDUCTORS K. I. KIM LIU Zuhan Abstract The effect of an applied magnetic
More informationSpaces with Ricci curvature bounded from below
Spaces with Ricci curvature bounded from below Nicola Gigli February 23, 2015 Topics 1) On the definition of spaces with Ricci curvature bounded from below 2) Analytic properties of RCD(K, N) spaces 3)
More informationExercise Solutions to Functional Analysis
Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n
More informationMathematical Problems in Liquid Crystals
Report on Research in Groups Mathematical Problems in Liquid Crystals August 15  September 15, 2011 and June 1  July 31, 2012 Organizers: Radu Ignat, Luc Nguyen, Valeriy Slastikov, Arghir Zarnescu Topics
More information1 Directional Derivatives and Differentiability
Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=
More informationNote on the ChenLin Result with the LiZhang Method
J. Math. Sci. Univ. Tokyo 18 (2011), 429 439. Note on the ChenLin Result with the LiZhang Method By Samy Skander Bahoura Abstract. We give a new proof of the ChenLin result with the method of moving
More informationA compactness theorem for Yamabe metrics
A compactness theorem for Yamabe metrics Heather acbeth November 6, 2012 A wellknown corollary of Aubin s work on the Yamabe problem [Aub76a] is the fact that, in a conformal class other than the conformal
More informationA loop of SU(2) gauge fields on S 4 stable under the YangMills flow
A loop of SU(2) gauge fields on S 4 stable under the YangMills flow Daniel Friedan Rutgers the State University of New Jersey Natural Science Institute, University of Iceland MIT November 3, 2009 1 /
More informationPolyharmonic Elliptic Problem on Eistein Manifold Involving GJMS Operator
Journal of Applied Mathematics and Computation (JAMC), 2018, 2(11), 513524 http://www.hillpublisher.org/journal/jamc ISSN Online:25760645 ISSN Print:25760653 Existence and Multiplicity of Solutions
More informationCitation Osaka Journal of Mathematics. 49(3)
Title ON POSITIVE QUATERNIONIC KÄHLER MAN WITH b_4=1 Author(s) Kim, Jin Hong; Lee, Hee Kwon Citation Osaka Journal of Mathematics. 49(3) Issue 201209 Date Text Version publisher URL http://hdl.handle.net/11094/23146
More informationOn the structure of Hardy Sobolev Maz ya inequalities
J. Eur. Math. Soc., 65 85 c European Mathematical Society 2009 Stathis Filippas Achilles Tertikas Jesper Tidblom On the structure of Hardy Sobolev Maz ya inequalities Received October, 2007 and in revised
More information2014:05 Incremental Greedy Algorithm and its Applications in Numerical Integration. V. Temlyakov
INTERDISCIPLINARY MATHEMATICS INSTITUTE 2014:05 Incremental Greedy Algorithm and its Applications in Numerical Integration V. Temlyakov IMI PREPRINT SERIES COLLEGE OF ARTS AND SCIENCES UNIVERSITY OF SOUTH
More informationTHE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)
Appeared in Israel J. Math. 00 (997), 7 24 THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION Juha Kinnunen Abstract. We prove that the Hardy Littlewood maximal operator is bounded in the Sobolev
More informationGlobal minimizers for a pginzburglandautype energy in R 2
Global minimizers for a pginzburglandautype energy in R 2 Yaniv Almog, Leonid Berlyand, Dmitry Golovaty and Itai Shafrir Abstract Given a p > 2, we prove existence of global minimizers for a pginzburg
More informationSeparable functions: symmetry, monotonicity, and applications
Separable functions: symmetry, monotonicity, and applications arxiv:1809.05696v1 [math.ap] 15 Sep 2018 Tao Wang, Taishan Yi Abstract In this paper, we introduce concepts of separable functions in balls
More informationb i (x) u + c(x)u = f in Ω,
SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic
More informationOn John type ellipsoids
On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and nontrivial continuous map u K which associates ellipsoids to
More informationExtremal Solutions of Differential Inclusions via Baire Category: a Dual Approach
Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach Alberto Bressan Department of Mathematics, Penn State University University Park, Pa 1682, USA email: bressan@mathpsuedu
More informationConvergence Rate of Nonlinear Switched Systems
Convergence Rate of Nonlinear Switched Systems Philippe JOUAN and Saïd NACIRI arxiv:1511.01737v1 [math.oc] 5 Nov 2015 January 23, 2018 Abstract This paper is concerned with the convergence rate of the
More informationSobolev Mappings between Manifolds and Metric Spaces
Sobolev Mappings between Manifolds and Metric Spaces Piotr Haj lasz Abstract In connection with the theory of pharmonic mappings, Eells and Lemaire raised a question about density of smooth mappings in
More informationExtension and Representation of Divergencefree Vector Fields on Bounded Domains. Tosio Kato, Marius Mitrea, Gustavo Ponce, and Michael Taylor
Extension and Representation of Divergencefree Vector Fields on Bounded Domains Tosio Kato, Marius Mitrea, Gustavo Ponce, and Michael Taylor 1. Introduction Let Ω R n be a bounded, connected domain, with
More informationLine energy Ginzburg Landau models: zero energy states
Line energy Ginzburg Landau models: zero energy states PierreEmmanuel Jabin*, email: jabin@dma.ens.fr Felix Otto** email: otto@iam.unibonn.de Benoît Perthame* email: benoit.perthame@ens.fr *Département
More informationRigidity and Nonrigidity Results on the Sphere
Rigidity and Nonrigidity Results on the Sphere Fengbo Hang Xiaodong Wang Department of Mathematics Michigan State University Oct., 00 1 Introduction It is a simple consequence of the maximum principle
More informationOn the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals
On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals Fanghua Lin Changyou Wang Dedicated to Professor Roger Temam on the occasion of his 7th birthday Abstract
More informationPARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGEAMPÈRE EQUATION
PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGEAMPÈRE EQUATION ALESSIO FIGALLI AND YOUNGHEON KIM Abstract. Given Ω, Λ R n two bounded open sets, and f and g two probability densities concentrated
More informationSOLVABILITY OF NONLINEAR EQUATIONS
SOLVABILITY OF NONLINEAR EQUATIONS PETRONELA CATANĂ Using some numerical characteristics for nonlinear operators F acting between two Banach spaces X and Y, we discuss the solvability of a linear ecuation
More informationStationary Kirchhoff equations with powers by Emmanuel Hebey (Université de CergyPontoise)
Stationary Kirchhoff equations with powers by Emmanuel Hebey (Université de CergyPontoise) Lectures at the Riemann center at Varese, at the SNS Pise, at Paris 13 and at the university of Nice. June 2017
More informationThe Laplacian and Mean and Extreme Values
Mathematical Assoc. of America American Mathematical Monthly 2: September 29, 205 2:9 p.m. LaplaceMeanValueFinal.tex page The Laplacian and Mean and Extreme Values Jeffrey S. Ovall Abstract. The Laplace
More informationPiecewise Smooth Solutions to the BurgersHilbert Equation
Piecewise Smooth Solutions to the BurgersHilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA emails: bressan@mathpsuedu, zhang
More informationRiemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,
Tel Aviv University, 26 AnalysisIII 9 9 Improper integral 9a Introduction....................... 9 9b Positive integrands................... 9c Special functions gamma and beta......... 4 9d Change of
More informationSPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS
SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS TSOGTGEREL GANTUMUR Abstract. After establishing discrete spectra for a large class of elliptic operators, we present some fundamental spectral properties
More information