Development of a Validation and Uncertainty Quantification Framework for Closure Models in Multiphase CFD Solver

Size: px
Start display at page:

Download "Development of a Validation and Uncertainty Quantification Framework for Closure Models in Multiphase CFD Solver"

Transcription

1 Development of a Validation and Uncertainty Quantification Framework for Closure Models in Multiphase CFD Solver Yang Liu and Nam Dinh Multi-Physics Model Validation Workshop June/28/2017 1

2 Multiphase Flow and boiling Multiphase Flow and boiling involves multi-scale phenomena with different physics Flow regime (cm) Bubble behavior, interfacial exchange (mm) Turbulence and nucleation (μm) 2

3 Eulerian-Eulerian two-fluid-model: closure dependent averaged conservative equations Mass Condensation & Evaporation Turbulence Momentum Interfacial forces Energy Turbulence Condensation & Evaporation

4 Closure Structure in MCFD Solver Wall boiling Heat partitioning, nucleation Interfacial momentum Interfacial mass/heat transfer Bubble size Turbulence Bubble induced turbulence Near wall heat transfer and evaporation Wall boiling Heat transfer partition Evaporation heat transfer Single-phase convective heat transfer Quenching heat transfer 4 Turbulent viscosity Turbulent heat flux Turbulence model Wall function Nucleation U α h α U h Bubble induced turbulence Turbulent viscosity Bubble departure frequency Bubble departure diameter Active nucleation site density Momentum exchange Drag force Turbulence viscosity force Wall lubrication force Lift force Interfacial forces Bubble breakup Bubble coalesce Condensation Interfacial condensation Bubble size

5 VUQ Framework for two-fluid model based solver For a solver that deal with Multi-physics & Multi-scale phenomena (e.g. MCFD or CTF), conservative variables are averaged and closure models are used for the missing information Empirical parameters exist in closures which are one of the major error/uncertainty source of the solver (another is numerical) Purpose: Given scenario, code, closure model, and available database, 1.What can we conclude on the uncertainty of the QoIs? 2.Is there model form inconsistency between closures? 3.What is the applicable space of the VUQ results? (how far can we extrapolate the VUQ work done under condition A to an unknown condition?) 4.What is the best option to improve the uncertainty? (which measurement can reduce uncertainty mostly?) 7/24/2017 5

6 VUQ workflow 7/24/2017 6

7 MCFD platform and VUQ tool boileulerfoam based on OpenFOAM Original developer: Dr. A.Bui and Prof. N.Dinh Major revision: C.Rollins and Prof. H.Luo (MAE, NCSU) Selected Model implementation: Y.Liu and Prof.N.Dinh VUQ tool used in this work DAKOTA DRAM Python scikit-learn QUESO 7

8 VUQ Framework for Multi-physics / Multi-scale solver Generalized workflow State of art tools Non-intrusive method Flexibility for method/algorithm selection Preparations Data management Validation metrics Model form inconsistency evaluation 7/24/2017 8

9 Data management: NEKAMS: Store and manage VUQ database NE-KAMS (Nuclear Energy Knowledge base for Advanced Modeling and Simulation) Enable knowledge base centric process for V&V, UQ and M&S activities Validation Experiment V&V and UQ Standards and Requirements Computation Collect, document, qualify, structure, format, integrate and manage data and information in various forms and from various sources V&V and UQ Guidelines NE-KAMS Knowledge Base M&S Activities Credit: Dr. W.Ren, ORNL V&V & UQ Assessments 7/24/2017 9

10 Data management : Database example Data Source: Prof. Buongiorno group, MIT Data are automatically processed and stored in two scales 7/24/ [F1] General information Note Source Synthetic CRUD Test (MIT) Details can be found in[ref] [F2] System configuration Geometry Vertical flow in rectangular channel Fluid materials water liquid/vapor Heater materials ITO sapphire heater with synthetic CRUD [F3] Test program Flow conditions 500 kg/m 2 Heat configurations 2um thick CRUD with 10um diameter chimneys on a 45um pitch Heat flux 1400 kw/m 2 [F4] Data [D0] raw data IR counts distribution [D1] primary data temperature/heat flux Used to current VUQ work distribution in current practice [D2] secondary data ensemble averaged Used to current VUQ work temperature, heat flux and in current practice nucleation information [D3] ternary data Nucleation sites location/ Used for a more detailed interaction etc. modeling approach [F5] Data characteristics Applicability boiling model VUQ for flow boiling on low pressure Quality Good High resolution data with designed surface

11 Validation Metrics: Evaluation of model uncertainty and model form inconsistency Confidence intervals There is a α% possibility that the true error between model and data are within the given interval EE = yy mm,oooooo 1 nn ii=1 ss = 1 nn nn 1 ii=1 nn yy ee ii yy ee ii yy ee,aaaaaa Overlapping coefficient Simulation Data Experimental Data EE tt αα 2,vv ss nn, EE + tt αα 2,vv ss nn Overlapping Coefficient Response 7/24/

12 Model form inconsistency evaluation Total Data Model Integration Divide-and-Conquer Approach Model inconsistency in MCFD solver mainly stems from Potential conflict of assumptions between different closures Divide tightly coupled phenomena and treated them independently ' ε inconsistency Y TDMI Ysin gle 1,2, 7/24/

13 Case Study I: interfacial momentum closure Drag Lift Wall lubrication Turbulent dispersion Virtual mass Expression D 3 CD Ma = b ( ) 4 D ρα Ua Ub Ua Ub s L a L b M = C ρα( U U ) ( U ) a b a 1 M WL 2 = C (y ) ( ) a WL w ρ αd x b S U a U b n r 2 t M TD 3 D b a = C υ ρb 4 D t U α t a U b s σ Prb M 1 DUa DUb = ρ C α( ) 2 Dt Dt VM a b vm Model Schiller- Naumman Tomiyama Antal Gosman Rusche Bubble size Ds = Dref,1(T sub Tsub,2 ) + Dref,2 (T sub,1 Tsub ) Tsub,1 Tsub,2 Anglart 13

14 Case Study II: Wall heat transfer closures Kurul & Podowski(1991) : With different closure options (Version A & B) Shaver & Podowski(2014) 7/24/

15 Surrogate construction Sampling + Gaussian Process I.C. B.C. fixed CMFD solver QoIs I.C. B.C. fixed Surrogate QoIs Closure parameter Closure parameter 15

16 Surrogate accuracy evaluation by cross validation Low pressure adiabatic flow High pressure subcooled boiling flow QoI Void fraction Gas velocity Maximum RMS 5.98e e-3 Maximum ABS 3.98e e-3 QoI Void fraction Gas velocity Relative velocity Maximum RMS 2.37e e e-4 Maximum ABS 1.48e e e-4 Relative velocity 2.31e e-3 Liquid Temperat ure 4.58e e-2 16

17 Global Sensitivity Analysis: Morris Measure and Sobol indices Interfacial momentum terms: interfacial forces and bubble size Wall lubrication has influence on all regions Parameters have similar sensitivity in all regions adiabatic flow, but have different behavior in boiling flow 17

18 Global Sensitivity Analysis: Morris Measure and Sobol indices Wall Boiling Model Comparison with Sobol indices 8.55E-01Cwall 3.70E-01C3 2.34E-02C2-7.39E-03C1-1.85E-03Prt -8.06E-04vonKarman -6.12E-04yPlusSL 18

19 Parameter Selection Reason: parameter identifiability issue For complex non-linear model, there exists different combinations of parameters that fit the data equally well Thus the inverse Bayesian can be performed only on a subset of parameters without identifiability issue 19

20 Parameter Selection: ad hoc approach Check parameter identifiability among most important parameters Randomly get rid of one if identified Include parameter with intermediate importance one at a time, and check Do not include that one if identified Directly get rid of not important one 20

21 Inverse Bayesian Inference using MCMC: Gen-I model, version B One experiment, averaged over heater surface Joint sampling of parameters Check of convergence: Burn in pattern and autocorrelation Bubble Effective area factor Bubble diameter constant Turbulent convective constant 21

22 Validation metrics example One experiment, averaged over heater surface Constructing Confidence intervals 22

23 Model form inconsistency identification: One experiment, Distribution along heated wall Gen-I model, version A Shaver model Indication of model form inconsistency 23

24 Issue identified Extrapolation can lead to large error Inference with datasets on one condition, then apply parameter distribution to other conditions Universal optimal parameter estimates do not exist Inference with datasets on all conditions simultaneously 24

25 A possible solution: gain knowledge from multiple validation results Test: infer posterior distribution through interpolation and extrapolation 25

26 Desired future work With many units, the desired data needs / best available model/parameter can be obtained and aid decision making Validation database Unit. A Macro-scale Phenomena Closure options A1 A2 A3... B1 B1 B1... C1 C2 C Validation database Unit. B IET.1 SET.1 SET.3 IET.2 SET.2 SET.4 Meso-scale. Micro-scale 7/24/

27 Summary: Current Achievement Purpose: Given scenario, code, closure model, and available database, 1.What can we conclude on the uncertainty of the QoIs? (Answered) 2.Is there model form inconsistency between closures? (Partially Answered) 3.What is the applicable range of the VUQ results? (can we extend the VUQ work done under condition A to B) (Partially Answered) 4.What is the best option to improve the uncertainty? 27

28 Summary: Current limitation Depends on multiple datasets with uncertainty known High fidelity data with thorough uncertainty analysis is desired Acquire more data sources from literature/high fidelity simulation Evaluating missing uncertainty information Parameter identifiability not fully resolved, the parameter selection depends on a lot trial and error Trying state-of-art mathematical methods, e.g. active subspace Simultaneous measurement of multiple physics is essential for a comprehensive evaluation of all closures (wall heat transfer behavior, near wall flow and bubble dynamics, bulk flow, etc.) However, those kind of measurements are currently not available 28

A Validation and Uncertainty Quantification Framework for. Eulerian-Eulerian Two-Fluid Model based Multiphase-CFD Solver. Part I: Methodology

A Validation and Uncertainty Quantification Framework for. Eulerian-Eulerian Two-Fluid Model based Multiphase-CFD Solver. Part I: Methodology A Validation and Uncertainty Quantification Framework for Eulerian-Eulerian Two-Fluid Model based Multiphase-CFD Solver. Part I: Methodology Yang Liu 1,*, Nam Dinh 1, Ralph Smith 2 1 Department of Nuclear

More information

CFD-Modeling of Boiling Processes

CFD-Modeling of Boiling Processes CFD-Modeling of Boiling Processes 1 C. Lifante 1, T. Frank 1, A. Burns 2, E. Krepper 3, R. Rzehak 3 conxita.lifante@ansys.com 1 ANSYS Germany, 2 ANSYS UK, 3 HZDR Outline Introduction Motivation Mathematical

More information

Subgrid Scale Modeling and the art of CFD

Subgrid Scale Modeling and the art of CFD NSE Nuclear Science & Engineering at MIT science : systems : society Subgrid Scale Modeling and the art of CFD Massachusetts Institute of Technology Emilio Baglietto, NSE Multiphase-CFD: a full-scope redesign

More information

Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers

Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers Advanced Computational Methods and Experiments in Heat Transfer XI 51 Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers D. Simón, M. C. Paz, A. Eirís&E.Suárez E.T.S.

More information

INVESTIGATION OF THE PWR SUBCHANNEL VOID DISTRIBUTION BENCHMARK (OECD/NRC PSBT BENCHMARK) USING ANSYS CFX

INVESTIGATION OF THE PWR SUBCHANNEL VOID DISTRIBUTION BENCHMARK (OECD/NRC PSBT BENCHMARK) USING ANSYS CFX INVESTIGATION OF THE PWR SUBCHANNEL VOID DISTRIBUTION BENCHMARK (OECD/NRC PSBT BENCHMARK) USING ANSYS CFX Th. Frank 1, F. Reiterer 1 and C. Lifante 1 1 ANSYS Germany GmbH, Otterfing, Germany Thomas.Frank@ansys.com,

More information

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model Proceedings of the 2 nd World Congress on Momentum, Heat and Mass Transfer (MHMT 17) Barcelona, Spain April 6 8, 2017 Paper No. ICMFHT 114 ISSN: 2371-5316 DOI: 10.11159/icmfht17.114 CFD Simulation of Sodium

More information

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henry Anglart Royal Institute of Technology, Department of Physics Division of Nuclear Reactor Technology Stocholm,

More information

Center For Compressible Multiphase Turbulence Overview

Center For Compressible Multiphase Turbulence Overview Center For Compressible Multiphase Turbulence Overview Principal Investigator: S. Balachandar Department of Mechanical and Aerospace Engineering University of Florida Center for Compressible Multiphase

More information

ABSTRACT. DACUS III, ROBERT WARREN. Development of a Multiphase Adjoint Capability in OpenFOAM. (Under the direction of Paul Turinsky.

ABSTRACT. DACUS III, ROBERT WARREN. Development of a Multiphase Adjoint Capability in OpenFOAM. (Under the direction of Paul Turinsky. ABSTRACT DACUS III, ROBERT WARREN. Development of a Multiphase Adjoint Capability in OpenFOAM. (Under the direction of Paul Turinsky.) A multiphase adjoint capability was developed in the OpenFOAM computational

More information

Euler-Euler Modeling of Mass-Transfer in Bubbly Flows

Euler-Euler Modeling of Mass-Transfer in Bubbly Flows Euler-Euler Modeling of Mass-Transfer in Bubbly Flows Roland Rzehak Eckhard Krepper Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Overview Motivation

More information

Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models Subcooled Flow Boiling Study

Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models Subcooled Flow Boiling Study INL/EXT-13-30293 Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models Subcooled Flow Boiling Study Anh Bui Nam Dinh Brian Williams September 2013 The INL is a U.S. Department

More information

Modeling of Wall-boiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions

Modeling of Wall-boiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions Modeling of Wall-boiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions Thomas Frank (1), Amine Ben Hadj Ali (1), Conxita Lifante (1), Florian Kaiser (2), Stephan Gabriel (2), Henning Eickenbusch

More information

Numerical Investigation of Nucleate Boiling Flow in Water Based Bubble Bumps

Numerical Investigation of Nucleate Boiling Flow in Water Based Bubble Bumps International Journal of Fluid Mechanics & Thermal Sciences 2015; 1(2): 36-41 Published online June 15, 2015 (http://www.sciencepublishinggroup.com/j/ijfmts) doi: 10.11648/j.ijfmts.20150102.14 Numerical

More information

Research Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle

Research Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle Science and Technology of Nuclear Installations Volume 2012, Article ID 795935, 8 pages doi:10.1155/2012/795935 Research Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle Simon Lo and Joseph Osman

More information

Modelling of Gas-Liquid Two-Phase Flows in Vertical Pipes using PHOENICS

Modelling of Gas-Liquid Two-Phase Flows in Vertical Pipes using PHOENICS Modelling of Gas-Liquid Two-Phase Flows in Vertical Pipes using PHOENICS Vladimir Agranat, Masahiro Kawaji, Albert M.C. Chan* Department of Chemical Engineering and Applied Chemistry University of Toronto,

More information

Validation of Multiphase Flow Modeling in ANSYS CFD

Validation of Multiphase Flow Modeling in ANSYS CFD Validation of Multiphase Flow Modeling in ANSYS CFD Th. Frank, C. Lifante, A.D. Burns Head Funded CFD Development ANSYS Germany Thomas.Frank@ansys.com 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc.

More information

CFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING

CFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING CFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING Ladislav Vyskocil and Jiri Macek UJV Rez a. s., Dept. of Safety Analyses, Hlavni 130, 250 68 Husinec Rez, Czech Republic Ladislav.Vyskocil@ujv.cz;

More information

Multiphase Flows. Mohammed Azhar Phil Stopford

Multiphase Flows. Mohammed Azhar Phil Stopford Multiphase Flows Mohammed Azhar Phil Stopford 1 Outline VOF Model VOF Coupled Solver Free surface flow applications Eulerian Model DQMOM Boiling Model enhancements Multi-fluid flow applications Coupled

More information

Development and Validation of the Wall Boiling Model in ANSYS CFD

Development and Validation of the Wall Boiling Model in ANSYS CFD Development and Validation of the Wall Boiling Model in ANSYS CFD Th. Frank, C. Lifante, A.D. Burns PBU, Funded CFD Development ANSYS Germany Thomas.Frank@ansys.com E. Krepper, R. Rzehak FZ Dresden-Rossendorf

More information

Progress and Challenges in Predictive Thermal Hydraulic Simulations

Progress and Challenges in Predictive Thermal Hydraulic Simulations NSE Nuclear Science & Engineering at MIT science : systems : society Progress and Challenges in Predictive Thermal Hydraulic Simulations Massachusetts Institute of Technology Emilio Baglietto A new approach

More information

CFD modelling of multiphase flows

CFD modelling of multiphase flows 1 Lecture CFD-3 CFD modelling of multiphase flows Simon Lo CD-adapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cd-adapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM

More information

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach TFM Hybrid Interface Resolving Two-Fluid Model (HIRES-TFM) by Coupling of the Volume-of-Fluid (VOF)

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer ME546 -Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, Two-Phase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410

More information

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics! http://www.nd.edu/~gtryggva/cfd-course/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady Navier-Stokes equations

More information

High Resolution Measurements of Boiling Heat Transfer

High Resolution Measurements of Boiling Heat Transfer High Resolution Measurements of Boiling Heat Transfer Martin Freystein Institute of Technical Thermodynamics, TU armstadt Personal Skills and Boiling Experience Single Bubble Pool Boiling Bubble Coalescence

More information

This is a repository copy of CFD Simulation of Boiling Flows with an Eulerian-Eulerian Two-Fluid Model.

This is a repository copy of CFD Simulation of Boiling Flows with an Eulerian-Eulerian Two-Fluid Model. This is a repository copy of CFD Simulation of Boiling Flows with an Eulerian-Eulerian Two-Fluid Model. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/128021/ Version: Accepted

More information

Prediction of Convective Boiling up to Critical Heat Flux (CHF) Conditions for Test Facilities with Vertical Heaters

Prediction of Convective Boiling up to Critical Heat Flux (CHF) Conditions for Test Facilities with Vertical Heaters Prediction of Convective Boiling up to Critical Heat Flux (CHF) Conditions for Test Facilities with Vertical Heaters Thomas Frank (1), Amine Ben Hadj Ali (1), Conxita Lifante (1), Moritz Bruder (2), Florian

More information

Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows

Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows Computational Methods in Multiphase Flow V 135 Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows V. Pržulj & M. Shala Ricardo Software, Ricardo UK Limited Shoreham-by-Sea,

More information

Coupled CFD-STH analysis of liquid metal flows: STAR-CCM+ - RELAP5

Coupled CFD-STH analysis of liquid metal flows: STAR-CCM+ - RELAP5 STAR Global Conference 2017 Berlin Mar 6-8, 2017 Coupled CFD-STH analysis of liquid metal flows: STAR-CCM+ - RELAP5 Marti Jeltsov, Kaspar Kööp, Pavel Kudinov Division of Nuclear Power Safety KTH Royal

More information

IHMTC EULER-EULER TWO-FLUID MODEL BASED CODE DEVELOPMENT FOR TWO-PHASE FLOW SYSTEMS

IHMTC EULER-EULER TWO-FLUID MODEL BASED CODE DEVELOPMENT FOR TWO-PHASE FLOW SYSTEMS Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), December 27-30, 2017, BITS-Pilani, Hyderabad, India IHMTC2017-13-0160 EULER-EULER TWO-FLUID

More information

USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES

USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES Z. E. Karoutas, Y. Xu, L. David Smith, I, P. F. Joffre, Y. Sung Westinghouse Electric Company 5801 Bluff Rd, Hopkins, SC 29061 karoutze@westinghouse.com;

More information

Development of twophaseeulerfoam

Development of twophaseeulerfoam ISPRAS OPEN 2016 NUMERICAL STUDY OF SADDLE-SHAPED VOID FRACTION PROFILES EFFECT ON THERMAL HYDRAULIC PARAMETERS OF THE CHANNEL WITH TWO-PHASE FLOW USING OPENFOAM AND COMPARISON WITH EXPERIMENTS Varseev

More information

MECHANISTIC MODELING OF TWO-PHASE FLOW AROUND SPACER GRIDS WITH MIXING VANES

MECHANISTIC MODELING OF TWO-PHASE FLOW AROUND SPACER GRIDS WITH MIXING VANES MECHANISTIC MODELING OF TWO-PHASE FLOW AROUND SPACER GRIDS WITH MIXING VANES B. M. Waite, D. R. Shaver and M. Z. Podowski Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic

More information

ABSTRACT. ROLLINS, CHAD ERIC. Development of Multiphase Computational Fluid Dynamics Solver in OpenFOAM. (Under the direction of Hong Luo.

ABSTRACT. ROLLINS, CHAD ERIC. Development of Multiphase Computational Fluid Dynamics Solver in OpenFOAM. (Under the direction of Hong Luo. ABSTRACT ROLLINS, CHAD ERIC. Development of Multiphase Computational Fluid Dynamics Solver in OpenFOAM. (Under the direction of Hong Luo.) From the viewpoint of an increase in energy demand, a shortage

More information

Fluid Flow, Heat Transfer and Boiling in Micro-Channels

Fluid Flow, Heat Transfer and Boiling in Micro-Channels L.P. Yarin A. Mosyak G. Hetsroni Fluid Flow, Heat Transfer and Boiling in Micro-Channels 4Q Springer 1 Introduction 1 1.1 General Overview 1 1.2 Scope and Contents of Part 1 2 1.3 Scope and Contents of

More information

Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling

Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling JinJia Wei State Key Laboratory of Multiphase Flow in Power Engineering Xi an Jiaotong University Contents 1. Background

More information

VALIDATION OF CFD-BWR, A NEW TWO-PHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS

VALIDATION OF CFD-BWR, A NEW TWO-PHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS VALIDATION OF CFD-BWR, A NEW TWO-PHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS V.Ustineno 1, M.Samigulin 1, A.Ioilev 1, S.Lo 2, A.Tentner 3, A.Lychagin 4, A.Razin 4, V.Girin

More information

Numerical Analysis of Critical Heat Flux Phenomenon in a Nuclear Power Plant Core Channel in the Presence of Mixing Vanes

Numerical Analysis of Critical Heat Flux Phenomenon in a Nuclear Power Plant Core Channel in the Presence of Mixing Vanes AUT Journal of Mechanical Engineering AUT J. Mech. Eng., 1(2) (2017) 119-130 DOI: 10.22060/mej.2017.12928.5472 Numerical Analysis of Critical Heat Flux Phenomenon in a Nuclear Power Plant Core Channel

More information

APPLICATION OF RPI MODEL: PREDICTION OF SUBCOOLED BOILING AND DNB IN VERTICAL PIPES

APPLICATION OF RPI MODEL: PREDICTION OF SUBCOOLED BOILING AND DNB IN VERTICAL PIPES APPLICATION OF RPI MODEL: PREDICTION OF SUBCOOLED BOILING AND DNB IN VERTICAL PIPES Rui Zhang, Wenwen Zhang, Tenglong Cong, Wenxi Tian, G H Su, Suizheng Qiu School of Nuclear Science and Technology, Xi

More information

CFD-Modelling of subcooled boiling and Applications in the Nuclear Technology

CFD-Modelling of subcooled boiling and Applications in the Nuclear Technology CFD-Modelling of subcooled boiling and Applications in the Nuclear Technology Eckhard Krepper Jahrestagung Kerntechnik 2011 Fachsitzung: CFD-Simulationen zu sicherheitsrelevanten Fragestellungen Text optional:

More information

WP2.3: Boiling Water Reactor Thermal- Hydraulics

WP2.3: Boiling Water Reactor Thermal- Hydraulics WP2.3: Boiling Water Reactor Thermal- Hydraulics H. Anglart, D. Caraghiaur, D. Lakehal, J. Pérez, V. Tanskanen, M. Ilvonen BWR Thermal-hydraulic issues CFD Eulerian/Eulerian approach (KTH) Annular flow

More information

Two Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine

Two Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine Two Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine A. Mohammadi* Iran Khodro Powertrain Company Tehran, Tehran, Iran M. Yaghoubi Professor

More information

Uncertainty Management and Quantification in Industrial Analysis and Design

Uncertainty Management and Quantification in Industrial Analysis and Design Uncertainty Management and Quantification in Industrial Analysis and Design www.numeca.com Charles Hirsch Professor, em. Vrije Universiteit Brussel President, NUMECA International The Role of Uncertainties

More information

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors Henrik Ström 1, Srdjan Sasic 1, Klas Jareteg 2, Christophe Demazière 2 1 Division of Fluid Dynamics, Department

More information

Fine-mesh multiphysics of LWRs: two-phase flow challenges and opportunities

Fine-mesh multiphysics of LWRs: two-phase flow challenges and opportunities Fine-mesh multiphysics of LWRs: two-phase flow challenges and opportunities SKC Symposium October 11-12, 2016, Hindås Klas Jareteg Chalmers University of Technology October 12, 2016 Project overview Project

More information

Filtered Two-Fluid Model for Gas-Particle Suspensions. S. Sundaresan and Yesim Igci Princeton University

Filtered Two-Fluid Model for Gas-Particle Suspensions. S. Sundaresan and Yesim Igci Princeton University Filtered Two-Fluid Model for Gas-Particle Suspensions S. Sundaresan and Yesim Igci Princeton University Festschrift for Professor Dimitri Gidaspow's 75th Birthday II Wednesday, November 11, 2009: 3:15

More information

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION ABSTRACT NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION D. Métrailler, S. Reboux and D. Lakehal ASCOMP GmbH Zurich, Technoparkstr. 1, Switzerland Metrailler@ascomp.ch;

More information

A Coupled VOF-Eulerian Multiphase CFD Model To Simulate Breaking Wave Impacts On Offshore Structures

A Coupled VOF-Eulerian Multiphase CFD Model To Simulate Breaking Wave Impacts On Offshore Structures A Coupled VOF-Eulerian Multiphase CFD Model To Simulate Breaking Wave Impacts On Offshore Structures Pietro Danilo Tomaselli Ph.d. student Section for Fluid Mechanics, Coastal and Maritime Engineering

More information

Modelling multiphase flows in the Chemical and Process Industry

Modelling multiphase flows in the Chemical and Process Industry Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective

More information

COMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS

COMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS COMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS Prashant Tiwari 1, Steven P. Antal 1,2, Michael Z. Podowski 1,2 * 1 Department of Mechanical, Aerospace and Nuclear Engineering,

More information

Modeling of dispersed phase by Lagrangian approach in Fluent

Modeling of dispersed phase by Lagrangian approach in Fluent Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen 2008 Modeling of dispersed phase by Lagrangian approach in Fluent Kari Myöhänen Available at: https://works.bepress.com/kari_myohanen/5/

More information

CFD Simulation of Flashing and Boiling Flows Using FLUENT

CFD Simulation of Flashing and Boiling Flows Using FLUENT CFD Simulation of Flashing and Boiling Flows Using FLUENT Hua Bai and Paul Gillis The Dow Chemical Company FLUENT UGM 2004 Liquid/Gas Phase Change found in many industrial chemical processes involves complex

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes

Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes Computational Methods in Multiphase Flow V 227 Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes B. M. Halvorsen 1,2 & B. Arvoh 1 1 Institute

More information

NUMERICAL PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT UNDER HIGH HEAT FLUXES. P.O. Box 522, Belgrade, Serbia

NUMERICAL PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT UNDER HIGH HEAT FLUXES. P.O. Box 522, Belgrade, Serbia NUMERICAL PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT UNDER HIGH HEAT FLUXES Milada L. PEZO a*, Vladimir D. STEVANOVIĆ b a Department of Thermal Engineering and Energy, Institute of Nuclear

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

NUMERICAL SIMULATION OF TRANSIENT SLURRY-CAVITATED MULTIPHASE FLOWS

NUMERICAL SIMULATION OF TRANSIENT SLURRY-CAVITATED MULTIPHASE FLOWS ISTP-1, 005, PRAGUE 1 TH INTERNATIONAL SYMPOSIUM ON TRANSPO PHENOMENA NUMERICAL SIMULATION OF TRANSIENT SLURRY-CAVITATED MULTIPHASE FLOWS Yang-Yao Niu and Yee-Ming Lin Institute of Mechanical and Aerospace

More information

DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS

DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS Jun-Mei Shi, Phil Zwart 1, Thomas Frank 2, Ulrich Rohde, and Horst-Michael Prasser 1. Introduction Poly-dispersed

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING 1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING M. Fiocco, D. Borghesi- Mahindra Racing S.P.A. Outline Introduction

More information

CFD-SIMULATION OF THE VVER-440 STEAM GENERATOR WITH POROUS MEDIA MODEL

CFD-SIMULATION OF THE VVER-440 STEAM GENERATOR WITH POROUS MEDIA MODEL CFD-SIMULATION OF THE VVER-440 STEAM GENERATOR WITH POROUS MEDIA MODEL T. Rämä, T. Toppila Fortum Nuclear Services Ltd, Finland T. J. H. Pättikangas, J. Niemi, V. Hovi VTT Technical Research Centre of

More information

Multiphase Flow Modeling & Simulation with Application to Water-Vapor Flows Through Fuel Rod Bundles of Nuclear Reactors

Multiphase Flow Modeling & Simulation with Application to Water-Vapor Flows Through Fuel Rod Bundles of Nuclear Reactors Multiphase Flow Modeling & Simulation with Application to Water-Vapor Flows Through Fuel Rod Bundles of Nuclear Reactors Thomas Frank ANSYS Germany, Otterfing Thomas.Frank@ansys.com 2006 ANSYS, Inc. Th.

More information

Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock

Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock Pieter Verhees, Abdul Akhras Rahman, Kevin M. Van Geem, Geraldine J. Heynderickx Laboratory

More information

Development of Uncertainty-Guided Deep Learning with Application to Thermal Fluid Closures

Development of Uncertainty-Guided Deep Learning with Application to Thermal Fluid Closures Development of Uncertainty-Guided Deep Learning with Application to Thermal Fluid Closures Chih-Wei Chang, Nam Dinh NEKVAC/NUC Workshop Multiphysics Model Validation June 27-29, 2017 Outline Introduction

More information

Integrating Quench Modeling into the ICME Workflow

Integrating Quench Modeling into the ICME Workflow Integrating Quench Modeling into the ICME Workflow Andrew Banka, P.E. Jeffrey Franklin, Ph.D., P.E. William Newsome, Ph.D. Presentation Outline ICME Link (Materials Engineering) Specific modeling type

More information

Numerical simulation of polyurethane foaming processes on bubble scale

Numerical simulation of polyurethane foaming processes on bubble scale Numerical simulation of polyurethane foaming processes on bubble scale 7th OpenFOAM Workshop Darmstadt, 25-28 June 2012 Stephanie Geier and Manfred Piesche Institute of Mechanical Process Engineering University

More information

Application of V&V 20 Standard to the Benchmark FDA Nozzle Model

Application of V&V 20 Standard to the Benchmark FDA Nozzle Model Application of V&V 20 Standard to the Benchmark FDA Nozzle Model Gavin A. D Souza 1, Prasanna Hariharan 2, Marc Horner 3, Dawn Bardot 4, Richard A. Malinauskas 2, Ph.D. 1 University of Cincinnati, Cincinnati,

More information

Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry

Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry M. Dzodzo 1), A. Ruggles 2), B. Woods 3), U. Rohatgi 4), N.

More information

Investigation of CTF void fraction prediction by ENTEK BM experiment data

Investigation of CTF void fraction prediction by ENTEK BM experiment data Investigation of CTF void fraction prediction by ENTEK BM experiment data Abstract Hoang Minh Giang 1, Hoang Tan Hung 1, Nguyen Phu Khanh 2 1 Nuclear Safety Center, Institute for Nuclear Science and Technology

More information

VERIFICATION AND VALIDATION OF ONE DIMENSIONAL MODELS USED IN SUBCOOLED FLOW BOILING ANALYSIS

VERIFICATION AND VALIDATION OF ONE DIMENSIONAL MODELS USED IN SUBCOOLED FLOW BOILING ANALYSIS 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 VERIFICATION

More information

Development of a consistent and conservative Eulerian - Eulerian algorithm for multiphase flows

Development of a consistent and conservative Eulerian - Eulerian algorithm for multiphase flows Development of a consistent and conservative Eulerian - Eulerian algorithm for multiphase flows Ana Cubero Alberto Sanchez-Insa Norberto Fueyo Numerical Fluid Dynamics Group University of Zaragoza Spain

More information

THE EFFECT OF THE CROSS-SECTIONAL GEOMETRY ON SATURATED FLOW BOILING HEAT TRANSFER IN HORIZONTAL MICRO-SCALE CHANNELS

THE EFFECT OF THE CROSS-SECTIONAL GEOMETRY ON SATURATED FLOW BOILING HEAT TRANSFER IN HORIZONTAL MICRO-SCALE CHANNELS March 23-27, 2015, Campinas, SP, Brazil Copyright 2015 by ABCM Paper ID: JEM-2015-0076 THE EFFECT OF THE CROSS-SECTIONAL GEOMETRY ON SATURATED FLOW BOILING HEAT TRANSFER IN HORIZONTAL MICRO-SCALE CHANNELS

More information

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS Starting Reference 1. P. A. Ramachandran and R. V. Chaudhari, Three-Phase Catalytic Reactors, Gordon and Breach Publishers, New York, (1983). 2. Nigam, K.D.P.

More information

Validation analyses of advanced turbulence model approaches for stratified two-phase flows

Validation analyses of advanced turbulence model approaches for stratified two-phase flows Computational Methods in Multiphase Flow VIII 361 Validation analyses of advanced turbulence model approaches for stratified two-phase flows M. Benz & T. Schulenberg Institute for Nuclear and Energy Technologies,

More information

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel To cite this article:

More information

Micro-Scale CFD Modeling of Packed-Beds

Micro-Scale CFD Modeling of Packed-Beds Micro-Scale CFD Modeling of Packed-Beds Daniel P. Combest and Dr. P.A. Ramachandran and Dr. M.P. Dudukovic Chemical Reaction Engineering Laboratory (CREL) Department of Energy, Environmental, and Chemical

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

Uncertainty Analysis on Prediction of Heat Transfer Coefficient and Pressure Drop in Heat Exchangers Due to Refrigerant Property Prediction Error

Uncertainty Analysis on Prediction of Heat Transfer Coefficient and Pressure Drop in Heat Exchangers Due to Refrigerant Property Prediction Error Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2014 Uncertainty Analysis on Prediction of Heat Transfer Coefficient and Pressure

More information

Urea Injection and Preparation in Diesel Applications Multiphase Multicomponent Modeling using Star-CD

Urea Injection and Preparation in Diesel Applications Multiphase Multicomponent Modeling using Star-CD , London Urea Injection and Preparation in Diesel Applications Multiphase Multicomponent Modeling using Star-CD Institute for Powertrains & Automotive Technology Dipl.-Phys. Simon Fischer Dr. Thomas Lauer

More information

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics 6-8 th March 2017 Dr Sham Rane, Professor Ahmed Kovačević, Dr Di Yan, Professor Qian Tang, Centre for Compressor Technology,

More information

Two Phase Flow Distribution and Heat Transfer in Plate Heat Exchanger

Two Phase Flow Distribution and Heat Transfer in Plate Heat Exchanger Two Phase Flow Distribution and Heat Transfer in Plate Heat Exchanger March 2017 Department of Science and Advanced Technology Graduate School of Science and Engineering Saga University Mohammad Sultan

More information

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets ILASS Americas, 26 th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 204 The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization

More information

Modelling of Break-up and Coalescence in Bubbly Two-Phase Flows

Modelling of Break-up and Coalescence in Bubbly Two-Phase Flows Modelling of Break-up and Coalescence in Bubbly Two-Phase Flows Simon Lo and Dongsheng Zhang CD-adapco, Trident Park, Didcot OX 7HJ, UK e-mail: simon.lo@uk.cd-adapco.com Abstract Numerical simulations

More information

Investigation of Three-Dimensional Upward and Downward Directed Gas-Liquid Two-Phase Bubbly Flows in a 180 o -Bent Tube

Investigation of Three-Dimensional Upward and Downward Directed Gas-Liquid Two-Phase Bubbly Flows in a 180 o -Bent Tube Investigation of Three-Dimensional Upward and Downward Directed Gas-Liquid Two-Phase Bubbly Flows in a 180 o -Bent Tube Th. Frank, R. Lechner, F. Menter CFX Development, ANSYS Germany GmbH, Staudenfeldweg

More information

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Gitesh Patel, Vesa Tanskanen, Juhani Hyvärinen LUT School of Energy Systems/Nuclear Engineering, Lappeenranta

More information

Modeling of nucleate boiling in engine cylinder head cooling ducts

Modeling of nucleate boiling in engine cylinder head cooling ducts HEAT 28, Fifth International Conference on Transport Phenomena In Multiphase Systems June 3 - July 3, 28, Bialystok, Poland Modeling of nucleate boiling in engine cylinder head cooling ducts J.P. Kroes

More information

Progress on the Development of a Comprehensive Heat Transfer Model for Industrial Liquid Quenching Processes

Progress on the Development of a Comprehensive Heat Transfer Model for Industrial Liquid Quenching Processes Progress on the Development of a Comprehensive Heat Transfer Model for Industrial Liquid Quenching Processes Jeffrey Franklin, Ph.D., P.E. Andrew Banka, P.E. William Newsome, Ph.D. Presentation Overview

More information

INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW

INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW Daniel Merino Gabriel S. Bassani, Luiz Eduardo A. P. Duarte Deibi E. Garcia Angela O. Nieckele Two-phase Flow

More information

CFD analysis of the transient flow in a low-oil concentration hydrocyclone

CFD analysis of the transient flow in a low-oil concentration hydrocyclone CFD analysis of the transient flow in a low-oil concentration hydrocyclone Paladino, E. E. (1), Nunes, G. C. () and Schwenk, L. (1) (1) ESSS Engineering Simulation and Scientific Software CELTA - Rod SC-41,

More information

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

heat transfer process where a liquid undergoes a phase change into a vapor (gas) Two-Phase: Overview Two-Phase two-phase heat transfer describes phenomena where a change of phase (liquid/gas) occurs during and/or due to the heat transfer process two-phase heat transfer generally considers

More information

COMPUTATIONAL FLUID DYNAMICS FOR NUCLEAR APPLICATIONS: FROM CFD TO MULTI-SCALE CMFD

COMPUTATIONAL FLUID DYNAMICS FOR NUCLEAR APPLICATIONS: FROM CFD TO MULTI-SCALE CMFD COMPUTATIONAL FLUID DYNAMICS FOR NUCLEAR APPLICATIONS: FROM CFD TO MULTI-SCALE CMFD G. Yadigaroglu Swiss Federal Institute of Technology (ETH), Nuclear Engineering Laboratory, Zurich (CH) SUMMARY Although

More information

MULTIPHASE FLOW MODELLING

MULTIPHASE FLOW MODELLING MULTIPHASE FLOW MODELLING 1 Introduction 2 Outline Multiphase Flow Modeling Discrete phase model Eulerian model Mixture model Volume-of-fluid model Reacting Flow Modeling Eddy dissipation model Non-premixed,

More information

Evaporation Heat Transfer Coefficients Of R-446A And R-1234ze(E)

Evaporation Heat Transfer Coefficients Of R-446A And R-1234ze(E) Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 144 DOI: 10.11159/htff16.144 Evaporation Heat Transfer

More information

Overview of Turbulent Reacting Flows

Overview of Turbulent Reacting Flows Overview of Turbulent Reacting Flows Outline Various Applications Overview of available reacting flow models LES Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Ever-Expanding

More information

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes 1777 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Effect Analysis of Volume Fraction of Nanofluid Al2O3-Water on Natural Convection Heat Transfer Coefficient in Small Modular Reactor

Effect Analysis of Volume Fraction of Nanofluid Al2O3-Water on Natural Convection Heat Transfer Coefficient in Small Modular Reactor World Journal of Nuclear Science and Technology, 2016, 6, 79-88 Published Online January 2016 in SciRes. http://www.scirp.org/journal/wjnst http://dx.doi.org/10.4236/wjnst.2016.61008 Effect Analysis of

More information

Experimental and Numerical Investigation of Two- Phase Flow through Enlarging Singularity

Experimental and Numerical Investigation of Two- Phase Flow through Enlarging Singularity Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 212 Experimental and Numerical Investigation of Two- Phase Flow through Enlarging

More information

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE Proceedings of the International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington, DC, USA IHTC14-22751 THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

More information