Frequency domain analysis of linear circuits using synchronous detection

Size: px
Start display at page:

Download "Frequency domain analysis of linear circuits using synchronous detection"

Transcription

1 Frequency doma analysis of lear circuits usg synchronous detection Introduction In this experiment, we will study the behavior of simple electronic circuits whose response varies as a function of frequency. Our ma objective this lab is to troduce you to synchronous detection a technique for characterizg systems that exhibit complex response. By complex response, we mean that the response of a system to a mono-frequency drive contas two components: a component that is -phase with the drive (-phase component) and a component that is 9 out-of-phase with the drive (quadrature component.) One way to obta the frequency response is to drive the system at a sgle frequency and measure the response of the system at this frequency. The frequency can then be swept to obta the full frequency response of the system. Lock- detectors measure the component of the signal that has a defite phase relationship to a reference signal ( most cases, the reference would be the signal used to drive the system.) Lock- amplifiers have two outputs an -phase or X-output, that measures the put signal that is -phase with the reference, and a quadrature or Y-output, that measures the signal that is 9 out of phase with the reference. In this lab, we will use the Stanford esearch Systems S83 lock- amplifier. A great troduction to lock- detection is given the S83 manual, which is cluded at the end of this manual. As an example of a system that exhibits a frequency dependent response, consider a damped driven harmonic oscillator described by the followg differential equation d x dx γ ω x Ft () dt + + (1.1) dt j t where, Ft () ae ω is the drive at frequency ω. The steady-state solution to the above equation is given by For a real, we have ( ω ω ) + jωγ xt () Ft () (. (1.) ω ω ) + ( γω ) 1

2 a( ω ω ) aγω e[ x( t)] cos t+ sωt ( ω ω ) ( γω) ( ω ω ) ( γω) ω + + (1.3) jωt ecall, e cosωt jsωt and j 1. We see that that the response of the system to a pure cose drive ( e[ Ft ( )] acosωt) contas both a cose term (-phase with drive) and a se term (9 out-of-phase.) In general, we can express the system response to a mono-frequency drive at frequency ω terms of a complex response function H( ω) H ( ω) + jh ( ω). I x() t H( ω) F() t (1.4) For the case of the damped driven harmonic oscillator, xt () ( ω ω ) + jωγ H ( ω) Ft () ( ω ω ) + ( γω) ( ω ω ) H ( ω) ( ω ω ) + ( γω) γω H I ( ω) ( ω ω ) + ( γω). (1.5) In practice, H ( ω) is measured by drivg the system at a sgle frequency and comparg the phase of the response relative to the drive. The coefficients of the se and cose terms (1.3) can be obtaed by performg the followg calculation. πω H ( ω) e[ x( t)] cos t dt a ω πω HI ( ω) e[ x( t)]sωt dt a (1.6) As we shall see, a lock- amplifier performs the operations specified by (1.6) to obta the coefficients of the -phase and quadrature response as a function of frequency. In so dog, it allows us to fd H ( ω ) and H ( ) I ω. A functional representation of a lock- detector is shown Fig. 1. All lock- amplifiers are made up of three basic blocks: (1) a phase-locked-loop (PLL) circuit, () mixers that multiply the put signal and the phase and quadrature clock signals, and (3) low-pass filters at the output of the mixers. The PLL circuit produces a susoidal clock output that has the same frequency and phase as the reference signal. The reference signal is sent to phase-shifter that produc-

3 Figure 1: Schematic of lock- detection. es a clock signal that is 9 out of phase with respect to the reference. The two mixers multiply each clock signal with the put signal. The output of the mixers conta a constant term and a term at frequency ω. H ω ωt+ H ω ωt ωt 1 1 ( 1+ cos ωt) H( ω) + s ωthi( ω) In-phase mixer output: ( )cos I( )cos s Quadrature mixer output: H( ω)cosωts ωt+ HI( ω)s ωt 1 1 s ωth( ω) + ( 1 cos ωt) HI( ω) A low-pass filter is used to remove the high frequency signal at ω and only pass the constant term. In this way, the filters perform the same function as tegratg over one period. (1.7) 3

4 Frequency Doma Measurement of Complex Impedance (A) C (B) (C) limit V V out C V V V out L V out C Figure 1: Different LC circuits for frequency analysis: (A) high-pass filter; (B) low-pass filter; (C) series LC resonant circuit. In your analysis, it will be helpful to recall the followg expressions for the complex impedance for a capacitor and ductor: ZL jω L. Zc j ω C and In this lab, you will analyze the frequency response of the circuits shown Fig. 1 usg lock- detection. Let s beg by derivg the response function for each circuit. Vout H ( ω ) (1.8) V As an example, we ll outle the derivation for the high-pass filter shown Fig. 1(A). In order to fd the voltage across, we first apply Kirchoff s laws to fd the current passg through. V it () (1.9) Z Here, Z is the impedance of the series combation of Zc j ω C and. j Z (1.1) ω C and Vout i() t V (1.11) j 4

5 thus, Vout H( ω ) ( ω C+ j) V ( ω C) + 1 H ( ) ( ω ) ω C + ( ) 1 H I ( ω ) ω C + ( ) 1 (1.1) Or, polar form H ( ω ) ( ω C) H I ( ω) 1 1 Θω ( ) tan tan H( ω) (1.13) We can see from (1.13) why this circuit is called a high-pass filter. If ω is smaller than a cutoff frequency given by ω 1 C, then V V < 1. Far above this frequency, V out c V 1. Thus, the circuit filters out low frequencies and allows high frequencies to pass. In this exercise, we will use a lock- amplifier to measure both the real and imagary parts of H ( ω ). To see how this is accomplished, it is convenient to represent the put voltage and output voltages as the real part of complex quantities. out Workg through some algebra, we fd jωt V () t e[ V e ] jωt V () t e[ V e H( ω)] out V () t V cosωt Vout ( t) V [( )cos ω t+ s ωt] ( ω C) + 1 (1.14) (1.15) While the put signal is only proportional to cos ω t, the output contas both cos ω t and s ω t terms. The lock- amplifier has two puts: 1) a reference signal V () t that has the same frequency and phase of the drive signal V () t and ) the signal to be analyzed Vout () t. The -phase (or X-output) of the lock- amplifier will thus be proportional to the MS-amplitude of the cos ω t part and the quadrature (or Y output) will be proportional to the MS-amplitude of the s ωt part. ref 5

6 V V X Y V V ( ) ω C + ( ) 1 ω C + ( ) 1 (1.16) The factor of 1 is there because the output of the lock- amplifier gives root-meansquare (MS) not peak amplitudes. H ( ω) can be found directly from (1.16). H ( ω ) ( VX + jvy) ( ω C+ j) (1.17) V ( ω C) + 1 The response function for parts (B) and (C) are found usg the procedure outled above. (A) High-pass filter H( ω ) ( ω C+ j) ( ω C) + 1 (B) Low-pass filter H ( ω) 1 j ω + ( C) 1 (C) LC resonant circuit 1 + jωl H ( ω) + limit 1 ω LC j Table 1: esponse functions for the circuits Fig. 1. Measurement Procedure The S83 comes with a se-wave function generator output which you will use to drive the circuit. Note that the S83 function generator output is V-MS, so you do not need to clude the factor of is (1.16) or (1.17). When the lock- reference is set to Internal, the reference is locked to the se wave output of the lock-. V out should be connected to the A-put of the S83. The se wave generator of the S83 has 5 W output impedance, thus the magnitude of the impedance of your circuit should be greater than 5 W over the frequency range of the measurement order to ensure that the voltage across the circuit is close to the output voltage of the function generator. Part I: For each circuit parts (A) and (B), pick an C combation that gives a cutoff frequency f 1πC between 1-5 khz. Keep the value of between.5-1 kω to en- c sure the circuit impedance is much greater than the output impedance of the S83 function generator. Place the circuit components on the breadboard, then connect the 6

7 V to the se wave output of the S83 and V out to the A-put. For part (C), use a limitg resistor limit.1mω, L -5 mh (air filled ductor), C 1. μf, and 5 Ω. Drive the circuit with 1. V-rms from the function generator. The sensitivity of the lock- should be set to 1 V/V and the time constant to 3 ms - 1 db. These values are meant to be guideles. You are encouraged to experiment with the lock- settgs 1. Quadrature channel: Y-output X (V-rms).1.1 1E-3 In-phase channel: X-output (A) Equation y Vrms/(1+(*pi*x*t)^) Y (V-rms) (B) Equation y Vrms**pi*x*t/(1+(*pi*x*t)^) Adj. -Square E-4 Adj. -Square Value Standard Error Vx Vrms E-4 Vx t E E Value Standard Error Vy Vrms E-4 Vy t 5.945E E-8 1E Frequency (Hz) Frequency (Hz) 1 Magnitude: Sqrt(V y +V x ) Phase angle: 18*tan -1 (V y /V x )/π (Volts).1.1 1E-3 (C) Equation y Vrms/sqrt(1+(*pi*x*t)^) Adj. -Square Value Standard Error Vr Vrms E-4 Vr t 5.914E E Frequency (Hz) Phase angle (deg) (D) Equation y Vrms*18*atan(-*pi*x*t)/pi Adj. -Square Value Standard Error Vtheta Vrms Vtheta t 5.485E E Frequency (Hz) Figure : Lock- measurements taken for a low-pass filter with 995 Ω and C 5.37 nf. (A) X-output proportional to H ( ω ), (B) Y-output proportional to H I ( ω ), (C) and (D) are derived from the measured data. fact, the ma pot of this exercise is to familiarize you to lock- detection. The sensitivity sets the ga of the amplifier after the low-pass filters. The time constant sets the cutoff frequency of the low-pass filters. You will notice that the larger the time constant, the more stable the readgs appear. However, larger time constants also mean that the output responds more slowly to any changes. When sweepg frequency, it is important 7

8 to have the time constant of the lock- to be faster than the sweep rate so that the output can track the changg response. Set the two outputs to X and Y. Both the X and Y output values can be directly read off from the front panel display. You will measure the real and imagary parts of the response function by manually sweepg the frequency and recordg the X and Y outputs from the lock- amplifier. Sample data taken for the low-pass filter (Fig. 1(B)) is shown Fig.. Input the data to Orig and make log-log plot for each channel. Use the nonlear fit option to fit the data to the expected form. Calculate the magnitude and phase of the response function from your data and fit these also usg the expected form. All fit functions can be obtaed directly from Table 1. Measure the, C and L usg the impedance analyzer and compare to the fitted data. Part II: The lock- amplifier can also be used to measure the response at a harmonic of the drive frequency. This feature is particularly useful when characterizg non-lear systems which create harmonic distortion. As an troduction to this 1..5 feature of the lock-, you will use. the lock- amplifier to analyze the harmonic content of a square wave. A periodic waveform can be Figure 3: Square waveform expressed as a sum of ses and coses whose frequencies are multiples of the fundamental frequency. The frequency content of the square waveform shown Fig. 3 can be analyzed by expandg it terms of a Fourier series. a πnt πnt Ft () + ancos + bns n 1 T n 1 T Here, T is the period of the waveform, and the Fourier coefficients are given by (1.18) 8

9 T π nt an F()cos t dt T T T π nt bn F()s t dt T T a T T F() t dt (1.19) 1 kω V out Use the Wavetek function generator to synthesize the square waveform with a 5% duty cycle. Set the function to bipolar square wave with a peak amplitude of.1 V and a frequency of 1 Hz. Connect the function output across a 1 Figure 4: Setup for square waveform measurement. kω resistor and connect output voltage to the A-put of the S83 lock- amplifier. For this measurement, the reference signal must be supplied by the Wavetek. Connect the Snyc output of the Wavetek to the reference put of the lock- and set the reference source to external. Select the harmonic number by pressg the Harm button. You can select harmonics up to a maximum frequency of 1 khz. Measure the X and Y output for harmonics up to N. Calculate the Fourier coefficients for the square wave analytically usg Eq. (1.19) and compare to your measurement. 9

10 eport 1. From your data part I, calculate the real and imagary parts as well as the magnitude and phase of the response function for the three circuits. Make a log-log plot for each component and fit it usg the derived functions given Table 1.. Compare the parameters obtaed from your fits to the expected value. eport all errors the fitted values and compare this error to your uncertaty the measured values of, L and C. 3. In part II, plot of amplitudes obtaed from the lock- amplifier vs. 1/n (n is the harmonic number) for a square waveform for the first harmonics. Calculate the Fourier coefficients for the square waveform and compare to your data. 1

R-L-C Circuits and Resonant Circuits

R-L-C Circuits and Resonant Circuits P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0

More information

Lecture 4: R-L-C Circuits and Resonant Circuits

Lecture 4: R-L-C Circuits and Resonant Circuits Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L

More information

2.6 Large Signal Operation

2.6 Large Signal Operation 3/4/2011 section 2_6 Large signal operation 1/2 2.6 Large Signal Operation Readg Assignment: 94-98 Recall that real amplifiers are only approximately lear! If the put signal becomes too large, and/or the

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Phasors: Impedance and Circuit Anlysis. Phasors

Phasors: Impedance and Circuit Anlysis. Phasors Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor

More information

Lecture 9 Time Domain vs. Frequency Domain

Lecture 9 Time Domain vs. Frequency Domain . Topics covered Lecture 9 Time Domain vs. Frequency Domain (a) AC power in the time domain (b) AC power in the frequency domain (c) Reactive power (d) Maximum power transfer in AC circuits (e) Frequency

More information

Electronics Lecture 8 AC circuit analysis using phasors

Electronics Lecture 8 AC circuit analysis using phasors Electronics Lecture 8 A circuit analysis usg phasors 8. Introduction The preious lecture discussed the transient response of an circuit to a step oltage by switchg a battery. This lecture will estigate

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Physics 401 Classical Physics Laboratory. Experiment 5. Transients and Oscillations in RLC Circuits. I. Introduction II. Theory...

Physics 401 Classical Physics Laboratory. Experiment 5. Transients and Oscillations in RLC Circuits. I. Introduction II. Theory... University of Illinois at Urbana-Champaign Physics 401 Classical Physics Laboratory Department of Physics Experiment 5 Transients and Oscillations in RLC Circuits I. Introduction... II. Theory... 3 b 0

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Review of 1 st Order Circuit Analysis

Review of 1 st Order Circuit Analysis ECEN 60 Circuits/Electronics Spring 007-7-07 P. Mathys Review of st Order Circuit Analysis First Order Differential Equation Consider the following circuit with input voltage v S (t) and output voltage

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

More information

Lecture notes 1: ECEN 489

Lecture notes 1: ECEN 489 Lecture notes : ECEN 489 Power Management Circuits and Systems Department of Electrical & Computer Engeerg Texas A&M University Jose Silva-Martez January 207 Copyright Texas A&M University. All rights

More information

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Introduction In last week s laboratory you examined the LRC circuit when constant voltage was applied to it. During this laboratory

More information

Feedback design for the Buck Converter

Feedback design for the Buck Converter Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Laboratory I: Impedance

Laboratory I: Impedance Physics 33, Fall 2008 ab I - Exercises aboratory I: Impedance eading: ab handout Simpson hapter if necessary) & hapter 2 particularly 2.9-2.3) ab Exercises. Part I What is the input impedance of the oscilloscope

More information

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point -

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.

More information

Physics 4 Spring 1989 Lab 5 - AC Circuits

Physics 4 Spring 1989 Lab 5 - AC Circuits Physics 4 Spring 1989 Lab 5 - AC Circuits Theory Consider the series inductor-resistor-capacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage

More information

Response of Second-Order Systems

Response of Second-Order Systems Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which

More information

Chapter 3: Capacitors, Inductors, and Complex Impedance

Chapter 3: Capacitors, Inductors, and Complex Impedance hapter 3: apacitors, Inductors, and omplex Impedance In this chapter we introduce the concept of complex resistance, or impedance, by studying two reactive circuit elements, the capacitor and the inductor.

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Physics 1c practical, 2015 Homework 5 Solutions

Physics 1c practical, 2015 Homework 5 Solutions Physics c practical, 05 Homework 5 Solutions Serway 33.4 0.0 mh, = 0 7 F, = 0Ω, V max = 00V a The resonant frequency for a series L circuit is f = π L = 3.56 khz At resonance I max = V max = 5 A c Q =

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven.

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven. Lecture 10 Monday - September 19, 005 Written or last updated: September 19, 005 P441 Analytical Mechanics - I RLC Circuits c Alex R. Dzierba Introduction In this note we discuss electrical oscillating

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

AC analysis - many examples

AC analysis - many examples AC analysis - many examples The basic method for AC analysis:. epresent the AC sources as complex numbers: ( ). Convert resistors, capacitors, and inductors into their respective impedances: resistor Z

More information

MODULE I. Transient Response:

MODULE I. Transient Response: Transient Response: MODULE I The Transient Response (also known as the Natural Response) is the way the circuit responds to energies stored in storage elements, such as capacitors and inductors. If a capacitor

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

CIRCUIT ANALYSIS II. (AC Circuits)

CIRCUIT ANALYSIS II. (AC Circuits) Will Moore MT & MT CIRCUIT ANALYSIS II (AC Circuits) Syllabus Complex impedance, power factor, frequency response of AC networks including Bode diagrams, second-order and resonant circuits, damping and

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

Prof. Shayla Sawyer CP08 solution

Prof. Shayla Sawyer CP08 solution What does the time constant represent in an exponential function? How do you define a sinusoid? What is impedance? How is a capacitor affected by an input signal that changes over time? How is an inductor

More information

analyse and design a range of sine-wave oscillators understand the design of multivibrators.

analyse and design a range of sine-wave oscillators understand the design of multivibrators. INTODUTION In this lesson, we investigate some forms of wave-form generation using op amps. Of course, we could use basic transistor circuits, but it makes sense to simplify the analysis by considering

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Sinusoids and Phasors

Sinusoids and Phasors CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are time-varying. In this chapter, we are particularly interested in sinusoidally time-varying

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

K.K. Gan L3: R-L-C AC Circuits. amplitude. Volts. period. -Vo

K.K. Gan L3: R-L-C AC Circuits. amplitude. Volts. period. -Vo Lecture 3: R-L-C AC Circuits AC (Alternative Current): Most of the time, we are interested in the voltage at a point in the circuit will concentrate on voltages here rather than currents. We encounter

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

Steady State Frequency Response Using Bode Plots

Steady State Frequency Response Using Bode Plots School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 3 Steady State Frequency Response Using Bode Plots 1 Introduction

More information

Midterm 1 Announcements

Midterm 1 Announcements Midterm Announcements eiew session: 5-8pm TONIGHT 77 Cory Midterm : :30-pm on Tuesday, July Dwelle 45. Material coered HW-3 Attend only your second lab slot this wee EE40 Summer 005: Lecture 9 Instructor:

More information

Sinusoidal steady-state analysis

Sinusoidal steady-state analysis Sinusoidal steady-state analysis From our previous efforts with AC circuits, some patterns in the analysis started to appear. 1. In each case, the steady-state voltages or currents created in response

More information

1.3 Sinusoidal Steady State

1.3 Sinusoidal Steady State 1.3 Sinusoidal Steady State Electromagnetics applications can be divided into two broad classes: Time-domain: Excitation is not sinusoidal (pulsed, broadband, etc.) Ultrawideband communications Pulsed

More information

DC and AC Impedance of Reactive Elements

DC and AC Impedance of Reactive Elements 3/6/20 D and A Impedance of Reactive Elements /6 D and A Impedance of Reactive Elements Now, recall from EES 2 the complex impedances of our basic circuit elements: ZR = R Z = jω ZL = jωl For a D signal

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

2.1 The electric field outside a charged sphere is the same as for a point source, E(r) =

2.1 The electric field outside a charged sphere is the same as for a point source, E(r) = Chapter Exercises. The electric field outside a charged sphere is the same as for a point source, E(r) Q 4πɛ 0 r, where Q is the charge on the inner surface of radius a. The potential drop is the integral

More information

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU Project Components MC34063 or equivalent Bread Board PSpice Software OrCAD designer Lite version http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice More Details on the Introduction CONVERTER

More information

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015 First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

Phasor Diagram. Figure 1: Phasor Diagram. A φ. Leading Direction. θ B. Lagging Direction. Imag. Axis Complex Plane. Real Axis

Phasor Diagram. Figure 1: Phasor Diagram. A φ. Leading Direction. θ B. Lagging Direction. Imag. Axis Complex Plane. Real Axis 1 16.202: PHASORS Consider sinusoidal source i(t) = Acos(ωt + φ) Using Eulers Notation: Acos(ωt + φ) = Re[Ae j(ωt+φ) ] Phasor Representation of i(t): = Ae jφ = A φ f v(t) = Bsin(ωt + ψ) First convert the

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Frequency Selective Circuits (Filters) Low Pass Filter. Lecture #36

EE 205 Dr. A. Zidouri. Electric Circuits II. Frequency Selective Circuits (Filters) Low Pass Filter. Lecture #36 EE 05 Dr. A. Zidouri Electric ircuits II Frequency Selective ircuits (Filters) ow Pass Filter ecture #36 - - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o Introduction

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

Physics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes

Physics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes Physics 405/505 Digital Electronics Techniques University of Arizona Spring 2006 Prof. Erich W. Varnes Administrative Matters Contacting me I will hold office hours on Tuesday from 1-3 pm Room 420K in

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Impedance and Loudspeaker Parameter Measurement

Impedance and Loudspeaker Parameter Measurement ECEN 2260 Circuits/Electronics 2 Spring 2007 2-26-07 P. Mathys Impedance and Loudspeaker Parameter Measurement 1 Impedance Measurement Many elements from which electrical circuits are built are two-terminal

More information

AC analysis. EE 201 AC analysis 1

AC analysis. EE 201 AC analysis 1 AC analysis Now we turn to circuits with sinusoidal sources. Earlier, we had a brief look at sinusoids, but now we will add in capacitors and inductors, making the story much more interesting. What are

More information

WPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations

WPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations WPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations Qi Wen March 11, 2017 Index: 1. Background Material, p. 2 2. Pre-lab Exercises, p. 4 3. Report Checklist, p. 6 4. Appendix,

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response

Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response Capacitor Transient and Steady State Response Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin

More information

Date: _15 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: _15 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS Conference: Date: _15 April 2005 EXAM #2: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

09/29/2009 Reading: Hambley Chapter 5 and Appendix A

09/29/2009 Reading: Hambley Chapter 5 and Appendix A EE40 Lec 10 Complex Numbers and Phasors Prof. Nathan Cheung 09/29/2009 Reading: Hambley Chapter 5 and Appendix A Slide 1 OUTLINE Phasors as notation for Sinusoids Arithmetic with Complex Numbers Complex

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

8. Electric Currents

8. Electric Currents 8. Electric Currents S. G. Rajeev January 30, 2011 An electric current is produced by the movement of electric charges. In most cases these are electrons. A conductor is a material through which an electric

More information

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ 27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: small-signal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 Name: Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the

More information

PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS

PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS The first purpose of this laboratory is to observe voltages as a function of time in an RC circuit and compare it to its expected time behavior. In the second

More information

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1 Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

More information

Exercise 1: Capacitors

Exercise 1: Capacitors Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured

More information

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). nd-order filters The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). T (s) A p s a s a 0 s b s b 0 As before, the poles of the transfer

More information

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed You may use the equation sheet provided but

More information

Experiment Guide for RC Circuits

Experiment Guide for RC Circuits Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

More information

Laboratory handout 5 Mode shapes and resonance

Laboratory handout 5 Mode shapes and resonance laboratory handouts, me 34 82 Laboratory handout 5 Mode shapes and resonance In this handout, material and assignments marked as optional can be skipped when preparing for the lab, but may provide a useful

More information

Tracking of Spread Spectrum Signals

Tracking of Spread Spectrum Signals Chapter 7 Tracking of Spread Spectrum Signals 7. Introduction As discussed in the last chapter, there are two parts to the synchronization process. The first stage is often termed acquisition and typically

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits I Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits Making a resistor using a capacitor and switches; therefore resistance is set by a digital clock

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 ) Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3

More information

H(s) = 2(s+10)(s+100) (s+1)(s+1000)

H(s) = 2(s+10)(s+100) (s+1)(s+1000) Problem 1 Consider the following transfer function H(s) = 2(s10)(s100) (s1)(s1000) (a) Draw the asymptotic magnitude Bode plot for H(s). Solution: The transfer function is not in standard form to sketch

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Institute

More information

Chapter 6 Frequency Response, Bode Plots and Resonance

Chapter 6 Frequency Response, Bode Plots and Resonance Chapter 6 Frequency Response, Bode Plots and Resonance Signal Processg is concerned with manipulatg Signals to extract Inormation and to use that ormation to generate other useul Signals Goal. Fundamental

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o ----------- ----------- w L =Q - w o πf o w h =Qw o w L ~ RC w h w L f(l) w h f(c) B. Construction from T(s) Asymptotes

More information