Newton s Laws Review

Size: px
Start display at page:

Download "Newton s Laws Review"

Transcription

1 Newton s Laws Review THE SCIENCES OF MOTION Prior to this unit, we had been studying, which is the science of describing motion with words, numbers, pictures, and symbols, and no attention was given to the of the motion. In this unit, we turned our attention to, which is the study of the causes of motion, and unbalanced forces in particular. Both kinematics, dynamics, and statics (the study of objects being acted upon by balanced forces) all combine to form the science of, the interaction between matter and forces acting upon it. THE HISTORY OF NEWTON S LAWS OF MOTION ( BC) developed the earliest theory of motion. He was one of the first s because he actually made observations upon which he drew conclusions (i or h ). Prior to Aristotle, science was nothing more than p aimed at the outside world. Aristotle did not run e as we think of them however. Aristotelian Physics was developed on the premise that all things were made of f e, but these differed from our present day ones. Aristotle said all earthly objects were made of a combination of,,, and. A fifth element, e, existed too; it was the building block of all objects in the heavens. As such it was perfect and incorruptible. The earthly elements had a natural order, which went from the bottom up,,, and. Aristotle thought that nature sought to maintain this natural order. Aristotle said when an object found itself outside of its naturally ordered place, it would desire to return to its natural home. This desire was so great that given the chance to go home, and object would move there on its own. This motion, which would seemingly happen all by itself, Aristotle called motion. The important thing about this motion was the happening all by itself part. Aristotle said that no agent (, as we would call it) was required to sustain this motion. Aristotle went on to say that motion that was not natural was v motion. This motion was imposed motion by an agent ( ), like a person or animal, which did not result in an object being back in its natural place after its completion. This motion would not happen on its own. In Aristotle s physics, a third type of motion was the motion of the heavenly bodies in perfect circles around the earth. This motion was named motion.

2 There were problems with Aristotelian physics that even occurred to Aristotle himself. First, p did not seem to obey the circular orbit idea. Next, two objects of different mass, but similar shape will fall at the, even though the heavier one should want to reach the earth more. Finally, an object thrown or fired, like a rock or an arrow, will continue to cover a great horizontal distance without the benefit of an applied force, and do not directly return to the ground when given the chance. These problems were largely ignored and not rectified. Despite its problems, Aristotle s physics was widely accepted through the 1600 s AD. It was so popular for a few reasons: it supported the earth-centered ( -centric) view of the universe that was so prevalent during the times; the idea that a is required to sustain horizontal motion seems to make sense in the real world and is consistent with everyday observation; and Aristotle was Aristotle-the leading authority on motion. In the early 1500 s, Nicolaus C began to notice that the mathematical model of the universe comes out a lot simpler if you assume the sun is the center of the universe, rather than the Earth. This view of the universe is called a h -centric model. This theory contains a moving earth, which hindered its acceptance since the prevailing thought is violent motion is caused by forces, and what could exert such a force? Copernicus work on motion was built upon my G, who faced much persecution, even ten years for his work in motion and the universe. Galileo developed many strategies that scientists use as second nature today. Galileo liked Aristotle s stance of making observations and hypotheses, but Galileo was the first to realize that must also be done to test the hypotheses. Galileo was also the first to take small details out of an experiment to see the main idea. Today, we call this an experiment. Galileo was also one of the first to use q methods, which involves associating numbers with measurements. These techniques make Galileo the father of the s m. Galileo ran a very important experiment. Galileo had a ramp with a downward incline followed by an upward incline with equal slope (like the picture on the left). He noticed that a ball would roll down the first incline and up the second incline to a height ALMOST the same as it was released. Galileo attributed this difference in height to. If friction could be eliminated, Galileo theorized that the ball would roll to the same height. This would be true even if the upward incline were of lesser slope (like the right picture); the ball would just have to cover more incline distance to reach the original height.

3 Finally, Galileo understood that if the second incline had no slope at all, the ball would never reach its original height. It would continue to roll. This understanding was monumental; for the first time in history, it was proposed that a force was not necessary to keep something moving that was moving in the first place. The object could continue to move on its own, if friction could somehow be eliminated. About the same time, Rene Descartes made an extreme idealization: what if friction and could be eliminated? In this friction-free, gravity-free environment, an object which was not moving would remain not moving unless a force caused it to change its state of motion. Also, in this environment, an object which was already moving would continue to move in a straight line at constant speed, unless a force caused it to change its state of motion. These ideas about the motion of objects became known as the Law of I. Descartes said that is a property of an object, proportional to the object s, that causes an object to changes in its state of motion.

4 In the 17 th century, wrote the world s first book, The P. In it, Newton outlined three laws of motion. They are: 1. Law of Bodies at tend to stay at. Bodies in tend to stay in. These rules hold unless an acts upon the body. Basically, this says f change v (cause a ). 2. Law of Acceleration is proportional to mass and proportional to. This can be ly stated as : Basically, this says the as the Law of Inertia. The Law of Acceleration is qu while the Law of Inertia is qu. 3. Law of For every, there is an and. This means, forces always come in. Some non-physics types think that since action and reaction are equal and opposite (like +5N and -5N), they will each other out. This is incorrect however; action and reaction will always be on, and consequently, could never cancel out. An confusing example of action and reaction comes from the gravitational force on an object, say a hot dog. If one asked, What is the reaction to gravity?, a wrong answer is likely. However, gravity is really the force of the on the. If this is the action, then the reaction

5 is obtained by simply switching the objects in the interaction: the force of the hot dog on the earth. If the hot dog weights 2 N, then the e F h = -2 N, while the hf e = +2 N. One might ask, If the forces are equal, why don t we get equal? This would imply the earth rising up toward the hot dog the same as the hot dog drops to the earth. The answer lies in the difference in. While it is true the forces are the same strength, the small mass of the hot dog allows this force to be very effective in accelerating the hot dog. Conversely, this same force is rendered PRACTICALLY useless by the gigantic mass of the earth. The word practically is important since even though the effect of the small force on the huge mass is slight, there still is an force, and consequently, there still is an, however miniscule. The key idea here is: there can be a big difference between a and its. A force = a or a. A force also = an between two objects. There are really two types of forces: 1. Contact Forces-forces in which the two interacting objects are. 2. -at-a- Forces-forces in which the two interacting objects are not actually touching. *see your Types of Forces Handout for more on these forces. Mass is a property of an object. We say this because it does not depend on the object s. Weight is different. Weight is the of on an object. Weight depends on, but is independent of. Weight can be easily calculated given the mass and the acceleration due to gravity at a given location. =

6 If mass is given in kilograms, and g is given in m/s/s, then the unit on weight is kg m/s/s. This cumbersome unit is nicknamed the. Volume is different still. Volume is the amount of an object takes up. An example of something with big mass but small volume is: An example of something with small mass but big volume is: The net force is the force an object. It is the r of all the forces on the object. A net force causes acceleration. Net force and acceleration will always be in the. To determine the net force, draw a - diagram (a picture of all the forces acting on an object). From this picture, pick a direction to be positive and the opposite direction to be negative. (In class, we usually pick the direction of the to be positive, but this is only for convenience; you could pick either direction and still get the correct answer.) The net force will be the positive forces added together and then the negative forces subtracted from this sum. For example, if right is considered positive in this picture, the net horizontal force (ΣF x ) =. For example, if up is considered positive in this picture, the net vertical force (ΣF y ) = F N F friction F app F t F g 1F 2 Newton s second law says that the net force (ΣF) = m a.

7 FRAME OF REFERENCE Remember frame of reference is the set of objects in your surroundings that are not moving relative to. These things are not getting or from you at the present time. frames of reference are ones that are not. An inertial frame of reference could be at rest, or it could be moving at speed. said that these frames of reference are. That is, the Newton s Laws pertain to both reference frames equally. Moreover, if you were in an inertial frame of reference on earth or in an identical inertial frame of reference aboard a spaceship moving with constant velocity, there is no way to discern which is which without looking outside the frame of reference. Moreover, there is no experiment which can be done to detect the constant motion. A non-inertial reference frame is different. A non-inertial reference frame is one that is being. Examples might be an accelerating car or an accelerating elevator. The Law of Inertia does not pertain to these reference frames. For instance, when aboard an accelerating car, you will feel the force the seat applies to your body. You can detect this unbalanced force. However, relative to things inside the car (things in your frame of reference) you remain at rest. Here, an object being acted upon by an unbalanced force should accelerate out of its frame of reference, but you do not move relative to the other items in the car. You are in a non-inertial reference frame. Another example is an accelerating elevator. Depending on whether an elevator is accelerating upward or downward, the rider s weight will seem to change. With upward acceleration and upward velocity, the rider will experience a sensation of being than normal. We say that the rider s weight is more than the rider s actual weight. Similarly, with downward acceleration and upward velocity, the rider will experience a sensation of being than normal. We say that the rider s apparent weight is less than the rider s actual weight. Drawing a free-body diagram of the rider in each case will show this. All objects free-fall the same because they have equal f to m ratios. Air resistance changes the a of a falling object. When air resistance =, we get, during which acceleration = is a force that motion. The three kinds of friction are:

8 of is the number that describes the roughness or smoothness of a surface. The rougher the surface, the the µ. Smooth surfaces have µ s closer to. There are two kinds of sliding friction: Kinetic friction will be or equal to static friction, because it s easier to something moving than to something moving. Sliding friction also depends on, as seen in the equation: f =

9 ANSWERS kinematics cause dynamics mechanics Aristotle scientists inferences hypotheses philosophy experiments four elements earth water wind (air) fire ether earth water wind (air) fire Natural force Violent force Celestial planets same rate geo force Copernicus helio Galileo house arrest experiments idealizing quantitative scientific method friction forever gravity Inertia inertia directly mass resist Isaac Newton physics Principia Inertia rest rest motion motion unbalanced force forces velocity accelerations Acceleration inversely directly net force elegantly F net = ma (or Σ F = ma) same thing quantitative qualitative Force Pairs action equal opposite reaction pairs cancel different objects earth hot dog accelerations masses unbalanced acceleration force (or thing) effect push pull interaction touching Action Distance fundamental environment force gravity location mass location W = mg Newton space lead statue of Elvis Presley balloon shaped like Gumby one feels resultant same direction free-body acceleration F app + F t - F friction F N - F g - 1 F 2 you closer further Inertial accelerating constant Einstein equivalent accelerating heavier apparent lighter force mass acceleration weight terminal velocity zero Friction Resists Sliding Rolling Fluid Coefficient Friction higher zero Static Kinetic (sliding) less than keep start normal force f = µ F N

10 Some additional relevant problems: A person is standing on an scale, resting on a crate on another scale in an elevator. The person has a mass of 75 kg, and the crate weighs N. What does each scale read when: (answers) The elevator is stopped? (735N; 2235N) The elevator is moving with a constant velocity of 3.0 m/s upward? (735N; 2235N) s c a l e The elevator is accelerating upward at 1.5 m/s/s? (850N; 2580N) The elevator is accelerating downward at 4.5 m/s/s? (400N; 1210N)

11 a = 2.0 m/s/s Object B (mass of 2.30 kg) is sitting on an inclined plane, oriented at an angle of 40.0º. A mass of.70 kg is attached via a string and pulley to Object B. Determine the coefficient of kinetic friction between Object B and the plane. (.094) B 40.0º

12 Object A is on a horizontal frictionless surface. Object A weighs 4.9-N. A string is attached to it, which runs over a pulley and is attached to a.20-kg mass as shown. What is the acceleration of Object A? (2.8 m/s/s cw) A

13 Object J (mass of 6.50 kg) is sitting on an inclined plane, oriented at an angle of 62.0º. The coefficient of kinetic friction is and the coefficient of static friction is between Object J and the plane. Will Object J slide down the incline? (yes) J 62.0º If so, what will its acceleration be? (6.58 m/s 2 down incline)

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Lesson 6 Newton s First Law of Motion Inertia

Lesson 6 Newton s First Law of Motion Inertia 0 Introduction In daily life, motion is everywhere, but we would believe that something was causing it to move. Aristotle on Motion a. In fourth century B.C., Aristotle divided motion into natural motion

More information

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion Natural Questions First natural question: Next question: What these things made of? Why and how things move? About 2000 years ago Greek scientists were confused about motion. Aristotle --- First to study

More information

Forces. A force is a push or a pull on an object

Forces. A force is a push or a pull on an object Forces Forces A force is a push or a pull on an object Arrows are used to represent forces. The direction of the arrow represent the direction the force that exist or being applied. Forces A net force

More information

Forces. Brought to you by:

Forces. Brought to you by: Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Aristotle s Ideas of Motion. Conceptual Physics 11 th Edition. Galileo s Concept of Inertia. Aristotle s Ideas of Motion. Galileo s Concept of Inertia

Aristotle s Ideas of Motion. Conceptual Physics 11 th Edition. Galileo s Concept of Inertia. Aristotle s Ideas of Motion. Galileo s Concept of Inertia Aristotle s Ideas of Motion Conceptual Physics 11 th Edition Chapter 2: NEWTON S FIRST LAW OF MOTION INERTIA Natural motion (continued) Straight up or straight down for all things on Earth. Beyond Earth,

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton Properties of Motion It took about 2500 years to different generations of philosophers, mathematicians and astronomers to understand Aristotle's theory of Natural Motion and Violent Motion: Falling bodies

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Forces and Newton s Laws of Motion. UCVTS AIT Physics

Forces and Newton s Laws of Motion. UCVTS AIT Physics Newton s First Law of Motion - Inertia Aristotle (384-322 BC) on Motion (4 th century BC) Natural Motion It was thought to be either straight up or straight down a rock would fall, smoke would rise. Circular

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives 19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

3 Newton s First Law of Motion Inertia. Forces cause changes in motion.

3 Newton s First Law of Motion Inertia. Forces cause changes in motion. Forces cause changes in motion. A ball at rest in the middle of a flat field is in equilibrium. No net force acts on it. If you saw it begin to move across the ground, you d look for forces that don t

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Book page 44-47 NETON S LAS OF MOTION INERTIA Moving objects have inertia a property of all objects to resist a change in motion Mass: a measure of a body s inertia Two types of mass: - inertial mass m

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will.

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will. Ch. 4 Newton s Second Law of Motion p.65 Review Questions 3. How great is the force of friction compared with your push on a crate that doesn t move on a level floor? Ans. They are equal in magnitude and

More information

Chapter 2: Newton's First Law of Motion Inertia

Chapter 2: Newton's First Law of Motion Inertia Lecture Outline Chapter 2: Newton's First Law of Motion Inertia This lecture will help you understand: Aristotle's Ideas of Motion Galileo's Concept of Inertia Newton's First Law of Motion Net Force and

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

3 Newton s First Law of Motion Inertia. Forces cause changes in motion.

3 Newton s First Law of Motion Inertia. Forces cause changes in motion. Forces cause changes in motion. A ball at rest in the middle of a flat field is in equilibrium. No net force acts on it. If you saw it begin to move across the ground, you d look for forces that don t

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Why do things move? Aristotle s view (developed over 2000 yrs ago): A force always has to act on an object to cause it to move. The velocity of the object is proportional

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies I. Definition of FORCE UNIT XX: DYNAMICS AND NEWTON S LAWS DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies FORCE is a quantitative interaction between two (or

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

Free-Body Diagrams: Introduction

Free-Body Diagrams: Introduction Free-Body Diagrams: Introduction Learning Goal: To learn to draw free-body diagrams for various real-life situations. Imagine that you are given a description of a real-life situation and are asked to

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

NEWTON S LAWS OF MOTION. Review

NEWTON S LAWS OF MOTION. Review NEWTON S LAWS OF MOTION Review BACKGROUND Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity also discovered the three laws of motion. He

More information

12.1 Forces and Motion Notes

12.1 Forces and Motion Notes 12.1 Forces and Motion Notes What Is a Force? A is a push or a pull that acts on an object. A force can cause a object to, or it can a object by changing the object s speed or direction. Force can be measured

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Chapter 4 Homework Packet

Chapter 4 Homework Packet Chapter 4 Homework Packet Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law B) the second law C) the third law D) the law of gravitation Inertia

More information

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Chapter 4 Physics Notes Changes in Motion Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Forces cause changes in velocity Causes a stationary

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction. Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Isaac Newton. What is the acceleration of the car? If I have seen further it is by standing on the shoulders of giants Isaac Newton to Robert Hooke Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

Newton s Law of Motion

Newton s Law of Motion Newton s Law of Motion Physics 211 Syracuse University, Physics 211 Spring 2019 Walter Freeman February 7, 2019 W. Freeman Newton s Law of Motion February 7, 2019 1 / 21 Announcements Homework 3 due next

More information

Forces. Video Demos. Graphing HW: October 03, 2016

Forces. Video Demos. Graphing HW: October 03, 2016 Distance (m or km) : Create a story using the graph. Describe what will be happening at each point during the day (A-D). Example: Trump has a busy day. He is currently at Trump Tower in NY. A- Trump jumps

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Force, Friction, Gravity and Newton s Laws. Chapter 3 Lessons 4-6

Force, Friction, Gravity and Newton s Laws. Chapter 3 Lessons 4-6 Force, Friction, Gravity and Newton s Laws Chapter 3 Lessons 4-6 I can... identify when forces add or subtract. calculate the Net Force. explain the difference between balanced and unbalanced forces. force:

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Can You Snap a Card Out From Under a Coin?

Can You Snap a Card Out From Under a Coin? Can You Snap a Card Out From Under a Coin? 1. Balance half of a 3 x 5 index card on the tip of an index finger. 2. Place a penny on the card, just above your fingertip. 3. Give the card a quick horizontal

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Physics : Fall Semester Review Chapter 1-4

Physics : Fall Semester Review Chapter 1-4 Chapter 1 and 2 1) Which branch of science is fundamental to all sciences? It is concerned with the nature of basic things such as motion, force, energy, matter, heat, sound, light, and the composition

More information

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating, trigonometry,

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01 Lecture 6 > Forces > Newton's Laws > Normal Force, Weight (Source: Serway; Giancoli) 1 Dynamics > Knowing the initial conditions of moving objects can predict the future motion of the said objects. > In

More information

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law Lecture 6 Force and Motion Identifying Forces Free-body Diagram Newton s Second Law We are now moving on from the study of motion to studying what causes motion. Forces are what cause motion. Forces are

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

UNIT 2 FORCES Weight W= mg

UNIT 2 FORCES Weight W= mg UNIT 2 FORCES This unit will begin your study of Newton s Laws of Motion. Newton s contributions were revolutionary leaps forward concerning our understanding of the universe. Your physics course up to

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Summary. Chapter summary. Teaching Tip CHAPTER 4

Summary. Chapter summary. Teaching Tip CHAPTER 4 Chapter summary Teaching Tip Ask students to prepare a concept map for the chapter. The concept map should include most of the vocabulary terms, along with other integral terms or concepts. CHAPTER 4 Summary

More information

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s Contributions Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s First Law (law of inertia) An object at rest tends to stay at rest

More information

Newton s Laws of Motion. Monday, September 26, 11

Newton s Laws of Motion. Monday, September 26, 11 Newton s Laws of Motion Introduction We ve studied motion in one, two, and three dimensions but what causes motion? This causality was first studied in the late 1600s by Sir Isaac Newton. The laws are

More information

Laws of Force and Motion

Laws of Force and Motion Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the floor. An apple falls from a tree

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

Conceptual Physical Science

Conceptual Physical Science Hewitt/Suchocki/Hewitt Conceptual Physical Science Fourth Edition Chapter 1: PATTERNS OF MOTION AND EQUILIBRIUM This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass

More information

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Part I: Mechanics. Chapter 2 Inertia & Newton s First Law of Motion. Aristotle & Galileo. Lecture 2

Part I: Mechanics. Chapter 2 Inertia & Newton s First Law of Motion. Aristotle & Galileo. Lecture 2 Lecture 2 Part I: Mechanics Chapter 2 Inertia & Newton s First Law of Motion Some material courtesy Prof. A. Garcia, SJSU Aristotle & Galileo Aristotle was great philosopher but not such a good scientist.

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Name Class Date. height. Which ball would land first according to Aristotle? Explain. Skills Worksheet Directed Reading A Section: Gravity and Motion 1. Suppose a baseball and a marble are dropped at the same time from the same height. Which ball would land first according to Aristotle?

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005 Newton s Laws of Motion Steve Case NMGK-8 University of Mississippi October 2005 Background Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity

More information

Redhound Day 2 Assignment (continued)

Redhound Day 2 Assignment (continued) Redhound Day 2 Assignment (continued) Directions: Watch the power point and answer the questions on the last slide Which Law is It? on your own paper. You will turn this in for a grade. Background Sir

More information

Main Ideas in Class Today

Main Ideas in Class Today 2/4/17 Test Wed, Feb 8th 7pm, G24 Eiesland Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating,

More information

August 05, Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion

August 05, Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion 1st Law Law of Inertia - An object in CONSTANT motion remains in CONSTANT motion and an object at rest remains at rest UNLESS acted

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Clickers Registration Roll Call

Clickers Registration Roll Call Clickers Registration Roll Call If you do not see your name then either: 1) You successfully registered your clicker during the roll call on tuesday OR 2) You added the course and your name was not yet

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction)

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Ch. 12 - Forces & Motion Force --> a push or a pull that acts on an object Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Force is measured

More information

STRAIGHT-LINE MOTION UNDER CONSTANT ACCELERATION

STRAIGHT-LINE MOTION UNDER CONSTANT ACCELERATION STRAIGHT-LINE MOTION UNDER CONSTANT ACCELERATION Problems involving a body moving in a straight line under constant acceleration have five relevant variables: u = Initial velocity in m/s v = Final velocity

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information