Ridge Regression Estimation Approach to Measurement Error Model

Size: px
Start display at page:

Download "Ridge Regression Estimation Approach to Measurement Error Model"

Transcription

1 Ridge Regression Estimation Approach to Measurement Error Model A.K.Md. Ehsanes Saleh Carleton University, Ottawa CANADA) Shalabh Department of Mathematics & Statistics Indian Institute of Technology, Kanpur INDIA) shalab@iitk.ac.in Abstract This paper considers the estimation of the parameters of measurement error models where the estimated covariance matrix of the regression parameters is ill conditioned. We consider the Hoerl and Kennard type 1970) ridge regression RR) modifications of the five quasiempirical Bayes estimators of the regression parameters of a measurement error model when it is suspected that the parameters may belong to a linear subspace. The modifications are based on the estimated covariance matrix of the estimators of regression parameters. The estimators are compared and the dominance conditions as well as the regions of optimality of the proposed estimators are determined based on quadratic risks. Keywords: Linear Regression model, measurement error, multicollinearity, reliability matrix, ridge regression estimators, shrinkage estimation, Stein type estimators, preliminary test estimator, asymptotic relative efficiency.

2 1 Introduction One of the basic assumptions in the linear regression analysis is that all the explanatory variables are linearly independent, i.e., the rank of the matrix of the observations on all the explanatory variable is of full column rank. When this assumption is violated, the problem of multicollinearity enters into the data and it inflates the variance of ordinary least squares estimator of the regression coefficient which is the minimum in the absence of multicollinearity. The problem of multicollinearity has attracted many researchers, see see Silvey 1969) and large amount of research has been devoted to diagnose the presence and degree of multicollinearity, see Belsley 1991), Belsley, Kuh and Welsh 2004) and Rao, Toutenburg, Shalabh and Heumann 2008) for more details. A complete bibliography on multicollinearity is not one of the objectives of this paper. Obtaining the estimators for multicollinear data is an important problem in the literature. Several approaches have been proposed for its solution. Among them, the ridge regression estimation approach due to Hoerl and Kennard 1970) turned out to be the most popular approach among researchers as well as practitioners. The ridge estimators under the normally distributed random errors in regression model have been studied by Gibbons 1981), Sarker 1992), Saleh and Kibria 1993), Gruber 1998), Malthouse 1999), Singh and Tracy 1999), Wencheko 2000), Inoue 2001), Kibria and Saleh 2003, 2004), Arashi, Tabatabaey and Iranmanesh 2010), Hassanzadeh, Arashi and Tabatabaey 2011a, 2011b), Arashi, Tabatabaey and Soleimani 2012), Bashtian, Arashi and Tabatabaey 2011a, 2011b) etc. The details of development of other approaches and the literature related to the ridge regressions is not within the scope of this paper. Another fundamental assumption in all statistical analysis is that all the observations are correctly observed. This assumption is more oftenly violated in real life data. Consequently, the measurement errors creep into the data. In such situations, the observations on the variables are not correctly observable and are contaminated with measurement errors. The usual statistical tools tend to loose their validity when the data is contaminated with measurement errors, see Fuller 1987), Cheng and van Ness 1999) for more details on measurement error models. In the context of linear regression models, the ordinary least squares estimator of regression coefficient becomes biased as well as inconsistent in the presence of 1

3 measurement errors in the data. An important issue in the area of measurement errors is to find the consistent estimators of the parameters. The consistent estimators of the regression coefficient can be obtained by utilizing some additional information from outside the sample. In the context of multiple linear regression models, the additional information in the form of known covariance matrix of measurement errors associated with explanatory variables and known matrix of reliability ratios of explanatory variables have been extensively utilized in various context, see e.g., Gleser1992, 1993), Kim and Saleh 2002, 2003a, 2003b, 2005, 2008, 2011), Saleh 2010), Sen and Saleh 2010), Jurečková, Sen and Saleh 2010), Shalabh, Garg, Misra 2009) etc. In many practical situations, the observations are not only measurement error ridden but also exhibit some linear relationships among them. So the problem of multicollinearity enter into the measurement error ridden data. An important issue crops up then is how to obtain the estimators of regression coefficients under such a situation. One simple idea is to use the ridge regression estimation over the measurement error ridden data. An obvious question that crops up is what happens then? In this paper, we attempt to answer such questions. It is well known that Stein 1956) and James and Stein 1961) initially proposed the Stein estimator and positive-rule estimators which have been justified by empirical Bayes methodology due to Efron 1975, 1977), Efron and Morris 1972, 1973a, 1973b, 1975). The preliminary test estimators were proposed by Bancroft 1944). On the other hand, ridge regression estimators were proposed by Hoerl and Kennard 1973) and they combat the problem of multicollinearity for the estimation of regression parameters. Saleh 2006, Chapter 4) proposed quasi-empirical Bayes estimators. So we have considered five quasi-empirical Bayes estimators estimators by weighing the unrestricted, restricted, preliminary test and Stein-type estimators by the ridge weight function. The resulting estimators are studied in measurement error models. The quadratic risks of these estimators have been obtained and optimal regions of superiority of the estimators are determined. The plan of the paper is as follows. We describe the model set up in Section 2. The details and development of the estimators are presented in Section 3. The comparison of 2

4 estimators over each other is studied and their dominance conditions are reported in Section 4. The summary and conclusions are placed in Section 5 followed by the references. 2 The Model Description Consider the multiple regression model with measurement errors Y t = β 0 + x tβ + e t, t = 1, 2,..., n 2.1) X t = x t + u t where β 0 is the intercept term and β = β 1, β 2,..., β p ) is the p 1 vector of regression coefficients, x t = x 1t, x 2t,..., x pt ) is the p 1 vector of set t th observations on true but unobservable p explanatory variables that are observed as X t = X 1t, X 2t,..., X pt ) with p 1 measurement error vector u t = u 1t, u 2t,..., u pt ), u it being the measurement error in i th explanatory variable x it and e t is the response error in observed response variable Y t. We assume that x t, e t, u t ) N 2p+1 {µ x, 0, 0 ), BlockDiagΣ xx, σ ee, Σ uu )} 2.2) with µ x = µ x1, µ x2,..., µ xp ), σ ee is the variance of e t s whereas Σ xx and Σ uu are the covariance matrices of x t s and u t s respectively. Clearly, Y t, X t) follows a p + 1)-variate normal distribution with mean vector β 0 + β µ x, µ x ) and covariance matrix σ ee + β Σ xx β β Σ xx. 2.3) Σ xx β Σ xx + Σ uu Then the conditional distribution of Y t given X t is N {γ 0 + γ X t ; σ zz = σ ee + β Σ xx I p K xx)β} 2.4) where K xx = Σ 1 XX Σ xx = Σ xx + Σ uu ) 1 Σ xx 2.5) is the p p matrix of reliability ratios of X, see Gleser1992). 3

5 Further, we note that γ 0 = β 0 + β I p K xx)µ x, γ = K xx β and β = K 1 xx γ. 2.6) Our basic problem is the estimation of β under various situations situations beginning with the primary estimation of β assuming Σ uu is known which is as follows. Let S = S Y Y S Y x 2.7) S xy S XX where i) S Y Y = Y Ȳ 1 p) Y Ȳ 1 p), Y = Y 1, Y 2,..., Y n ), 1 n = 1, 1,..., 1). ii) S XX = S Xi X i )), S Xi X i = x i X i 1 n ) x i X i 1 n ) iii) S Xi Y = X i X i 1 n ) Y i Ȳi1 n ), S XY = S X1 Y, S X2 Y,..., S Xp Y ) iv) X i = 1 n n t=1 X it, Ȳ = 1 n n t=1 Y t. 1 Clearly, S n 1 XX is an unbiased estimator of Σ XX and 1 S P n XX Σ XX as n where P denotes the convergence in probability. Gleser 1992) showed that the maximum likelihood estimators of γ 0, γ and σ zz are just the naive least squares estimators, viz., γ 0n = Ȳ γ X, n γ n = S 1 XX S XY and 2.8) σ zz = 1 Y γ n 0n1 n γ nx) Y γ 0n 1 n γ nx) provided σ ee = σ zz γ nk 1 xx Σ uu γ n ) When Σ uu is known and K xx is unknown, then K xx is estimated by ˆK xx = S 1 XX S XX nσ uu ). 2.10) Further, ˆKxx P K xx as n. Thus, the maximum likelihood estimates of β 0, β 1 4

6 and σ ee are given by β 0n = γ on β ni p ˆK xx) x, β n = ˆK 1 xx γ n and σ ee = σ zz β nσ uu ˆKxx βn 2.11) respectively. Finally, β 0n reduces to Ȳ β n X and β n = S XX nσ uu ) 1 S XY 2.12) provided σ ee 0 as in 2.9). The estimators will be designated as the unrestricted estimators of β 0 and β. Then by Theorem 2 of Fuller 1987) we have as n i) n γ n γ) is normally distributed with mean 0 and covariance matrix σ zz Σ 1 XX. ii) n β n β) is normally distributed with mean 0 and covariance matrix σ zz C 1 defined by C = K xxσ XX K xx 2.13) Let C n be a consistent estimator of C given by Thus, using 2.10) we may write C n = ˆK xx ˆΣ XX ˆKxx = S XX nσ uu ) S 1 XX S XX nσ uu ) 1 n C n = C + O p 1). In case, β is suspected to belong to the linear subspace of Hβ = h where H is a q p matrix and h is a q 1 vector of known numbers respectively, the restricted estimator of β is defined by see Saleh and Shiraish 1989). ˆβ n = β n Cn 1 H HCn 1 H ) 1 H β n h), 2.14) Under H 0, as n, we have n βn β) D nˆβn β) N 3p n βn β n ) 0 0 0, σ zz C 1 C 1 A A C 1 A C 1 A 0 A 0 A 2.15) 5

7 where A = C 1 H HC 1 H ) 1 HC 1. Since it is suspected that the restrictions Hβ = h may hold, we remove the suspicion by testing hypothesis H 0 based on the Wald-type statistic Thus under H 0, as n, L n D denotes the convergence in distribution. L n = H β n h) HC 1 n H ) 1 H β n h) σ zz. 2.16) D χ 2 q, chi-square variable with q degrees of freedom where 3 Regression Estimators of β In this section, we introduce the ridge regression estimators of β. For this, we first consider the conditional set up of least squares method with known reliability matrix K xx and minimize the quadratic form with Lagrangian multiplier XKβ + γ 0 1 p Y ) XKβ + γ 0 1 p Y ) + kβ β. This minimization yields the normal equation for β as K xxs XX K xx + ki p ] β = K xxx Y. Thus the ridge regression estimator for β is given by ) ] 1 1 β n k) = I p + ˆK xxs XX ˆKxx ˆβn, 3.1) substituting the estimators of K xx given by 2.10) with β n = S xx nσ uu ) 1 S xy. Here, the ridge factor of the ridge estimator is given by which is a consistent estimator of R n k) = ] I p + kcn 1 1, Cn = ˆK xxs xx ˆKxx 3.2) Rk) = I p + kc 1] 1, C = K xx Σ XX K xx. 6

8 Based on this factor, the unrestricted ridge regression estimator β n k) is defined by β n k) = R n k) β n. It is easy to verify that as n, the bias, MSE and trace of MSE expressions for β n k) are given by b 1 β n k)) = kc 1 k)β ; C 1 k) = C + ki p ) 1 M 1 β n k)) = σ zz Rk)] C 1 Rk)] + k 2 C 1 k)ββ C 1 k) trm 1 β n k))) = σ zz tr{rk)] C 1 Rk)]} + k 2 β C 2 k)β. Further, since β is suspected to belong to the subspace Hβ = h, we shall consider four more estimators, viz., the i) Restricted estimator of β given by ii) Preliminary test estimator PTE) of β given by ˆβ n k) = R n k)ˆβ n 3.3) ˆβ P T n k) = R n k)ˆβ P T n 3.4) where ˆβ P T n = β n β n ˆβ n )IL n < χ 2 qα)) 3.5) and χ 2 qα) denotes the α-level critical value of a Chi-square distribution with q degrees of freedom. The preliminary test estimation under the assumption of normally distributed random errors has been pioneered by Bancroft 1944) and considered later by Bancroft 1964), Han and Bancroft 1968), Judge and Bock 1978), Giles 1991), Benda 1996), Kibria and Saleh 2006), Saleh 2006) and Arashi 2009), Arashi, Tabatabaey and Soleimani 2012) among others. In the set up of measurement errors models, Kim and Saleh 2002, 2003a, 2003b, 2005, 2008, 2011) have considered the preliminary test and Stein-type estimation. iii) James-Stein type shrinkage estimator SE) of β due to James and Stein 1961) is given by ˆβ S nk) = R n k)ˆβ S n 3.6) 7

9 where ˆβ S n = β n q 2) β n ˆβ n )L n ) The Stein-rule estimation technique in various models have been considered by several researchers, see e.g., Ohtani 1993), Gruber 1998), Saleh 2006), Shalabh 1998, 2001), Tabatabaey and Arashi 2008), Arashi and Tabatabaey 2009, 2010a, 2010b) and Hassanzadeh, Arashi and Tabatabaey 2011), Arashi 2012) among many others. iv) Positive rule Stein estimatorprse) of β is given by ˆβ S+ n k) = R n k)ˆβ S+ n 3.8) where ˆβ S+ n = ˆβ n IL n < q 2) + ˆβ S nil n q 2). 3.9) Now, we present the asymptotic distributional properties of the five ridge regression estimators. It may be verified that the test L n for the test of Hβ = h is consistent as n. Thus all the quasi-empirical Bayes estimators ˆβ P T n, ˆβ S n and ˆβ S+ n are asymptotically equivalent to β n while the asymptotic distribution of ˆβ n degenerates as n. To by pass this problem, we consider the asymptotic distribution under the sequence of local alternatives K n) : Hβ = h + n 1 2 ξ; ξ R q. 3.10) Thus, using Saleh 2006), we obtain the following Theorem concerning the five basic estimators of β defined by 2.12), 2.14), 3.5), 3.7) and 3.9). Theorem 1 Under {K n) } and the basic assumptions of the measurement error model, the following holds: a) n βn β) nˆβn β) n βn ˆβ n ) D N 3p 0 δ δ, σ zz C 1 C 1 A A C 1 A C 1 A 0 A 0 A. 3.11) b) lim P {L n x K n) } = H q x, 2 ), 2 = 1 δ Cδ, δ = C 1 H HC 1 H ) 1 ξ n σ zz 8

10 where H q x; 2 ) is the c.d.f. of a noncentral Chi-square distribution with q degrees of freedom and noncentrality parameter 2. c) lim P { nˆβ P T n β) x K n) } = H q χ 2 qα); 2 )G p x + δ); 0; σ zz C 1 A]) n + G p x C 1 H HC 1 H ) 1 Z; 0; σ zz C 1 A])dG p Z; 0; σ zz HC 1 H ]) E 2 ) where G p x; µ x ; Σ) is the c.d.f. of a p-variate normal distribution with mean µ x and covariance matrix Σ and E 2 ) = { Z : Z + ) HC 1 H ) 1 Z + ) χ 2 qα) } with Z N p 0, C 1 ). d) e) Here D nˆβs n β) Z q ] 2)C 1 H HC 1 H ) 1 HZ + ). Z + ) HC 1 H ) 1 Z + ) nˆβs+ n β) D Z q ] 2)C 1 H HC 1 H ) 1 HZ + ) Z + ) HC 1 H ) 1 Z + ) I HZ + ) HC 1 H ) 1 HZ + ) q 2) ] +C 1 H HC 1 H ) 1 HZ + ) D denotes the convergence in distribution. I HZ + ) HC 1 H ) 1 HZ + ) < q 2) ]. Then we have the following theorem giving the characteristics of the basic five estimators of β. The risk functions are computed using a quadratic loss function with a semi-definite matrix Q. Note that bˆθ), Mˆθ) and Rˆθ; ) denote the bias, MSE matrix and risks, respectively of an estimator ˆθ of a parameter θ. Theorem 2 Under {K n) } and the assumed regularity conditions as n, the following holds: 9

11 a) b 1 β n ) = 0, M 1 β n ) = σ zz C 1, R 1 β n ; Q) = σ zz trc 1 Q). b) b 2 ˆβ n ) = δ, M 2 ˆβ n ) = σ zz C 1 A] + δδ, R 2 ˆβ n ; Q) = σ zz trc 1 A)Q] + δ Qδ. c) b 3 ˆβ P T n ) = δh q+2 χ 2 qα); 2 ], M 3 ˆβ P T n ) = σ zz C 1 AH q+2 χ 2 qα); 2 ] + δδ {2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ]}, R 3 ˆβ P T n ; Q) = σ zz trc 1 Q) σ zz traq)h q+2 χ 2 qα); 2 ] + δqδ ){2H q+2 χ 2 qα); 2 ] d) H q+4 χ 2 qα); 2 ]}. b 4 ˆβ S n) = q 2)δE χ 2 q+2 2 ) ], M 4 ˆβ S n) = σ zz C 1 σ zz q 2)A { 2E χ 2 q+2 2 ) ] q 2)E χ 4 q+2 2 ) ]} +q 2)δδ { 2E χ 2 q+2 2 ) ] 2E χ 4 q+4 2 ) ] + q 2)E χ 4 q+4 2 ) ]}, R 4 ˆβ S n; Q) = σ zz trc 1 Q) σ zz q 2)trAQ) { 2E χ 2 q+2 2 ) ] q 2)E χ 2 q+2 2 ) ]} +q 2)δ Qδ { 2E χ 2 q+2 2 ) ] 2E χ 2 q+4 2 ) ] + q 2)E χ 4 q+4 2 ) ]}. 10

12 e) b 5 ˆβ S+ n ) = q 2)δ { E χ 2 q+2 2 ) ] + H q+2 q 2; 2 ) Eχ 2 q+2 2 )I χ 2 q+2 2 ) < q 2) ) ] }, M 5 ˆβ S+ n ) = M 4 ˆβ S 1 n) A q 2)χ 2 q+2 2 ) ) 2 I χ 2 q+2 2 ) < q 2) )] 1 +δδ {2E q 2)χ 2 q+4 2 ) ) 2 I χ 2 q+2 2 ) < q 2) )] 1 E q 2)χ 2 q+4 2 ) ) 2 I χ 2 q+4 2 ) < q 2) )]}, ] R 5 ˆβ S+ n ; Q) = tr M 4 ˆβ S 1 n)q σ zz traq) q 2)χ 2 q+2 2 ) ) 2 I χ 2 q+2 2 ) < q 2) )] { 1 +δ Qδ) 2E q 2)χ 2 q+4 2 ) ) 2 I χ 2 q+2 2 ) < q 2) )] 1 E q 2)χ 2 q+4 2 ) ) 2 I χ 2 q+4 2 ) < q 2) )]}. The following theorem gives the asymptotic distributional bias, MSE matrices and risk expressions for the ridge regression estimators given by 3.3), 3.3), 3.4), 3.6) and 3.8) Theorem 3 Under {K n) } and the basic assumptions of the measurement error model, the following holds: a) n βn k) β) D nˆβn k) β) N 3p n βn k) ˆβ n k)) kc 1 k)β kc 1 k)β Rk)δ, σ zzσ Rk)δ 3.12) where C 1 k) = C + ki p ) 1 and {Rk)C 1 Rk) } {Rk)C 1 A)Rk) } {Rk)ARk) } Σ = {Rk)C 1 A)Rk) } {Rk)C 1 A)Rk) } 0 {Rk)ARk) } 0 {Rk)ARk) } b) The asymptotic distributional bias, MSE matrices and risk expressions are given by i) b 1 β n k)) = kc 1 k)β, M 1 β n k)) = σ zz Rk)C 1 Rk) + k 2 C 1 k)ββ C 1 k), R 1 β n k); W ) = σ zz tr W Rk)C 1 Rk) ] + k 2 β C 2 k)β. 11

13 ii) b 2 ˆβ n k)) = kc 1 k)β Rk)δ, M 2 ˆβ n k)) = σ zz Rk)C 1 A]R k) + kc 1 k)β + Rk)δ ] kc 1 k)β + Rk)δ ], R 2 ˆβ n k); W ) = σ zz trw Rk)C 1 A)Rk) )] iii) iv) + kc 1 k)β + Rk)δ ] W kc 1 k)β + Rk)δ ]. b 3 ˆβ P T n k)) = kc 1 k)β Rk)δH q+2 χ 2 qα); 2 ], M 3 ˆβ P T n k)) = σ zz Rk)C 1 Rk) ] σ zz Rk)ARk) ]H q+2 χ 2 qα); 2 ] Rk)δδ Rk) ]{2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ]} +k 2 C 1 k)ββ C 1 k)] +krk)δβ C 1 k) + C 1 k)βδ Rk)]H q+2 χ 2 qα); 2 ], R 3 ˆβ P T n k); W ) = σ zz trw Rk)C 1 Rk) ) ] σ zz trw Rk)ARk) )]H q+2 χ 2 qα); 2 ] +δ Rk)W Rk)δ]2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ]] +k 2 β C 1 k)w R 1 k)β] +2kδ Rk) W C 1 k)β]h q+2 χ 2 qα); 2 ]. b 4 ˆβ S nk)) = kc 1 k)β + q 2)Rk)δE χ 2 q+2 2 ) ], M 4 ˆβ S nk)) = σ zz Rk)Σ 1 XX Rk) ] σ zz q 2) Rk)ARk) ] { 2E χ 2 q+2 2 ) ] q 2)E χ 4 q+2 2 ) ]} + q 2 4) Rk)δδ Rk) ] E χ 4 q+4 2 ) ] +k 2 C 1 k)ββ C 1 k) +k Rk)δβ C 1 k) + C 1 k)βδ Rk) ] E χ 2 q+2 2 ) ], R 4 ˆβ S nk); W ) = σ zz tr W Rk)Σ 1 XX Rk) ]) σ zz q 2)tr W Rk)ARk) ]) { 2E χ 2 q+2 2 ) q 2)χ 4 q+2 2 ) ]} +q 2 4)tr W Rk)δδ Rk) )] E χ 4 q+4 2 ) ] +k 2 β C 1 k)w C 1 k)β + k tr { W Rk)δβ C 1 k) + C 1 k)βδ Rk) ]} E χ 2 q+2 2 ) ]. 12

14 v) b 5 ˆβ S+ n k)) = b 4 ˆβ S nk)) M 5 ˆβ S+ n k)) = M 4 ˆβ S nk)) Rk)δ { H q+2 q 2)E χ 2 q+2 2 )I χ 2 q+2 2 ) < q 2) )]}, σ zz Rk)ARk) ] E 1 q 2)χ 2 q+2 2 ) ) 2 I χ 2 q+2 2 ) < q 2) )] Rk)δδ Rk) ] { 2E 1 q 2)χ 2 q+2 2 ) ) I χ 2 q+2 2 ) < q 2) )] 1 E q 2)χ 2 q+4 2 ) ) 2 I χ 2 q+4 2 ) < q 2) )]} { Rk)δβ C 1 k) + C 1 k)βδ Rk) } E 1 q 2)χ 2 q+2 2 ) ) I χ 2 q+4 2 ) < q 2) )], R 5 ˆβ S+ n k); W ) = R 4 ˆβ S nk); W ) { 1 σ zz tr Rk)ARk) ) E q 2)χ 2 q+2 2 ) ) 2 I χ 2 q+2 2 ) < q 2) )]} + δ W 2 δ ) { 1 2E q 2)χ 2 q+2 2 ) ) 2 I χ 2 q+2 2 ) < q 2) )] 1 E q 2)χ 2 q+4 2 ) ) 2 I χ 2 q+4 2 ) < q 2) )]} +2kδ Rk) W C 1 k)βe 1 q 2)χ 2 q+2 2 ) ) I χ 2 q+2 2 ) < q 2) )]. 4 Comparison of Estimators of β First note that the asymptotic covariance matrix of unrestricted estimator of β is σ zz C 1 where C = K xxσ XX K xx is positive definite matrix. Thus we can find an orthogonal matrix Γ such that Γ K xxσ XX K xx ) Γ = Γ CΓ = diagλ 1, λ 2,..., λ p ), 4.1) where λ 1 λ 2..., λ p > 0 are the characteristic roots of the matrix K xxσ XX K xx ). It is easy to see that the characteristic roots of I p + k K xxσ XX K xx ) 1] 1 K xxσ XX K xx ) + ki p ] = R 1 k) are λ 1 λ 1 + k) 2, λ 2 λ 2 + k) 2,..., λ p λ p + k) 2 = Rk) and of ) and λ 1 + k, λ 2 + k,..., λ p + k) 4.2) 13

15 respectively. Hence we obtain the following identities: trrk)c 1 Rk) ] = tr Rk) K xxσ ] XX K xx ) 1 Rk) = β R 2 k)β = trrk)ark) ] = λ i λ i + k), 4.3) θ 2 i λ i + k) 2, θ = Γ β = θ 1, θ 2,..., θ p ), 4.4) a iiλ 2 i λ i + k) 2 4.5) where a ii 0 is the diagonal matrix of A = Γ AΓ and tr δ Rk) λ i δi 2 Rk)δ] = 4.6) λ i + k) 2 where δ i is the i th element of δ = δ Γ. Similarly ] tr δ Rk) K xxσ XX K xx + ki p ) 1 Rk)δ = θ i λ i δ i λ i + k) ) 4.1 Comparison of β n k) and β n : In this case we have the risk of β n k) as λ i R β n k); I p ) = σ zz λ i + k) + 2 k2 θ 2 i λ i + k) ) Clearly for k = 0, the risk equals that the risk of β n. Note that the first term of 4.8) is a continuous, monotonically decreasing function of k and its derivative with respect to k approaches as k 0 + and λ p 0. The second term is also a continuous monotonically increasing function of k and its derivative with respective k tends to zero as k 0 + and the second term approaches ββ as k. Differentiating with respect to k, we get R β n k); I p ) λ i = 2 k λ i + k) 3 kθ2 i σ zz ). 4.9) Thus a sufficient condition for 4.9) to be negative is that 0 < k < k 0 where where θ max = Largest element of θ and θ = θ 1, θ 2,..., θ p ). k 0 = σ zz θ max, 4.10) Thus R 1 β n ; I p ) R 1 β n k); I p ) for 0 < k k 0. 14

16 4.2 Comparison of ˆβ n k) and ˆβ n : In this case, assume Hβ = h, then R 2 ˆβ n k); I p ) = σ zz = σ zz λ i λ i + k) 2 σ zz λ i a ii) λ i + k) + 2 where a ii 0 is the diagonal element of δ = Γ δ. a ii λ i + k) 2 + k2 θ 2 i 1 + λ i k θ 2 i λ i + k) 2 ) ) Differentiating with respect to k, we have R 2 ˆβ n k); I p ) kθi 2 λ i σ zz λ i a = 2 ii)]. 4.12) k λ i + k) 2 It is obvious that a sufficient condition for the derivative 4.12) is negative is that 0 < k < k 1 where k1 = σ zz min 1 i p λ i a ii) max 1 j p θi 2λ. 4.13) i) It is clear that k 1 k 0 since λ i a ii λ i 1 for all a ii 0 and λ i > 0, i = 1, 2,... p. Hence the range of values of k for the dominance of ˆβ n k) over ˆβ n is smaller than the dominance of β n k) over β n. Thus, one concludes that the restricted ridge regression estimator has smaller risk value than the unrestricted ridge regression estimator under Hβ = h. Now under the alternative hypothesis Hβ h, we may write 1 ] R 2 ˆβ n k); I p ) = σzz λ λ i + k) 2 i a ii) + k 2 θi 2 + λ 2 i δi 2 + 2kθ i δi λ i. 4.14) Thus differentiating 4.14) with respect to k, we obtain a sufficient condition for R 2 ˆβ n k); I p )/ k to be negative as k 0, k 2) where k 2 = min 1 i p λ i a ii) λ 2 i δ i θ i δ i )] max 1 i p λ i θ i θ i δ i ). 4.15) Thus a sufficient condition for the restricted ridge regression estimator to have smaller risk value than the unrestricted ridge regression estimator is that there exists a value of k such that 0 < k < k 1 where k 1 is given by i ] k 1 = min 1 i p σ zz a ii λ 2 i δ 2 max 1 i p 2θ i δi λ. 4.16) i) 15

17 We conclude that R 1 β n k); I p ) R 2 ˆβ n k); I p ) 0 for all k such that 0 < k < k 1, since R 1 β n k); I p ) R 2 ˆβ n k); I p ) = σ zz a ii λ 2 i δ 2 i 2kθ i λ i δ i ) λ i + k) Comparison of ˆβ P T n k) and ˆβ P T n : Under H 0 : Hβ = h, we obtain R 3 ˆβ P T n k); I p ) = σ zz Then, the derivative with respect to k, we have R 3 ˆβ P T n k); I p ) k = 2 λ i a iih q+2 χ 2 qα); 0)] λ i + k) 2 + k 2 θ 2 i λ i + k) ) 1 λ i + k) 2 { kθ 2 i λ i σ zz λi a iih q+2 χ 2 qα); 0) ]}. 4.18) A sufficient condition for 4.18) to be negative is that k 0, k3) where k3α) = σ zz min 1 i p λi a iih q+2 χ 2 qα); 0) ] max 1 i p θi 2λ, 0 α ) i) Note that if α = 0, then R 1 β n k); I p ) < R 1 β n ; I p ) under H 0 : Hβ = h while for α = 1, R 1 ˆβ n k); I p ) < R 2 ˆβ n ; I p ). When the null hypothesis does not hold, we consider the risk difference R 3 ˆβ P T n ; I p ) R 3 ˆβ P T n k); I p ) = σ zz tr C 1 Rk)C 1 Rk) ] 4.20) The R.H.S. of 4.20) 0 whenever δ I p Rk) 2 ]δ σ zz tr A Rk)ARk) ] H q+2 χ 2 qα); 2 ] +δ I p Rk) 2] δ { 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] } 2k δ Rk) C 1 Rk)β ] H q χ 2 qα); 2 ) k 2 β C 2 k)β. f 1 k, α, 2 ) 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ]], 4.21) 16

18 where f 1 k, α, 2 ) = σ zz tr A Rk)ARk) ] H q+2 χ 2 qα); 2 ] 4.22) σ zz tr C 1 Rk)C 1 Rk) ] +2kH q+2 χ 2 qα); 2 ]δ Rk) C 1 k)β + k 2 β C 2 k)β. Thus it can be shown by Courant-Fisher theorem Rao 1973), pp )) that ˆβ P T n k) is superior to ˆβ P T n with respect to the criterion of risk, whenever 2 1α) 2 <, where 2 1α) = f 1 k, α, 2 ) Ch max {I R 2 k)} C 1 ] 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2] 4.23) and Ch max M) is the largest characteristic root of the matrix M. follows: Now we consider the R 3 ˆβ P T n k), I p ) which as a function of eigenvalues and k is given as R 3 ˆβ P T n k), I p ) = Differentiating it with respect to k, we obtain 1 λ i + k) 2 σzz { λi a iih q+2 χ 2 qα); 2 ] } + k 2 θ 2 i 4.24) +2kθ i λ i δi H q+2 χ 2 qα); 2 ] { +λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] }]. R 3 ˆβ P T n k), I p ) k = 2 1 λ i + k) 3 kλi θ i { θi δ i H q+2 χ 2 qα); 2 ] } 4.25) { σ zz λ i a iih q+2 χ 2 qα); 2 ]) { +λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] } θ i λ 2 i δ i H q+2 χ 2 qα); 2 ] }]. Hence we find a sufficient condition on k such that 0 < k < k 2 α, 2 ) so that the derivative R 3 ˆβ P T n k), I p )/ k is negative where k 2 α, 2 ) is defined by where k 2 α, 2 ) = f 2α, 2 ) g 1 α, 2 ) f 2 α, 2 ) = min σzz λi a iih q+2 χ 2 qα); 2 ] ) { + λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] 1 i p 4.26) H q+4 χ 2 qα); 2 ] } θ i λ 2 i δ i H q+2 χ 2 qα); 2 ] ], 4.27) 17

19 and { g 1 α, 2 ) = max λi θ i θi δi H q+2 χ 2 qα); 2 ] }]. 4.28) 1 i p Suppose k > 0, then the following statements hold true following Kaciranlar, Sakallioglu, Akdeniz, Styan and Werner 1999): 1. If g 1 α, 2 ) > 0, it follows that for each k > 0 with k < k 2 α, 2 ), ˆβ P T n k) has smaller risk than that of ˆβ P T n. 2. If g 1 α, 2 ) < 0, it follows that for each k > 0 with k > k 2 α, 2 ), ˆβ P T n k) has smaller risk than that of ˆβ P T n. 4.4 Comparison of ˆβ P T n k), β n k) and ˆβ n k): Consider first the comparison of ˆβ P T n k) and ˆβ n k). Under the alternative hypothesis Hβ h, the difference between the risks of ˆβ P T n k) and ˆβ n k) is R 3 ˆβ P T n k) : I p ) R 2 ˆβ n k); I p ) 4.29) = σ zz tr Rk)ARk) ] 1 H q+2 χ 2 qα); 2 ] ] δ Rk) Rk)δ) 1 2H q+2 χ 2 qα); 2 ] + H q+4 χ 2 qα); 2 ] ] 2kδ Rk) R 1 k)β 1 H q+2 χ 2 qα); 2 ] ]. The expression is nonnegative whenever δrk) Rk)δ 4.30) σ zz tr Rk)ARk) ] 1 H q+2 χ 2 qα); 2 ] ] 2kδ Rk) C 1 k)β 1 H q+2 χ 2 qα); 2 ] ] 1 2Hq+2 χ 2 qα); 2 ] + H q+4 χ 2 qα); 2 ] ]. Using the Courant-Fisher theorem, we obtain that the right hand side of 4.30) is nonnegative according as 2 2α, k) {σ zztr Rk)ARk) ] 2kδ Rk) C 1 k)β} 1 H q+2 χ 2 qα); 2 ] ] Ch max Rk) Rk)C 1 ) ]. 4.31) 1 2H q+2 χ 2 qα); 2 ] + H q+4 χ 2 qα); 2 ] 18

20 Thus ˆβ P T n k) is dominated by ˆβ n k) whenever 2 0, 2 2α, k)). When α = 1, then ˆβ P T n k) is dominated by ˆβ n k) whenever 2 0, 2 31)), where 2 31) = {σ zztr Rk)ARk) ] 2kδ Rk) C 1 k)β}. 4.32) Ch max Rk) Rk)C 1 ) Rewriting the expression 4.30) in terms of eigenvalues and k, we obtain R 3 ˆβ P T n k); I p ) R 2 ˆβ n k); I p ) = 1 σzz a λ i + k) 2 ii 1 Hq+2 χ 2 qα); 2 ] ] λ 2 i δi 2 1 2Hq+2 χ 2 qα); 2 ] + H q+4 χ 2 qα); 2 ] ] 2kθ i λ i δ i 1 Hq+2 χ 2 qα); 2 ] ]] and the right hand side is negative when k 3 2, α) = { max 1 i p σzz a ii 1 Hq+2 χ 2 qα); 2 ] ] λ 2 i δi 2 1 2Hq+2 χ 2 qα); 2 ] + H q+4 χ 2 qα); 2 ] ]]} { min 1 i p 2θi λ i δi 1 Hq+2 χ 2 qα); 2 ] ]}. Thus ˆβ P T n k) dominates ˆβ n k) whenever k 3 2, α) < k, otherwise the reverse holds true. For α = 1, we find that ˆβ P T n k) is dominated by ˆβ n k) when k 4 2, 1) = max 1 i p σ zz a ii λ 2 i δ 2 i ] min 1 i p 2θ i λ i δ i ). 4.33) Under the null hypothesis H 0 : Hβ = h, ˆβn k) is superior to ˆβ P T n k) since the risk difference equals 1 λ i + k) 2 σzz a ii{1 H q+2 χ 2 qα); 0]} ] 0. Now we consider the comparison between the risks of ˆβ P T n k) and β n k) as follows: R 3 ˆβ P T n ; I p ) R 1 β n k); I p ) = σ zz tr Rk)ARk) ] H q+2 χ 2 qα); 2 ] δ Rk) Rk)δ] 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ] 2k δ Rk) C 1 k)β ] H q+2 χ 2 qα); 2 ]. The expression on the right hand side is nonnegative whenever δ Rk) Rk)δ {σ zztr Rk)ARk) ] 2kδ Rk) C 1 k)β} H q+2 χ 2 qα); 2 ] 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ]. 4.34) 19

21 The use of Courant-Fisher theorem once again yields that 4.34) is nonnegative according to 2 4α, k) {σ zztr Rk)ARk) ] 2kδ Rk) C 1 k)β} H q+2 χ 2 qα); 2 ] Ch max Rk) Rk)C 1 ) ]. 4.35) 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] Thus ˆβ P T n k) is dominated by ˆβ n k) whenever 2 0, 2 4α, k)). Rewriting the expression in 4.34) in terms of eigenvalues and k, we obtain R 3 ˆβ P T 1 n k); I p ) R 1 β n k); I p ) = σzz λ 2 λ i + k) 2 i a iih q+2 χ 2 qα); 2 ] 4.36) λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ] 2kθ i λ i δi H q+2 χ 2 qα); 2 ] ] and the right hand side is positive meaning thereby that ˆβ P T n k) dominates β n k) when k 5 2, α) < k, where k 5 2, α) = 4.37) { max 1 i p σzz λ 2 i a iih q+2 χ 2 qα); 2 ] λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ]]} { min 1 i p 2kθi λ i δi H q+2χ 2 qα); 2 ] } and β n k) dominates ˆβ P T n k) whenever k 5 α, 2 ) > k. Now we consider the relative efficiency RE) of ˆβ P T n k) compared with β n k). Accordingly, we provide a maximum and minimum Max and Min) rule for the optimum choice of the level of significance of the ˆβ P T n k) for testing the null hypothesis H 0 : Hβ = h,. For fixed value of kk > 0), this RE is a function of α and 2. Let us denote this by Eα,, k) = R β R ] n k); I p ) f 14 α, k, 2 1 ) = 1 Rˆβ P T n k); I p ) σ zz trrk)ark) ] + k 2 β 4.38) C 2 k) β where f 14 α, k, 2 ) = σ zz trrk)ark) ]H q+2 χ 2 qα); 2 ] 4.39) δ Rk) Rk)δ { 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] } 2kH q+2 χ 2 qα); 2 ]δ Rk) C 1 k)β. For a given k, the function Eα, 2, k), is a function of α and 2. This function for α 0 has its maximum under the null hypothesis with following value, E max α, 0, k) = 1 trrk)ark) ]H q+2 χ 2 ] 1 qα); 0] trrk)ark) ] + k 2 β. 4.40) C 2 k) β 20

22 For given k, E max α, 0, k) is a decreasing function of α. While, the minimum efficiency E min is an increasing function of α. For α 0, as 2 varies the graphs of E0,, k) and E1,, k) intersects in the range 0 < 2 < 2 2α, k), which is given in 4.32). Therefore, in order to choose an estimator with optimum relative efficiency, we adopt the following rule for fixed values of k. If 0 < 2 < 2 2α, k), we choose ˆβ R n k) since E0,, k) is the largest in this interval. However, 2 is unknown and there is no way of choosing a uniformly best estimator. Therefore, following Saleh 2006), we will use the following criterion for selecting the significance level of the preliminary test. Suppose the experimenter does not know the size of α and wants an estimator which has relative efficiency not less than E min. Then among the set of estimators with α A, where A = {α : Eα,, k) E min for all }, the estimator is chosen to maximizes Eα,, k) over all α A and all 2. Thus we solve for α from the following equation. max min Eα,, k) = E min. 4.41) 0 α 1 2 The solution α for 4.41) gives the optimum choice of α and the value of 2 = 2 min for which 4.40) is satisfied. The maximum and minimum guaranteed efficiencies for p = 6, q = 4, σ zz = 1 and different values of k is presented in Table 1. We observe that the maximum guaranteed efficiency is decreasing function of α the size of the test where as the minimum guaranteed efficiency is a increasing function of α. Suppose for example, p = 6, q = 4, σ zz = 1 and k = 0.01 and the experimenter wishes to have an estimator with a minimum guaranteed efficiency of Note that when p = 6, q = 4, σ zz = 1 and k = 0.50, the size of α is 0.15 with a minimum guaranteed efficiency and maximum efficiency of Thus with these conditions, we choose α = min0.05, 0.15) = 0.05 which corresponds to k = Note that when p = 6, q = 4, k = 0.01 and σ zz = 1, the size of α is 0.50 with a minimum guaranteed efficiency and maximum efficiency of Thus with these conditions, we choose α = min0.01, 0.50) = 0.01 which corresponds to σ zz = 2. 21

23 Table 1: Maximum and minimum guaranteed efficiency of PTRRRE for p = 6, q = 4 and for selected values of k, σ zz and α. k σ zz α 1% 5% 10% 15% 20% 25% 30% 50% E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min E Max E Min Min

24 4.5 Comparison of ˆβ S nk) with ˆβ S n, β n k) and ˆβ P T n k)): Comparison of ˆβ S nk) and ˆβ S n: Case 1: Under the null hypothesis H 0 : Hβ = h Using Theorem 3, the risk function of ˆβ S nk) can be expressed as R 4 ˆβ S nk); I p ) = Differentiating 4.42) with respect to k gives R 4 ˆβ S nk); I p ) k = 2 1 ] σzz λ λ i + k) 2 i q 2)a ii) + k 2 θi ) 1 λ i + k) 3 kθ 2 i σ zz λ i q 2)a ii) ]. 4.43) A sufficient condition for 4.43) to be negative is that k 0, k 6 ) where Thus ˆβ S nk) dominates ˆβ S n for k 0, k 6 ). k 6 = σ zz min 1 i p λ i q 2)a ii]. 4.44) max 1 i p θi 2 Case 2: Under the alternative hypothesis H 1 : Hβ h Using Theorem 3 again, the risk function of ˆβ S nk) can be expressed as R 4 ˆβ S nk); I p ) 4.45) 1 = λ i + k) 2 { ) ]} σ zz λ i q 2)a ii q 2)Eχ 4 q+2 2 )δ 2 i )] )Eχ σ zz a q+4 2 )] ] ii +2q 2)kθ i λ i δi Eχ 4 q+2 2 )] + k 2 θi 2. Differentiating 4.45) with respect to k gives R 4 ˆβ S nk); I p ) k = 2 1 { kλi θ λ i + k) 3 i θi q 2)δi Eχ 4 q+2 2 )] ] 4.46) q 2)Eχ 4 { σ zz λi q 2)a ii )δ 2 i σ zz a ii q 2)θ i λ 2 i δi Eχ 4 q+2 2 )] }. q+2 2 )] ) 2 2 )Eχ 4 q+4 2 )] ]} 23

25 where and A sufficient condition for 4.46) to be negative is that k < k 7 2 ) where k 7 2 ) = f 3 2 ) g 2 2 ), 4.47) { { f 3 2 ) = min σzz λi q 2)σ zz a ii q 2)Eχ 4 q+2 2 )] 4.48) 1 i p ) ]} )δ 2 i )Eχ σ zz a q+4 2 )] ii +q 2)θ i λ 2 i δi Eχ 2 q+2 2 )] } { g 2 2 ) = max λi θ i θi q 2)δi Eχ 4 q+2 2 )] }]. 4.49) 1 i p Suppose k > 0, then the following statements hold true following Kaciranlar, Sakallioglu, Akdeniz, Styan and Werner 1999): 1. If g 2 2 ) > 0, it follows that for each k > 0 with k < k 7 2 ), ˆβ S nk) has smaller risk than that of ˆβ S n. 2. If g 2 ) < 0, it follows that for each k > 0 with k > k 7 ), ˆβ S nk) has smaller risk than that of ˆβ S n. To find a sufficient condition on 2, consider the difference in the risks of ˆβ S nk) and ˆβ S n as Rˆβ S nk); I p ) Rˆβ S n; I p ) = σ zz trrk)c 1 Rk) ) trc 1 ) ] 4.50) +q 2)σ zz tra) trrk)ark) )] { 2Eχ 2 q+2 2 )] q 2)Eχ 4 q+2 2 )] } q 2 4)δ I p Rk) Rk)]δEχ 4 q+4 2 )] + k 2 β C 2 k)β +2q 2)kδ Rk) C 1 k)βeχ 2 q+2 2 )]. The difference will be non-positive when δ I p Rk) Rk)]δ 24 f 4 2 ) q 2 4)Eχ 4 q+4 2 )], 4.51)

26 where f 4 2 ) = σ zz trrk)c 1 Rk) ) trc 1 )] +q 2)σ zz tra) trrk)ark) )] { 2Eχ 2 q+2 2 )] q 2)Eχ 4 q+2 2 )] } +k 2 β C 2 k)β + 2q 2)kδ Rk) C 1 k)βeχ 2 q+2 2 )]. Since 2 > 0, we assume that the numerator of 4.51) is positive. Then the ˆβ S n is superior to ˆβ S nk) when 2 f 4 2 ) q 2 4)Ch max I p Rk) Rk))C 1 ]Eχ 4 q+4 2 )] = 2 5k), say where Ch max M) is the maximum characteristic root of the matrix M). However, ˆβ S n is superior to ˆβ S nk) when 2 < f 4 2 ) q 2 4)Ch min I p Rk) Rk))C 1 ]Eχ 4 q+4 2 )], where Ch min M) is the minimum characteristic root of the matrix M). 4.6 Comparison of ˆβ S nk) with β n k) and ˆβ n k): Comparison of ˆβ S nk) and β n k): First we compare ˆβ S nk) and β n k). Consider the difference in the risks of ˆβ S nk) and β n k) as R 1 β n k); I p ) R 4 ˆβ S k); I p ) = 4.52) 1 { q 2)σzz λ 2 λ i + k) 2 i a ii q 2)Eχ 4 q+2 2 )] ) ]] )δ 2 i )Eχ σ zz a q+4 2 )] ii 2q 2)kθ i λ i δi Eχ 2 q+2 2 )] }. 25

27 where where A sufficient condition for the risk difference to be non-negative whenever 0 < k < k 8 2 ) k 8 2 ) = f 5 2 ) g 3 2 ), 4.53) { f 5 2 ) = min σzz a iiλ 2 i q 2)Eχ 4 q+2 2 )]] 4.54) 1 i p ) } )δ 2 i )Eχ σ zz a q+4 2 )], ii and g 3 2 ) = max 2θi λ i δi Eχ 2 q+2 2 )] ]. 4.55) 1 i p Suppose k > 0, then the following statements hold true following Kaciranlar, Sakallioglu, Akdeniz, Styan and Werner 1999): 1. If g 3 2 ) > 0, it follows that for each k > 0 with k < k 8 2 ), ˆβ S nk) has smaller risk than that of β n k). 2. If g 3 2 ) < 0, it follows that for each k > 0 with k > k 8 2 ), ˆβ S nk) has smaller risk than that of β n k). Note that the risk difference 4.52) under H 0 : Hβ = h is q 2)σ zz λ 2 i a ii qλ i + k) 2 0. Therefore ˆβ S nk) always dominates β n k) under the null hypothesis for q 3. 26

28 4.6.2 Comparison of ˆβ S nk) and ˆβ n k): Now consider the comparison of ˆβ S nk) and ˆβ n k). Consider the difference in the risks of ˆβ S nk) and ˆβ n k) R 4 ˆβ S nk); I p ) R 2 ˆβ n k); I p ) = 4.56) 1 { σzz λ 2 λ i + k) 2 i a ii 1 q 2) q 2)Eχ 4 q+2 2 )] ) ]] )δ 2 i )Eχ σ zz a q+4 2 )] ii λ 2 i δi 2 2kθ i λ i δi 1 q 2)Eχ 2 q+2 2 )]] }. where A sufficient condition for the difference to be non-negative is that 0 < k < k 9 2 ) where k 9 2 ) = f 6 2 ) g 4 2 ), 4.57) { { f 6 2 ) = max σzz a iiλ 2 i 1 q 2) q 2)Eχ 4 q+2 2 )] ] 4.58) 1 i p + 1 q + ) } } 2)λ2 i δi )Eχ σ zz a q+4 2 )] λ 2 i δi 2, ii with g 4 2 ) = min 2θi λ i δi 1 q 2)Eχ 2 q+2 2 )]] ]. 4.59) 1 i p Suppose k > 0, then the following statements hold true: 1. If g 4 2 ) > 0, it follows that for each k > 0 with k < k 9 2 ), ˆβ S nk) has smaller risk than that of ˆβ n k). 2. If g 4 2 ) < 0, it follows that for each k > 0 with k > k 9 2 ), ˆβ n k) has smaller risk than that of ˆβ S nk). Note that the risk difference 4.56) under H 0 : Hβ = h is 2σ zz q a ii λ i + k)

29 Thus ˆβ n k) is superior to ˆβ S nk) under H 0 : Hβ = h. Consider the difference in the risks of ˆβ S nk) and β P T n k) from Theorem 3iii) and Theorem 3iv) as R β S nk); I p ) Rˆβ P T n k); I p ) 4.60) 1 { = σzz a λ i + k) 2 ii Hq+2 χ 2 qα); 2 ] ) ]] q 2) q 2)Eχ 4 q+2 2 )δ 2 i )] )Eχ σ zz a q+4 2 )] ii λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ] 2kθ i λ i δi Hq+2 χ 2 qα); 2 ] q 2)Eχ 2 q+2 2 )] ]}. where We define k 10 α, 2 ) = f 8α, 2 ) g 5 α, 2 ), 4.61) { { f 8 α, 2 ) = max σzz a iiλ 2 i Hq+2 χ 2 qα); 2 ] q 2) q 2)Eχ 4 q+2 2 )] ] 4.62) 1 i p ) } )δ 2 i )Eχ σ zz a q+4 2 )] ii λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ]}. and g 5 2 ) = min 2θi λ i δi 2 Hq+2 χ 2 qα); 2 ] q 2)Eχ 4 q+2 2 )] ]]. 4.63) 1 i p Suppose k > 0, then the following statements hold true: 1. If g 5 2 ) > 0, it follows that for each k > 0 with k > k 10 α, 2 ), ˆβ S nk) has smaller risk than that of ˆβ P T n k). 2. If g 5 α, 2 ) < 0, it follows that for each k > 0 with k < k 10 α, 2 ), ˆβ S nk) has smaller risk than that of ˆβ P T n k). Remark: Now we obtain the conditions for the superiority of ˆβ S nk) over ˆβ n k) when α = 0 and of ˆβ S nk) over β n k) when α = 1. 28

30 The risk difference 4.60) under H 0 : Hβ = h reduces to )] 2H q+2 χ 2 q 2 qα); 0] σ q zz a ii. λ i + k) 2 Therefore the risk of ˆβ S nk) is smaller than the risk of ˆβ P T n k) when ] q 2 χ 2 qα) Hq+2 1, 0 q 4.64) where χ 2 qα) is the upper α-level critical value from the chi-square distribution with q degrees of freedom. Otherwise the risk of ˆβ P T n k) is smaller than the risk of ˆβ S nk). 4.7 Comparison of ˆβ S+ n k) with ˆβ S+ n, β n k), ˆβ n k), ˆβ P T k) and ˆβ S nk): n Comparison of S+ ˆβ n k) and ˆβ S nk): Case 1: Under the null hypothesis H 0 : Hβ = h The risk function of Rˆβ S nk); I p ) = S+ ˆβ n k)) can be expressed as 1 λ i + k) 2 σ zz a iie {σ zz λ i q 2 1 q 2 Hχ2 α); 0) Differentiating 4.65) with respect to k gives Rˆβ S+ n k); I p ) k = 2 E q ) ] a ii + k 2 θi ) ) 2 I kλ i θ 2i σ zz λ i q 2 q 1 λ i + k) 3 1 q 2 H 1 χ 2 α); 0) ] 2 I H q+2 χ 2 α); 0) < q 2 ) ]}. ) a iiλ 2 i a iiλ 2 i 4.66) H q+2 χ 2 α); 0) < q 2 A sufficient condition for 4.66) to be negative is that k 0, k 11 α)) where ) ]. k 11 α) = 4.67) ) ) ] 2 ] q 2 min 1 i p σ zz {1 } λ q i a ii λ i a q 2 iie 1 H 1 q+2 q+2χ 2 qα); 0) I H q+2 χ 2 qα); 0) < q 2 q+2. max 1 i p θi 2 29

31 Suppose the numerator of 4.67) is positive, then to the region k 0, k 11 α)). ˆβ S+ n k) dominates Case 2: Under the alternative hypothesis H 1 : Hβ h S+ ˆβ n when k > 0 belongs The risk function of S+ ˆβ n k) can be expressed as Rˆβ S+ n k); I p ) = Rˆβ S nk); I p ) 4.68) {{ 1 σ λ i + k) 2 zz a iiλ 2 i E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) q 2 ) ] +λ 2 i δi 2 E 1 q 2 2 q + 4 χ 2 q+4 )) 2 I χ 2 q+4 2 ) q 2 ) ]} q + 4 ) )] q 2 +2λ 2 i δi 2 E +2kθ i λ i δ i E χ 2 q+2 2 ) 1 q 2 χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) q 2 ) I χ 2 q+2 2 ) q 2 )]} where Rˆβ S nk); I p ) is given by 4.46). Differentiating Rˆβ S+ n k); I p ) with respect to k, we obtain Differentiating 4.45) with respect to k gives Rˆβ S+ n k); I p ) k 1 +2 λ i + k) 3 +λ 2 i δi 2 E θ i 2δ i )λ 2 i δ i E +kθ i λ i δ i E = Rˆβ S nk); I p ) {{ k σ zz a iiλ 2 i E 1 q 2 2 q + 4 χ 2 q+4 )) 2 I q 2 q + 4 χ 2 q 2 χ 2 q+2 2 ) 1 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) q 2 ) ]} ) q+2 2 ) 1 ) χ 2 q+4 2 ) q 2 q + 4 where Rˆβ S nk); I p )/ k is given by 4.46). We define I χ 2 q+2 2 ) q 2 q + 4 )]} I χ 2 q+2 2 ) q 2 )] ) ] k 12 2 ) = f 9 2 ) g 6 2 ), 4.69) 30

32 where { { f 9 α, 2 ) = min σzz λi q 2)a ii 1 i p + 1 )λ iδi 2 2σ zz 2 a ii 1 q 2 a iie λ 2 i δi 2 E q 2)Eχ 2 q+2 2 )] ] 4.70) ) 2 2 )Eχ 4 q+4 2 )] 2 χ 2 q+2 )) 2 I 1 q 2 2 q + 4 χ 2 q+4 )) 2 I χ 2 q+2 2 ) q 2 ) ] χ 2 q+4 2 ) q 2 q + 4 ) q 2 +θ i 2δi )λ 2 i δi E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) q 2 )] +dqθ i δi λ 2 i Eχ 2 q+2 2 )] }} 4.71) ) ] and { ) q 2 g 6 α, 2 ) = max λ i θ i θ i + δi E 1 i p χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) q 2 ) q 2)δ i E χ 2 q+2 2 ) ]}]. 4.72) Suppose k > 0, then the following statements hold true following Kaciranlar, Sakallioglu, Akdeniz, Styan and Werner 1999): 1. If g 6 2 ) > 0, it follows that for each k > 0 with k < k 12 2 ), than that of ˆβ S+ n. S+ ˆβ n k) has smaller risk 2. If g 6 2 ) < 0, it follows that for each k > 0 with k > k 12 2 ), than that of S+ ˆβ n k). ˆβ S+ n has smaller risk To obtain a condition on 2, we consider the risk difference between β S+ n k) and β S+ n 31

33 as follows: Rˆβ S+ n k); I p ) Rˆβ S+ n ; I p ) 4.73) = σ zz trrk)c 1 Rk) ) trc 1 ) ] +σ zz tra) trrk) ARk))] { 2Eχ 2 q+2 2 )] q 2)Eχ 4 q+2 2 )] } +E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) < q 2 ) ] { ) q 2 +2kδ Rk) C 1 k)β q 2) E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 )]} δ I p Rk) Rk)]δE 2 ) where E 2 ) = q 2) E 1 q 2 2 q + 4 χ 2 q+2 )) 2 I χ 2 q+4 2 ) < q 2 q + 4 ) q 2 2 χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 ). ) ] where The right hand side of 4.73) is non-positive when δ I p Rk) Rk)]δ f 10 2 ) E 2 ) f 10 2, k) = σ zz trrk) C 1 Rk)) trc 1 ) ] +σ zz tra) trrk) ARk))] { 2Eχ 2 q+2 2 )] q 2)Eχ 4 q+2 2 )] } +E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) < q 2 ) ] +2kδ Rk) C 1 k)β {q 2) ) q 2 E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 )]}. 4.74) Since 2 > 0, assume that both the numerator and the denominator of 4.74) are positive or negative respectively. Then and ˆβ S+ n dominates 2 > 2 9k) = S+ ˆβ n k) when 2 < 2 10k) = ˆβ S+ n k) dominates ˆβ S+ n when f 10 2, k) Ch max I p Rk) Rk)C 1 ]E 2 ) 4.75) f 10 2, k) Ch min I p Rk) Rk)C 1 ]E 2 ). 4.76) 32

34 4.7.2 Comparison of Since β S+ n β n k) and ˆβ S+ n k) with ˆβ P T k) and ˆβ S nk): n k) and ˆβ n k) are the particular cases of ˆβ P T n k), therefore the comparison between ˆβ S+ n k) as well as between ˆβ n k) and S+ ˆβ n k) can be skipped Comparison between ˆβ S+ n k) and ˆβ P T k): n Case 1: Under the null hypothesis H 0 : Hβ = h The risk difference is = Rˆβ S+ n k); I p ) Rˆβ P T n k); I p ) 4.77) σ zz a iiλ 2 { i Hq+2 χ 2 λ i + k) qα); 0] 2 q 2) E 1 q 2 H 1 q+2 χ 2 q α), 0 )) ] 2 I χ 2 q+2 q 2 ) ]} 0, for all α satisfying the condition { α : χ 2 qα) H 1 q+2 q 2 + E Thus the risk of ˆβ P T n k) is smaller than the risk of satisfies the condition 4.78). However the risk of 1 q 2 2 q+20)) χ 2 I H q+2 0) q 2 ) ])}. 4.78) ˆβ S+ n S+ ˆβ n k) when the critical value χ 2 qα) when the critical value χ 2 qα) satisfies 4.78) with reverse inequality sign. Case 2: Under the alternative hypothesis H 1 : Hβ h k) is smaller than the risk of ˆβ P T n k) 33

35 where and Under the alternative hypothesis, the difference in the risks of ˆβ S+ n k) and ˆβ P T k) is R β S+ n k); I p ) Rˆβ P T n k); I p ) 4.79) = σ zz trrk)ark) ] { H q+2 χ 2 qα); 2 ] q 2) 2Eχ 2 q+2 2 )] q 2)Eχ 4 q+2 2 )] ) E 1 q 2 χ 2 q+2 2 )) 2 I χ 2 q+2 2 ) < q 2 ) ]} δ Rk) Rk)δ { 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] q 2) 2Eχ 2 q+2 2 )] 2Eχ 4 q+4 2 )] + q 2)Eχ 4 q+2 2 )] ) +E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 < q 2 ) ] ) q 2 +2E χ 2 q+2 2 ) 1 I χ 2 q+2 < q 2 )]} +2kδ Rk) Ck) β { q 2)Eχ 2 q+2 2 )] ) q 2 H q+2 χ 2 qα); 2 ] E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 )]}. The right hand side of 4.79) will be non-positive when δ Rk) Rk)δ f 11α, 2 ) g 7 α, 2 ), 4.80) f 11 α, 2 ) = σ zz trrk)ark) ] { H q+2 χ 2 qα); 2 ] 4.81) q 2)2Eχ 2 q+2 2 )] q 2)Eχ 4 q+2 2 )] E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) < q 2 ) ]} +2kδ Rk) Ck) β { q 2)Eχ 2 q+2 2 )] H q+2 χ 2 qα); 2 ] ) q 2 E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 )]} g 7 α, 2 ) = 2H q+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] q 2 2)Eχ 4 q+4 2 )] 4.82) +E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+4 2 ) < q 2 ) ] ) q 2 +2E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 )]}. 34 n

36 Since 2 > 0, assume that both the numerator and the denominator of 4.80) are positive or negative respectively. Then ˆβ S+ n k) dominates ˆβ P T n k) when α, k) = f 11 α, 2 ) Ch max Rk) Rk)C 1 ]g 7 α, 2 ) 4.83) and ˆβ P T n k) dominates S+ ˆβ n k) when 2 < 2 12α, k) = f 11 2, k) Ch min Rk) Rk)C 1 ]g 7 α, 2 ). 4.84) Now consider the difference in the risk functions of eignevalues as follows: ˆβ S+ n k) and ˆβ P T k) as a function of n Rˆβ S+ n k); I p ) Rˆβ P T n k); I p ) 4.85) 1 {{ { = σzz a λ i + k) iiλ 2 2 i Hq+2 χ 2 qα); 2 ] q 2) q 2)Eχ 4 q+2 2 )] ) ]} )δ 2 i )Eχ σ zz a q+4 2 )] ii λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ] { σ zz a iiλ 2 i E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) q 2 ) ] +λ 2 i δi 2 E 1 q 2 2 χ 2 q+4 )) 2 I χ 2 q+4 2 ) q 2 ) ]} ) )] q 2 2λ 2 i δi 2 E q + 4 χ 2 q+4 2 ) 1 I { 2kθ i λ i δi Hq+2 χ 2 qα); 2 ] q 2)Eχ 2 ) q 2 +E χ 2 q+2 2 ) 1 I χ 2 q+4 2 ) q 2 q + 4 q+2 2 )] χ 2 q+2 2 ) q 2 )]}. Now we define k 13 α, 2 ) = f 12α, 2 ) g 8 α, 2 ), 4.86) 35

37 where and { { f 12 α, 2 ) = max σzz a iiλ 2 i Hq+2 χ 2 qα); 2 ] q 2) q 2)Eχ 4 q+2 2 )] ] 4.87) 1 i p ) } )δ 2 i )Eχ σ zz a q+4 2 )] ii λ 2 i δi 2 2Hq+2 χ 2 qα); 2 ] H q+4 χ 2 qα); 2 ] ] { σ zz a iiλ 2 i E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) q 2 ) ] +λ 2 i δi 2 E 1 q 2 2 q + 4 χ 2 q+4 )) 2 I χ 2 q+4 2 ) q 2 ) ]} q + 4 ) )]} q 2 2λ 2 i δi 2 E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) q 2 { g 8 α, 2 ) = min 2λi θ i δi Hq+2 χ 2 qα); 2 ] q 2)Eχ 2 q+2 2 )] 4.88) 1 i p ) q 2 +E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) q 2 )]}]. Suppose k > 0, then the following statements hold true following Kaciranlar, Sakallioglu, Akdeniz, Styan and Werner 1999): 1. If g 8 α, 2 ) > 0, it follows that for each k > 0 with k < k 13 α, 2 ), risk than that of ˆβ P T n k). 2. If g 8 α, 2 ) < 0, it follows that for each k > 0 with k > k 13 α, 2 ), risk than that of ˆβ P T n k). S+ ˆβ n k) has smaller S+ ˆβ n k) has smaller S+ Remark: For α = 0, we obtain the condition for the superiority of ˆβ n k) over ˆβ n k) and S+ for α = 1, we obtain the superiority condition of ˆβ n k) over β n k). 36

38 4.7.4 Comparison of S+ ˆβ n k) and ˆβ S nk): The risk difference of S+ ˆβ n k) and ˆβ S nk) is Rˆβ S+ n k); I p ) Rˆβ S nk); I p ) 4.89) { = σ zz trrk) ARk)]E 1 q 2 2 χ 2 q+2 )) 2 I χ 2 q+2 2 ) < q 2 ) ] +δ Rk) Rk)δ]E 1 q 2 2 q + 4 χ 2 q+4 )) 2 I χ 2 q+4 2 ) < q 2 ) ]} q + 4 ) q 2 2δ Rk) Rk)δ]E χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 )] ) q 2 2kδ Rk) C 1 k)βe χ 2 q+2 2 ) 1 I χ 2 q+2 2 ) < q 2 )]. Case 1: Suppose δ Rk) C 1 k)β > 0, then the right hand side of 4.89) is negative, since the expectation of a positive random variable is positive. Thus for all 2 and k, Therefore under this condition, the Rˆβ S+ n k); I p ) Rˆβ S nk); I p ). S+ ˆβ n k) not only confirms the inadmissibility of ˆβ S nk) but also provides a simple superior estimator for the ill-conditioned data. Case 2: Suppose δ Rk) C 1 k)β < 0, then the right hand side of 4.89) is positive when where f 13 α, 2 ) = q 2 2kδ Rk) C 1 k)βe χ 2 σ zz trrk) ARk)]E δ Rk) Rk)δ f 13α, 2 ) g 9 α, 2 ), 4.90) ) q+2 2 ) 1 1 q 2 χ 2 q+2 2 )) 2 I I χ 2 q+2 2 ) < q 2 )] χ 2 q+2 2 ) < q 2 ) ] and g 9 α, 2 ) = { E 2E 1 q 2 2 χ 2 q+2 )) 2 I q 2 χ 2 q+2 2 ) 1 37 ) I χ 2 q+2 2 ) < q 2 χ 2 q+2 < q 2 ) ] )]}.

39 Since 2 > 0, assume that both the numerator and the denominator of 4.90) are positive or negative respectively. Then S+ ˆβ n k) dominates ˆβ S nk) when 2 > 2 13α, k) = f 13 α, 2 ) Ch max Rk) Rk)C 1 ]g 9 α, 2 ) 4.91) and ˆβ S nk) dominates S+ ˆβ n k) when 2 < 2 14α, k) = f 13 2, k) Ch min Rk) Rk)C 1 ]g 9 α, 2 ). 4.92) Thus, it is observed that the ˆβ P T n k) and ˆβ S nk). S+ ˆβ n k) does not uniformly dominates the β n k), ˆβ n k), 5 Summary and Conclusions In this paper, we have combined the idea of the preliminary test and the Stein-rule estimator with the RR approach to obtain a better estimator for the regression parameters β in a multiple measurement error model. Accordingly, we considered five RRR-estimators, namely, T β n k), ˆβn k), ˆβP n k), ˆβS nk) and S+ ˆβ n k) for estimating the parameters β) when it is suspected that the parameter β may belong to a linear subspace defined by Hβ = h. The performances of the estimators are compared based on the quadratic risk function under both null and alternative hypotheses. Under the restriction H 0, the ˆβ n k) performed the best compared with other estimators, however, it performed the worst even when 2 moves away from its origin. Note under the risk of β n k) is constant while the risk of ˆβ n k) is unbounded as 2 goes to. Also under H 0, the risk of ˆβ P T n k) is smaller than the risks of ˆβ S nk) and ˆβ S+ n k) for satisfying 4.78) for q 3. Thus, neither ˆβ P T n k) nor S+ ˆβ n k) nor ˆβ S S+ nk) dominate each other uniformly. Note that the application of ˆβ n k) and ˆβ S nk) is constrained by the requirement q 3, while ˆβ P T n k) does not need such a constraint. However, the choice of the level of significance of the test has a dramatic impact on the nature of the risk function for the ˆβ P T n k) estimator. Thus when q 3, one would use ˆβ S+ n k); otherwise one uses ˆβ P T n k) with some optimum size α. 38

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh Journal of Statistical Research 007, Vol. 4, No., pp. 5 Bangladesh ISSN 056-4 X ESTIMATION OF AUTOREGRESSIVE COEFFICIENT IN AN ARMA(, ) MODEL WITH VAGUE INFORMATION ON THE MA COMPONENT M. Ould Haye School

More information

Stein-Rule Estimation under an Extended Balanced Loss Function

Stein-Rule Estimation under an Extended Balanced Loss Function Shalabh & Helge Toutenburg & Christian Heumann Stein-Rule Estimation under an Extended Balanced Loss Function Technical Report Number 7, 7 Department of Statistics University of Munich http://www.stat.uni-muenchen.de

More information

Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances

Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances METRON - International Journal of Statistics 2008, vol. LXVI, n. 3, pp. 285-298 SHALABH HELGE TOUTENBURG CHRISTIAN HEUMANN Mean squared error matrix comparison of least aquares and Stein-rule estimators

More information

Shrinkage Estimation of the Slope Parameters of two Parallel Regression Lines Under Uncertain Prior Information

Shrinkage Estimation of the Slope Parameters of two Parallel Regression Lines Under Uncertain Prior Information Shrinkage Estimation of the Slope Parameters of two Parallel Regression Lines Under Uncertain Prior Information Shahjahan Khan Department of Mathematics & Computing University of Southern Queensland Toowoomba,

More information

Chapter 14 Stein-Rule Estimation

Chapter 14 Stein-Rule Estimation Chapter 14 Stein-Rule Estimation The ordinary least squares estimation of regression coefficients in linear regression model provides the estimators having minimum variance in the class of linear and unbiased

More information

Journal of Multivariate Analysis. Use of prior information in the consistent estimation of regression coefficients in measurement error models

Journal of Multivariate Analysis. Use of prior information in the consistent estimation of regression coefficients in measurement error models Journal of Multivariate Analysis 00 (2009) 498 520 Contents lists available at ScienceDirect Journal of Multivariate Analysis journal homepage: www.elsevier.com/locate/jmva Use of prior information in

More information

Preliminary test almost unbiased ridge estimator in a linear regression model with multivariate Student-t errors

Preliminary test almost unbiased ridge estimator in a linear regression model with multivariate Student-t errors ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 1, Number 1, 011 Available online at www.math.ut.ee/acta/ Preliminary test almost unbiased ridge estimator in a linear regression model

More information

Improved Liu Estimators for the Poisson Regression Model

Improved Liu Estimators for the Poisson Regression Model www.ccsenet.org/isp International Journal of Statistics and Probability Vol., No. ; May 202 Improved Liu Estimators for the Poisson Regression Model Kristofer Mansson B. M. Golam Kibria Corresponding author

More information

Bayesian Estimation of Regression Coefficients Under Extended Balanced Loss Function

Bayesian Estimation of Regression Coefficients Under Extended Balanced Loss Function Communications in Statistics Theory and Methods, 43: 4253 4264, 2014 Copyright Taylor & Francis Group, LLC ISSN: 0361-0926 print / 1532-415X online DOI: 10.1080/03610926.2012.725498 Bayesian Estimation

More information

Multicollinearity and A Ridge Parameter Estimation Approach

Multicollinearity and A Ridge Parameter Estimation Approach Journal of Modern Applied Statistical Methods Volume 15 Issue Article 5 11-1-016 Multicollinearity and A Ridge Parameter Estimation Approach Ghadban Khalaf King Khalid University, albadran50@yahoo.com

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

COMBINING THE LIU-TYPE ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR

COMBINING THE LIU-TYPE ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR Noname manuscript No. (will be inserted by the editor) COMBINING THE LIU-TYPE ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR Deniz Inan Received: date / Accepted: date Abstract In this study

More information

Testing Equality of Two Intercepts for the Parallel Regression Model with Non-sample Prior Information

Testing Equality of Two Intercepts for the Parallel Regression Model with Non-sample Prior Information Testing Equality of Two Intercepts for the Parallel Regression Model with Non-sample Prior Information Budi Pratikno 1 and Shahjahan Khan 2 1 Department of Mathematics and Natural Science Jenderal Soedirman

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Research Article On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in Linear Regression Model

Research Article On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in Linear Regression Model Applied Mathematics, Article ID 173836, 6 pages http://dx.doi.org/10.1155/2014/173836 Research Article On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in

More information

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Jeremy S. Conner and Dale E. Seborg Department of Chemical Engineering University of California, Santa Barbara, CA

More information

IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS

IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS REVSTAT Statistical Journal Volume 15, Number, April 017, 51-76 IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS Authors: Bahadır Yüzbaşı Department of Econometrics, Inonu University, Turkey b.yzb@hotmail.com

More information

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that Linear Regression For (X, Y ) a pair of random variables with values in R p R we assume that E(Y X) = β 0 + with β R p+1. p X j β j = (1, X T )β j=1 This model of the conditional expectation is linear

More information

Generalized Ridge Regression Estimator in Semiparametric Regression Models

Generalized Ridge Regression Estimator in Semiparametric Regression Models JIRSS (2015) Vol. 14, No. 1, pp 25-62 Generalized Ridge Regression Estimator in Semiparametric Regression Models M. Roozbeh 1, M. Arashi 2, B. M. Golam Kibria 3 1 Department of Statistics, Faculty of Mathematics,

More information

Ridge Regression and Ill-Conditioning

Ridge Regression and Ill-Conditioning Journal of Modern Applied Statistical Methods Volume 3 Issue Article 8-04 Ridge Regression and Ill-Conditioning Ghadban Khalaf King Khalid University, Saudi Arabia, albadran50@yahoo.com Mohamed Iguernane

More information

Evaluation of a New Estimator

Evaluation of a New Estimator Pertanika J. Sci. & Technol. 16 (2): 107-117 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Evaluation of a New Estimator Ng Set Foong 1 *, Low Heng Chin 2 and Quah Soon Hoe 3 1 Department of Information

More information

Comparison of Some Improved Estimators for Linear Regression Model under Different Conditions

Comparison of Some Improved Estimators for Linear Regression Model under Different Conditions Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-24-2015 Comparison of Some Improved Estimators for Linear Regression Model under

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Sociedad de Estadística e Investigación Operativa

Sociedad de Estadística e Investigación Operativa Sociedad de Estadística e Investigación Operativa Test Volume 14, Number 2. December 2005 Estimation of Regression Coefficients Subject to Exact Linear Restrictions when Some Observations are Missing and

More information

Statistical Inference On the High-dimensional Gaussian Covarianc

Statistical Inference On the High-dimensional Gaussian Covarianc Statistical Inference On the High-dimensional Gaussian Covariance Matrix Department of Mathematical Sciences, Clemson University June 6, 2011 Outline Introduction Problem Setup Statistical Inference High-Dimensional

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

The outline for Unit 3

The outline for Unit 3 The outline for Unit 3 Unit 1. Introduction: The regression model. Unit 2. Estimation principles. Unit 3: Hypothesis testing principles. 3.1 Wald test. 3.2 Lagrange Multiplier. 3.3 Likelihood Ratio Test.

More information

COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS

COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS Communications in Statistics - Simulation and Computation 33 (2004) 431-446 COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS K. Krishnamoorthy and Yong Lu Department

More information

APPLICATION OF RIDGE REGRESSION TO MULTICOLLINEAR DATA

APPLICATION OF RIDGE REGRESSION TO MULTICOLLINEAR DATA Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan. Vol.15, No.1, June 2004, pp. 97-106 ISSN 1021-1012 APPLICATION OF RIDGE REGRESSION TO MULTICOLLINEAR DATA G. R. Pasha 1 and

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

Research Article An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model

Research Article An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model e Scientific World Journal, Article ID 206943, 8 pages http://dx.doi.org/10.1155/2014/206943 Research Article An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model Jibo

More information

Improved Ridge Estimator in Linear Regression with Multicollinearity, Heteroscedastic Errors and Outliers

Improved Ridge Estimator in Linear Regression with Multicollinearity, Heteroscedastic Errors and Outliers Journal of Modern Applied Statistical Methods Volume 15 Issue 2 Article 23 11-1-2016 Improved Ridge Estimator in Linear Regression with Multicollinearity, Heteroscedastic Errors and Outliers Ashok Vithoba

More information

Least squares: introduction to the network adjustment

Least squares: introduction to the network adjustment Least squares: introduction to the network adjustment Experimental evidence and consequences Observations of the same quantity that have been performed at the highest possible accuracy provide different

More information

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods Chapter 4 Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods 4.1 Introduction It is now explicable that ridge regression estimator (here we take ordinary ridge estimator (ORE)

More information

SOME NEW PROPOSED RIDGE PARAMETERS FOR THE LOGISTIC REGRESSION MODEL

SOME NEW PROPOSED RIDGE PARAMETERS FOR THE LOGISTIC REGRESSION MODEL IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN(E): 2321-8851; ISSN(P): 2347-4580 Vol. 3, Issue 1, Jan 2015, 67-82 Impact Journals SOME NEW PROPOSED

More information

Nonlinear Inequality Constrained Ridge Regression Estimator

Nonlinear Inequality Constrained Ridge Regression Estimator The International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat2014) 24 28 August 2014 Linköping, Sweden Nonlinear Inequality Constrained Ridge Regression Estimator Dr.

More information

Alternative Biased Estimator Based on Least. Trimmed Squares for Handling Collinear. Leverage Data Points

Alternative Biased Estimator Based on Least. Trimmed Squares for Handling Collinear. Leverage Data Points International Journal of Contemporary Mathematical Sciences Vol. 13, 018, no. 4, 177-189 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijcms.018.8616 Alternative Biased Estimator Based on Least

More information

Preliminary testing of the Cobb-Douglas production function and related inferential issues

Preliminary testing of the Cobb-Douglas production function and related inferential issues Preliminary testing of the Cobb-Douglas production function and related inferential issues J. KLEYN 1,M.ARASHI,A.BEKKER,S.MILLARD Department of Statistics, Faculty of Natural and Agricultural Sciences,University

More information

Measuring Local Influential Observations in Modified Ridge Regression

Measuring Local Influential Observations in Modified Ridge Regression Journal of Data Science 9(2011), 359-372 Measuring Local Influential Observations in Modified Ridge Regression Aboobacker Jahufer 1 and Jianbao Chen 2 1 South Eastern University and 2 Xiamen University

More information

The regression model with one fixed regressor cont d

The regression model with one fixed regressor cont d The regression model with one fixed regressor cont d 3150/4150 Lecture 4 Ragnar Nymoen 27 January 2012 The model with transformed variables Regression with transformed variables I References HGL Ch 2.8

More information

Matematické Metody v Ekonometrii 7.

Matematické Metody v Ekonometrii 7. Matematické Metody v Ekonometrii 7. Multicollinearity Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Matematické Metody v Ekonometrii 7. zimní semestr 2016/2017 1 / 15 One of the assumptions

More information

Least Squares Estimation-Finite-Sample Properties

Least Squares Estimation-Finite-Sample Properties Least Squares Estimation-Finite-Sample Properties Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Finite-Sample 1 / 29 Terminology and Assumptions 1 Terminology and Assumptions

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna November 23, 2013 Outline Introduction

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

ECE 275A Homework 6 Solutions

ECE 275A Homework 6 Solutions ECE 275A Homework 6 Solutions. The notation used in the solutions for the concentration (hyper) ellipsoid problems is defined in the lecture supplement on concentration ellipsoids. Note that θ T Σ θ =

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Matrix Algebra, part 2

Matrix Algebra, part 2 Matrix Algebra, part 2 Ming-Ching Luoh 2005.9.12 1 / 38 Diagonalization and Spectral Decomposition of a Matrix Optimization 2 / 38 Diagonalization and Spectral Decomposition of a Matrix Also called Eigenvalues

More information

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises LINEAR REGRESSION ANALYSIS MODULE XVI Lecture - 44 Exercises Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Exercise 1 The following data has been obtained on

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Empirical Economic Research, Part II

Empirical Economic Research, Part II Based on the text book by Ramanathan: Introductory Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 7, 2011 Outline Introduction

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 2 Jakub Mućk Econometrics of Panel Data Meeting # 2 1 / 26 Outline 1 Fixed effects model The Least Squares Dummy Variable Estimator The Fixed Effect (Within

More information

EFFICIENCY of the PRINCIPAL COMPONENT LIU- TYPE ESTIMATOR in LOGISTIC REGRESSION

EFFICIENCY of the PRINCIPAL COMPONENT LIU- TYPE ESTIMATOR in LOGISTIC REGRESSION EFFICIENCY of the PRINCIPAL COMPONEN LIU- YPE ESIMAOR in LOGISIC REGRESSION Authors: Jibo Wu School of Mathematics and Finance, Chongqing University of Arts and Sciences, Chongqing, China, linfen52@126.com

More information

Merging Gini s Indices under Quadratic Loss

Merging Gini s Indices under Quadratic Loss Merging Gini s Indices under Quadratic Loss S. E. Ahmed, A. Hussein Department of Mathematics and Statistics University of Windsor Windsor, Ontario, CANADA N9B 3P4 E-mail: ahmed@uwindsor.ca M. N. Goria

More information

Ridge Estimator in Logistic Regression under Stochastic Linear Restrictions

Ridge Estimator in Logistic Regression under Stochastic Linear Restrictions British Journal of Mathematics & Computer Science 15(3): 1-14, 2016, Article no.bjmcs.24585 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org Ridge Estimator in Logistic Regression under

More information

Review of Econometrics

Review of Econometrics Review of Econometrics Zheng Tian June 5th, 2017 1 The Essence of the OLS Estimation Multiple regression model involves the models as follows Y i = β 0 + β 1 X 1i + β 2 X 2i + + β k X ki + u i, i = 1,...,

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 6 Jakub Mućk Econometrics of Panel Data Meeting # 6 1 / 36 Outline 1 The First-Difference (FD) estimator 2 Dynamic panel data models 3 The Anderson and Hsiao

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation Patrick Breheny February 8 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/27 Introduction Basic idea Standardization Large-scale testing is, of course, a big area and we could keep talking

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973]

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973] Stats 300C: Theory of Statistics Spring 2018 Lecture 20 May 18, 2018 Prof. Emmanuel Candes Scribe: Will Fithian and E. Candes 1 Outline 1. Stein s Phenomenon 2. Empirical Bayes Interpretation of James-Stein

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

Econ 510 B. Brown Spring 2014 Final Exam Answers

Econ 510 B. Brown Spring 2014 Final Exam Answers Econ 510 B. Brown Spring 2014 Final Exam Answers Answer five of the following questions. You must answer question 7. The question are weighted equally. You have 2.5 hours. You may use a calculator. Brevity

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013 18.S096 Problem Set 3 Fall 013 Regression Analysis Due Date: 10/8/013 he Projection( Hat ) Matrix and Case Influence/Leverage Recall the setup for a linear regression model y = Xβ + ɛ where y and ɛ are

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

MSE Performance and Minimax Regret Significance Points for a HPT Estimator when each Individual Regression Coefficient is Estimated

MSE Performance and Minimax Regret Significance Points for a HPT Estimator when each Individual Regression Coefficient is Estimated This article was downloaded by: [Kobe University] On: 8 April 03, At: 8:50 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 07954 Registered office: Mortimer House,

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 16, 2013 Outline Univariate

More information

Singular Value Decomposition Compared to cross Product Matrix in an ill Conditioned Regression Model

Singular Value Decomposition Compared to cross Product Matrix in an ill Conditioned Regression Model International Journal of Statistics and Applications 04, 4(): 4-33 DOI: 0.593/j.statistics.04040.07 Singular Value Decomposition Compared to cross Product Matrix in an ill Conditioned Regression Model

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection SG 21006 Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 28

More information

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Xiuming Zhang zhangxiuming@u.nus.edu A*STAR-NUS Clinical Imaging Research Center October, 015 Summary This report derives

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Linear Model Under General Variance

Linear Model Under General Variance Linear Model Under General Variance We have a sample of T random variables y 1, y 2,, y T, satisfying the linear model Y = X β + e, where Y = (y 1,, y T )' is a (T 1) vector of random variables, X = (T

More information

ECON 4160, Autumn term Lecture 1

ECON 4160, Autumn term Lecture 1 ECON 4160, Autumn term 2017. Lecture 1 a) Maximum Likelihood based inference. b) The bivariate normal model Ragnar Nymoen University of Oslo 24 August 2017 1 / 54 Principles of inference I Ordinary least

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Variable Selection in Restricted Linear Regression Models. Y. Tuaç 1 and O. Arslan 1

Variable Selection in Restricted Linear Regression Models. Y. Tuaç 1 and O. Arslan 1 Variable Selection in Restricted Linear Regression Models Y. Tuaç 1 and O. Arslan 1 Ankara University, Faculty of Science, Department of Statistics, 06100 Ankara/Turkey ytuac@ankara.edu.tr, oarslan@ankara.edu.tr

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Advanced Econometrics I

Advanced Econometrics I Lecture Notes Autumn 2010 Dr. Getinet Haile, University of Mannheim 1. Introduction Introduction & CLRM, Autumn Term 2010 1 What is econometrics? Econometrics = economic statistics economic theory mathematics

More information

High-Dimensional AICs for Selection of Redundancy Models in Discriminant Analysis. Tetsuro Sakurai, Takeshi Nakada and Yasunori Fujikoshi

High-Dimensional AICs for Selection of Redundancy Models in Discriminant Analysis. Tetsuro Sakurai, Takeshi Nakada and Yasunori Fujikoshi High-Dimensional AICs for Selection of Redundancy Models in Discriminant Analysis Tetsuro Sakurai, Takeshi Nakada and Yasunori Fujikoshi Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku,

More information

Projektpartner. Sonderforschungsbereich 386, Paper 163 (1999) Online unter:

Projektpartner. Sonderforschungsbereich 386, Paper 163 (1999) Online unter: Toutenburg, Shalabh: Estimation of Regression Coefficients Subject to Exact Linear Restrictions when some Observations are Missing and Balanced Loss Function is Used Sonderforschungsbereich 386, Paper

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information