Wendy Korn, Moon Chang (IBM) ACM SIGARCH Computer Architecture News Vol. 35, No. 1, March 2007

Size: px
Start display at page:

Download "Wendy Korn, Moon Chang (IBM) ACM SIGARCH Computer Architecture News Vol. 35, No. 1, March 2007"

Transcription

1 CPU 2006 Sestvty to Memory Page Szes Wedy Kor, Moo Chag (IBM) ACM SIGARCH Computer Archtecture News Vol. 35, No. 1, March 2007

2 Memory usage 1. Mmum ad Maxmum memory used 2. Sestvty to page szes 3. 4K, 64K, 16M 4. 16GB also supported by AIX but ot studed 5. AIX 5L V IBM System p5 wth POWER5+ processor 7. Memory crtero for SPEC CPU 2005 selecto 8. 95% mem cosumed the code submtted 9. Less tha 900MB 32-bt mode

3 IBM POWER 5+ Speculatve superscalar processor OOO (Out of order) capabltes 1 fetch ut, 1 decode ut 2 load/store ppes, 2 fxed-pot ppes 2 floatg pot ppes 2 brach executo ppes Fetch-wdth 8 strs per cycle Dspatch/Complete 5 strs per cycle

4 IBM POWER 5 It s a multcore chp 2 processor cores per chp Cache sze for local per core L1 caches 64KB I; 32 KB- D FIFO replacemet Store-through wrte polcy to L2 Ufed, shared 1.9MB L2 cache 36 MB L3 cache Commucato betwee L2, L3 & other POWER5s Doe by Fabrc cotroller

5 IBM POWER5 MMU TLB, SLB, ERAT TLB - Traslato Look-asde Buffer SLB Segmet Look-asde Bufer ERAT Effectve to Real Address Table SLB ad TLB are searched oly whe ERAT caot accomplsh the traslato SMT processor Smulataeous Mult-threadg multple hardware threads ca ru smultaeously But CPU2006 s sgle-threaded

6

7

8 POWER5 PMU PMU Performace Motor Ut 2 dedcated regsters that cout a.istructos completed b. cycles 4 programmable regsters that ca cout 4 out of 300+ hardware evets from CPU or memory

9

10 AIX Support for Multple Page Szes 4 dfferet page szes supported by AIX 5L V5.3 AIX allocates a boot-tme determed umber of 4KB ad 64KB pages for varous segmets 3 regos of address space Text, data, stack Kerel uses 64KB pages for shared lbrary segmets 4KB ad 64KB are supported for all 3 regos 16MB supported for text ad data regos oly AIX has a commad called vmo to eable large pages

11 Multple Page Sze Support 3 ways to bd a page sze to a executable Lker optos to tag the executable Lker tool to tag the executable Evromet varables Superpages very commo these days (eve 1TB) It s mportat to uderstad page behavor presece of superpages Couter support exsts most archs

12 Data Collecto OS commads lke svmo ad perf-couters used Elapsed ru tme (fxed couter) Speed-ru As opposed to rate ru Speed-ru meas sgle threaded ru Rate-ru meas multple copes of the typcally sgle-threaded SPEC cpu programs Sapshot of text, data ad lbrary regos every secod usg svmo Svmo results for maxmum ad average memory usage (MB)

13

14

15

16

17

18

19

20 Fdg a Sgle Number to dcate Performace of a Bechmark Sute Lzy Kura Joh

21 21 AM, GM, HM A x x 1 1 H x x 1 1 G x x x x x x 1/ 1 2 1

22 Example llustratg Arthmetc Mea does t correctly summarze Speedup Speedup Speedup M1 tme M2 tme M1 over M2M2 over M1 P P AM GM 1 1 What s wrog wth AM? Normalzg wrto M1 says M2 s 5x faster ormalzg over M2 says M1 s 5x faster.

23 GM s cosstet rrespectve of whch mache was used as referece Speedup Speedup M1 tme M2 tme M1 over M2M2 over M1 P P AM GM 1 1 But s GM correct?

24 GM s cosstet but cosstetly wrog Speedup Speedup M1 tme M2 tme M1 over M2M2 over M1 P P AM GM 1 1 Why? Compare executo tmes

25 GM s cosstet but cosstetly wrog Speedup Speedup M1 tme M2 tme M1 over M2M2 over M1 P P AM GM Based o executo tmes, whch mache s faster? Is AM correct or GM correct for exec tmes? AM

26 Weghted meas 1 x x A H w 1 1 w x 1 1 w x Stadard defto of mea assumes all measuremets are equally mportat Istead, choose weghts to represet relatve mportace of measuremet Copyrght 2004 Davd J. Llja 26

27 What makes a good mea? Tme based mea (e.g. secods) Should be drectly proportoal to total weghted tme If tme doubles, mea value should double Rate based mea (e.g. operatos/sec) Should be versely proportoal to total weghted tme If tme doubles, mea value should reduce by half Whch meas satsfy these crtera? Copyrght 2004 Davd J. Llja 27

28 Copyrght 2004 Davd J. Llja 28

29 Arthmetc mea for tmes Produces a mea value that s drectly proportoal to total tme Correct mea to summarze executo tme 1 T T A 1 Copyrght 2004 Davd J. Llja 29

30 Copyrght 2004 Davd J. Llja 30 Arthmetc mea for rates Produces a mea value that s proportoal to sum of verse of tmes But we wat versely proportoal to sum of tmes A T F T F M M / 1

31 Arthmetc mea for rates Produces a mea value that s proportoal to sum of verse of tmes But we wat versely proportoal to sum of tmes Arthmetc mea s ot approprate for summarzg rates M A 1 1 F 1 F 1 M 1 T / T Copyrght 2004 Davd J. Llja 31

32 Harmoc mea for tmes Not drectly proportoal to sum of tmes T H 1 1 T Copyrght 2004 Davd J. Llja 32

33 Harmoc mea for tmes Not drectly proportoal to sum of tmes Harmoc mea s ot approprate for summarzg tmes T H 1 1 T Copyrght 2004 Davd J. Llja 33

34 Harmoc mea for rates Produces (total umber of ops) (sum executo tmes) Iversely proportoal to total executo tme Harmoc mea s approprate to summarze rates M H 1 T 1 F F 1 M 1 T Copyrght 2004 Davd J. Llja 34

35 Geometrc mea Correct mea for averagg ormalzed values or ratos, rght? Used to compute SPECmark Good whe averagg measuremets wth wde rage of values, rght? Matas cosstet relatoshps whe comparg ormalzed values Idepedet of bass used to ormalze But we saw t s cosstetly wrog 35

36 Geometrc mea for tmes Not drectly proportoal to sum of tmes T T G 1 1/ Copyrght 2004 Davd J. Llja 36

37 Geometrc mea for tmes Not drectly proportoal to sum of tmes Geometrc mea s ot approprate for summarzg tmes T G T 1 1/ Copyrght 2004 Davd J. Llja 37

38 Geometrc mea for rates Not versely proportoal to sum of tmes T G 1 M 1/ 1 F T 1/ Copyrght 2004 Davd J. Llja 38

39 Geometrc mea for rates Not versely proportoal to sum of tmes Geometrc mea s ot approprate for summarzg rates T G 1 1 M F T 1/ 1/ Copyrght 2004 Davd J. Llja 39

40 Geometrc mea for ratos Does provde cosstet rakgs Idepedet of bass for ormalzato But ca be cosstetly wrog! Value ca be computed But has o physcal meag Copyrght 2004 Davd J. Llja 40

41 Summary of Meas Avod meas f possble Loses formato Arthmetc Whe sum of raw values has physcal meag Use for summarzg tmes (ot rates) Harmoc Use for summarzg rates (ot tmes) Geometrc mea Not useful whe tme s best measure of perf Copyrght 2004 Davd J. Llja 41

42 Geometrc mea s correct for thgs wth multplcatve relatoshps Prof. Harvey Crago s archtecture book Cosder a 3-stage amplfer Amplfer 1 has stage gas of 2,3,6 Some desg chage makes the gas crease to 3,4,7 What s the ga mprovemet per stage? G.M. of 3/2, 4/3, ad 7/6 = or 32.6% Copyrght 2004 Davd J. Llja 42

43

44

45

46 May books wrte that GM s correct for ratos but that s correct Speedup Speedup M1 tme M2 tme M1 over M2M2 over M1 P P AM GM

47 Lot of Bad Press for AM but. Speedup Speedup M1 tme M2 tme M1 over M2M2 over M1 P P AM GM Is AM correct or GM correct for exec tmes? AM

48 GM s cosstet but cosstetly wrog Speedup Speedup M1 tme M2 tme M1 over M2M2 over M1 P P AM GM Ca you mage ay stuato whch GM s correct?

49

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Overcoming Limitations of Sampling for Aggregation Queries

Overcoming Limitations of Sampling for Aggregation Queries CIS 6930 Approxmate Quer Processg Paper Presetato Sprg 2004 - Istructor: Dr Al Dobra Overcomg Lmtatos of Samplg for Aggregato Queres Authors: Surajt Chaudhur, Gautam Das, Maur Datar, Rajeev Motwa, ad Vvek

More information

Descriptive Statistics

Descriptive Statistics Page Techcal Math II Descrptve Statstcs Descrptve Statstcs Descrptve statstcs s the body of methods used to represet ad summarze sets of data. A descrpto of how a set of measuremets (for eample, people

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx Importace Samplg Used for a umber of purposes: Varace reducto Allows for dffcult dstrbutos to be sampled from. Sestvty aalyss Reusg samples to reduce computatoal burde. Idea s to sample from a dfferet

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

1. BLAST (Karlin Altschul) Statistics

1. BLAST (Karlin Altschul) Statistics Parwse seuece algmet global ad local Multple seuece algmet Substtuto matrces Database searchg global local BLAST Seuece statstcs Evolutoary tree recostructo Gee Fdg Prote structure predcto RNA structure

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 01 Sgals & Systems Prof. Mark Fowler Note Set #9 Computg D-T Covoluto Readg Assgmet: Secto. of Kame ad Heck 1/ Course Flow Dagram The arrows here show coceptual flow betwee deas. Note the parallel

More information

Handout #1. Title: Foundations of Econometrics. POPULATION vs. SAMPLE

Handout #1. Title: Foundations of Econometrics. POPULATION vs. SAMPLE Hadout #1 Ttle: Foudatos of Ecoometrcs Course: Eco 367 Fall/015 Istructor: Dr. I-Mg Chu POPULATION vs. SAMPLE From the Bureau of Labor web ste (http://www.bls.gov), we ca fd the uemploymet rate for each

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR Pot Patter Aalyss Part I Outle Revst IRP/CSR, frst- ad secod order effects What s pot patter aalyss (PPA)? Desty-based pot patter measures Dstace-based pot patter measures Revst IRP/CSR Equal probablty:

More information

Measures of Dispersion

Measures of Dispersion Chapter 8 Measures of Dsperso Defto of Measures of Dsperso (page 31) A measure of dsperso s a descrptve summary measure that helps us characterze the data set terms of how vared the observatos are from

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Statistics: Unlocking the Power of Data Lock 5

Statistics: Unlocking the Power of Data Lock 5 STAT 0 Dr. Kar Lock Morga Exam 2 Grades: I- Class Multple Regresso SECTIONS 9.2, 0., 0.2 Multple explaatory varables (0.) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (0.2) Exam 2 Re- grades Re-

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance Chapter, Part A Aalyss of Varace ad Epermetal Desg Itroducto to Aalyss of Varace Aalyss of Varace: Testg for the Equalty of Populato Meas Multple Comparso Procedures Itroducto to Aalyss of Varace Aalyss

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

= 1. UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Parameters and Statistics. Measures of Centrality

= 1. UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Parameters and Statistics. Measures of Centrality UCLA STAT Itroducto to Statstcal Methods for the Lfe ad Health Sceces Istructor: Ivo Dov, Asst. Prof. of Statstcs ad Neurology Teachg Assstats: Fred Phoa, Krste Johso, Mg Zheg & Matlda Hseh Uversty of

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

Some Notes on the Probability Space of Statistical Surveys

Some Notes on the Probability Space of Statistical Surveys Metodološk zvezk, Vol. 7, No., 200, 7-2 ome Notes o the Probablty pace of tatstcal urveys George Petrakos Abstract Ths paper troduces a formal presetato of samplg process usg prcples ad cocepts from Probablty

More information

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan M E M O R A N D U M DATE: 1 September, 1999 TO: Jm Russell FROM: Peter Tkack RE: Aalyss of wde ply tube wdg as compared to Kova Kore CC: Larry McMlla The goal of ths report s to aalyze the spral tube wdg

More information

Loop-independent dependence: dependence exists within an iteration; i.e., if the loop is removed, the dependence still exists.

Loop-independent dependence: dependence exists within an iteration; i.e., if the loop is removed, the dependence still exists. Loop-depedet vs. loop-carred depedeces [ 3.] Loop-carred depedece: depedece exsts across teratos;.e., f the loop s removed, the depedece o loger exsts. Loop-depedet depedece: depedece exsts wth a terato;.e.,

More information

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions.

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions. It. Joural of Math. Aalyss, Vol. 8, 204, o. 4, 87-93 HIKARI Ltd, www.m-hkar.com http://dx.do.org/0.2988/jma.204.30252 Mult Objectve Fuzzy Ivetory Model wth Demad Depedet Ut Cost ad Lead Tme Costrats A

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Sold State Devce Fudametals 9 polar jucto trasstor Sold State Devce Fudametals 9. polar Jucto Trasstor NS 345 Lecture ourse by Alexader M. Zatsev alexader.zatsev@cs.cuy.edu Tel: 718 98 81 4N101b Departmet

More information

The E vs k diagrams are in general a function of the k -space direction in a crystal

The E vs k diagrams are in general a function of the k -space direction in a crystal vs dagram p m m he parameter s called the crystal mometum ad s a parameter that results from applyg Schrödger wave equato to a sgle-crystal lattce. lectros travelg dfferet drectos ecouter dfferet potetal

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Chapter 11 The Analysis of Variance

Chapter 11 The Analysis of Variance Chapter The Aalyss of Varace. Oe Factor Aalyss of Varace. Radomzed Bloc Desgs (ot for ths course) NIPRL . Oe Factor Aalyss of Varace.. Oe Factor Layouts (/4) Suppose that a expermeter s terested populatos

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Lesson 3. Group and individual indexes. Design and Data Analysis in Psychology I English group (A) School of Psychology Dpt. Experimental Psychology

Lesson 3. Group and individual indexes. Design and Data Analysis in Psychology I English group (A) School of Psychology Dpt. Experimental Psychology 17/03/015 School of Psychology Dpt. Expermetal Psychology Desg ad Data Aalyss Psychology I Eglsh group (A) Salvador Chacó Moscoso Susaa Saduvete Chaves Mlagrosa Sáchez Martí Lesso 3 Group ad dvdual dexes

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

is the score of the 1 st student, x

is the score of the 1 st student, x 8 Chapter Collectg, Dsplayg, ad Aalyzg your Data. Descrptve Statstcs Sectos explaed how to choose a sample, how to collect ad orgaze data from the sample, ad how to dsplay your data. I ths secto, you wll

More information

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN EP2200 Queueg theory ad teletraffc systems Queueg etworks Vktora Fodor Ope ad closed queug etworks Queug etwork: etwork of queug systems E.g. data packets traversg the etwork from router to router Ope

More information

To use adaptive cluster sampling we must first make some definitions of the sampling universe:

To use adaptive cluster sampling we must first make some definitions of the sampling universe: 8.3 ADAPTIVE SAMPLING Most of the methods dscussed samplg theory are lmted to samplg desgs hch the selecto of the samples ca be doe before the survey, so that oe of the decsos about samplg deped ay ay

More information

Long Tailed functions

Long Tailed functions Log Taled fuctos Log tal fuctos are desrable for fttg may physologcal data sets A geeral example s fttg the respose of a system to a mpulse put Most passve systems have u modal rght skewed respose fuctos

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Regresso What s a Model? 1. Ofte Descrbe Relatoshp betwee Varables 2. Types - Determstc Models (o radomess) - Probablstc Models (wth radomess) EPI 809/Sprg 2008 9 Determstc Models 1. Hypothesze

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

We have already referred to a certain reaction, which takes place at high temperature after rich combustion.

We have already referred to a certain reaction, which takes place at high temperature after rich combustion. ME 41 Day 13 Topcs Chemcal Equlbrum - Theory Chemcal Equlbrum Example #1 Equlbrum Costats Chemcal Equlbrum Example #2 Chemcal Equlbrum of Hot Bured Gas 1. Chemcal Equlbrum We have already referred to a

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

C. Statistics. X = n geometric the n th root of the product of numerical data ln X GM = or ln GM = X 2. X n X 1

C. Statistics. X = n geometric the n th root of the product of numerical data ln X GM = or ln GM = X 2. X n X 1 C. Statstcs a. Descrbe the stages the desg of a clcal tral, takg to accout the: research questos ad hypothess, lterature revew, statstcal advce, choce of study protocol, ethcal ssues, data collecto ad

More information

Spreadsheet Problem Solving

Spreadsheet Problem Solving 1550 1500 CO Emmssos for the US, 1989 000 Class meetg #6 Moday, Sept 14 th CO Emssos (MMT Carbo) y = 1.3x 41090.17 1450 1400 1350 1300 1989 1990 1991 199 1993 1994 1995 1996 1997 1998 1999 000 Year GEEN

More information

ECE 559: Wireless Communication Project Report Diversity Multiplexing Tradeoff in MIMO Channels with partial CSIT. Hoa Pham

ECE 559: Wireless Communication Project Report Diversity Multiplexing Tradeoff in MIMO Channels with partial CSIT. Hoa Pham ECE 559: Wreless Commucato Project Report Dversty Multplexg Tradeoff MIMO Chaels wth partal CSIT Hoa Pham. Summary I ths project, I have studed the performace ga of MIMO systems. There are two types of

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Section l h l Stem=Tens. 8l Leaf=Ones. 8h l 03. 9h 58

Section l h l Stem=Tens. 8l Leaf=Ones. 8h l 03. 9h 58 Secto.. 6l 34 6h 667899 7l 44 7h Stem=Tes 8l 344 Leaf=Oes 8h 5557899 9l 3 9h 58 Ths dsplay brgs out the gap the data: There are o scores the hgh 7's. 6. a. beams cylders 9 5 8 88533 6 6 98877643 7 488

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

Bootstrap Method for Testing of Equality of Several Coefficients of Variation

Bootstrap Method for Testing of Equality of Several Coefficients of Variation Cloud Publcatos Iteratoal Joural of Advaced Mathematcs ad Statstcs Volume, pp. -6, Artcle ID Sc- Research Artcle Ope Access Bootstrap Method for Testg of Equalty of Several Coeffcets of Varato Dr. Navee

More information

Arithmetic Mean Suppose there is only a finite number N of items in the system of interest. Then the population arithmetic mean is

Arithmetic Mean Suppose there is only a finite number N of items in the system of interest. Then the population arithmetic mean is Topc : Probablty Theory Module : Descrptve Statstcs Measures of Locato Descrptve statstcs are measures of locato ad shape that perta to probablty dstrbutos The prmary measures of locato are the arthmetc

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Lecture 2: Linear Least Squares Regression

Lecture 2: Linear Least Squares Regression Lecture : Lear Least Squares Regresso Dave Armstrog UW Mlwaukee February 8, 016 Is the Relatoshp Lear? lbrary(car) data(davs) d 150) Davs$weght[d]

More information

Statistics of Random DNA

Statistics of Random DNA Statstcs of Radom DNA Aruma Ray Aaro Youg SUNY Geeseo Bomathematcs Group The Am To obta the epectato ad varaces for the ethalpy chage ΔH, etropy chage ΔS ad the free eergy chage ΔG for a radom -mer of

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

UNIT 4 CONTROL CHARTS FOR DEFECTS

UNIT 4 CONTROL CHARTS FOR DEFECTS UNIT 4 CONTROL CHARTS FOR DEFECTS Structure 4.1 Itroducto Objectves 4.2 Cotrol Charts for of Defects (c-chart) 4.3 Cotrol Charts for of Defects per Ut (u-chart) 4.4 Comparso betwee Cotrol Charts for Varables

More information

UNIVERSITY OF CALIFORNIA, BERKELEY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES. Midterm I

UNIVERSITY OF CALIFORNIA, BERKELEY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES. Midterm I UNIVERSITY OF CALIFORNIA, BERKELEY EPARTMENT OF ELECTRICAL ENGINEERING AN COMPUTER SCIENCES EECS 130 Professor Chemg Hu Fall 009 Mdterm I Name: Closed book. Oe sheet of otes s allowed. There are 8 pages

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Source-Channel Prediction in Error Resilient Video Coding

Source-Channel Prediction in Error Resilient Video Coding Source-Chael Predcto Error Reslet Vdeo Codg Hua Yag ad Keeth Rose Sgal Compresso Laboratory ECE Departmet Uversty of Calfora, Sata Barbara Outle Itroducto Source-chael predcto Smulato results Coclusos

More information

Chapter -2 Simple Random Sampling

Chapter -2 Simple Random Sampling Chapter - Smple Radom Samplg Smple radom samplg (SRS) s a method of selecto of a sample comprsg of umber of samplg uts out of the populato havg umber of samplg uts such that every samplg ut has a equal

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

Evaluating Polynomials

Evaluating Polynomials Uverst of Nebraska - Lcol DgtalCommos@Uverst of Nebraska - Lcol MAT Exam Expostor Papers Math the Mddle Isttute Partershp 7-7 Evaluatg Polomals Thomas J. Harrgto Uverst of Nebraska-Lcol Follow ths ad addtoal

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information