Backward stochastic dierential equations with subdierential operator and related variational inequalities

Size: px
Start display at page:

Download "Backward stochastic dierential equations with subdierential operator and related variational inequalities"

Transcription

1 Sochasic Processes and heir Applicaions ) Bacward sochasic dierenial equaions wih subdierenial operaor and relaed variaional inequaliies Eienne Pardoux a;, Aurel Rascanu b;1 a Universie de Provence, LATP, URA-CNRS no. 225, 39 rue F. Jolio-Curie, Marseille, Cedex 13, France b Deparmen of Mahemaics, Al.I.Cuza Universiy, 66, Iasi, Romania Received 17 July 1997; received in revised form 3 April 1998; acceped 9 April 1998 Absrac The exisence and uniqueness of he soluion of a bacward SDE, on a random possibly innie) ime inerval, involving a subdierenial operaor is proved. We hen obain a probabilisic inerpreaion for he viscosiy soluion of some parabolic and ellipic variaional inequaliies. c 1998 Elsevier Science B.V. All righs reserved. Keywords: Bacward sochasic equaions; Subdierenial operaors; Variaional inequaliies; Viscosiy soluions; Probabilisic formulae for PDE. Inroducion Bacward sochasic dierenial equaions BSDE) provide probabilisic formulae for he viscosiy soluion of semilinear parial dierenial equaions PDE) see, in paricular, Pardoux, 1997; Pardoux and Peng, 1992, and heir references). In his paper one gives such formulae for parabolic variaional inequaliies on he whole space and also for he soluion of a Dirichle problem for an ellipic variaional inequaliy. We resric ourselves o variaional inequaliies for PDEs, and no sysems of PDEs. The only diculy in reaing general sysems concerns he diculy of giving a deniion of viscosiy soluion for such sysems. In he rs par of his paper we sudy BSDEs on a random possibly innie) ime inerval, whose coecien conains he subdierenial of a convex funcion. BSDEs wih subdierenial operaors include as a special case BSDEs whose soluion is reeced a he boundary of a convex subse of R. In he one-dimensional case, BDSEs wih one-sided reecion have been sudied in El Karoui e al. 1997), ogeher wih he associaed opimal sopping ime=opimal conrol problem, and an obsacle problem for a PDE also called variaional inequaliy ). BSDEs wih wo-sided Corresponding auhor. 1 The wor of his auhor was done during a visi o he Universiy of Provence & INRIA, whose generous suppor is graefully acnowledged /98/$19. c 1998 Elsevier Science B.V. All righs reserved PII: S )3-1

2 192 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) reecion, ogeher wih he associaed sochasic game of opimal sopping, are sudied in Cvianic and Karazas 1996). Muli-dimensional BSDEs reeced a he boundary of a convex se is sudied in Gegou-Pei and Pardoux 1996). Our BSDEs include his las class as a special case. Also, we prove ha he bounded variaion process o be added is absoluely coninuous, a resul which was no formulaed for all convex ses in Gegou-Pei and Pardoux 1996). However, our resuls do no include hose in El Karoui e al. 1997) and Cvianic and Karazas 1996), since hose resuls allow randomly moving boundaries, while our convex funcion is xed. Also, we do no sudy he sochasic conrol problem associaed wih our BSDE. The paper is organized as follows. The BSDEs and he resuls concerning hem are formulaed in Secion 1. Secion 2 is concerned wih a priori esimaes for sequences of penalized approximaions of our equaions. We prove in Secion 3 he resuls saed in Secion 1. In Secion 4, we prove ha he soluion of a BSDE provides he unique soluion of a cerain parabolic variaional inequaliy. Finally, in Secion 4 we sudy he connecion beween our BSDEs and he Dirichle problem for an ellipic variaional inequaliy. 1. Bacward sochasic variaional inequaliies: exisence and uniqueness resuls Le ; F;P;{F : }) be a complee righ coninuous sochasic basis. We will assume ha F = {B s : 6s6}) N; where N is he class of P-null ses of F and B is a d-dimensional sandard Brownian moion. Le R; ;d N and be a sopping ime. We inroduce he noaions: [; is he Banach space of coninuous F -progressively measurable sochasic processes f : [; ) R such ha [ ) 1=2 f S = E sup e f) 2 66 S 2; and M 2; [; is he Hilber space of F -progressively measurable sochasic processes f : [; ) R such ha [ 1=2 f M = E e s fs) ds) 2 : In he sequel, we shall omi he indices ; ; whenever, respecively, =1;= and = : For example, S 2 = S 2; 1 [; ) and M 2[;=M2; [;: The rs goal of his paper is o sudy he exisence and uniqueness of he soluion of he bacward sochasic dierenial equaion dy + F; Y ;Z Y )d+z db ; Y = ; 66; 1.1)

3 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) where H 1 ) : [; ) is an a.s. nie F -sopping ime, he funcion F : [; ) R R d R saises for some R; ; ;and an F -progressively measurable process: H 2 ) i) F ; ;y;z)isf -progressively measurable; ii) y F!; ; y; z):r R is coninuous; iii) y y ;F; y; z) F; y ;z) 6 y y 2 ; F; y; z) F; y; z ) 6 z z ; F; y; ) 6)+ y for all ; y;y R ; z;z R d ; is he subdierenial see below) of he funcion : R ; + which saises H 3 ) i) is a proper + ) convex lower-semiconinuous funcion; ii) y) )= 2 and nally is an R -valued F -measurable random variable, and here exiss 2+ 2, such ha H 4 ) Denoe i) ii) E[e 2 + ) ) ; ) E e s s) 2 ds : Dom = {u R : u) u)={u R :u ;v u)+ u)6 v); v R }; )={u R u) }; u; u u ); u): We remar ha he subdierenial : R 2 R operaor, i.e. ha is a maximal monoone u v ;u v) ; u; u ); v; v : 1.2) In all wha follows, C denoes a consan, which may depend only on ;, and, which may vary from line o line. 2 This assumpion is no a resricion since we can replace u) by u+u ) u ) u ;u) where u ;u :

4 194 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) The main resul is given in he following heorem: Theorem 1.1. Le he assumpions H 1 ) H 4 ) be saised. Then here exiss a unique riple Y; Z; U) such ha Y S 2; [; M 2; [;; Z M 2; d [;; E e s Y s )ds + ; U M2; [;; 1.3a) 1.3b) Y ;U ; dp d a:e: on [;; 1.3c) Y + U s ds = + Fs; Y s ;Z s )ds Moreover; for any sopping ime ; 66; his soluion saises [ E e s Y s 2 + Z s 2 )ds 6C 1 ; ); where Z s db s ; ; a:s: 1.3d) 1.4a) [ E sup e Y 2 6C 1 ; ); 1.4b) 66 E[e Y )6C 2 ; ); [ E e s U s 2 ds 6C 2 ; ); [ 1; )=E e 2 + [ 2; )=E e 2 + )) + 1.4c) 1.4d) e s Fs; ; ) 2 ds ; 1.5a) e s s) 2 ds : 1.5b) The riple Y; Z; U) which saises Eqs. 1.3a), 1.3b), 1.3c) and 1.3d) will be called a soluion of BSDE 1:1) and we shall wrie Y; Z; U) BSDE ; ; ; F). Proposiion 1.1. Under he condiions of Theorem 1:1; if Y; Z; U) BSDE; ; ; F) and Ỹ; Z;Ũ) BSDE ; ; ; F); we have [ E e s Y s Ỹ s 2 + Z s Z s 2 )ds 6C); 1.6a) [ E sup e Y Ỹ 2 6C); 1.6b) 66 where [ )=E e 2 + e s Fs; Y s ;Z s ) Fs; Y s ;Z s ) 2 ds : 1.7)

5 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Remar 1.1. In he case where = T is a nie xed number, he same resuls hold, wih he same assumpions excep ha we need no assume ha 2 + 2, and we can choose =. Corollary 1.1. Le assumpions H 2 ); H 3 ) and ; E e s s) 2 ds be saised. Then here exiss a unique riple Y; Z; U) S 2; M 2; ) M 2; such ha: T M 2; Y + T U s ds=y T + T lim Ee Y 2 )=; Y ;U ; dp d a:e: Moreover; [ ) E sup e Y 2 + sup Ee Y )+E T Fs; Y s ;Z s )ds Z s db s ; e s Y s 2 + Z s 2 )ds 6CE e s U s 2 6CE e s s) 2 ds: 1.8a) 1.8b) d 66T; P a:s: 1.9a) e s Fs; ; ) 2 ds; 1.9b) 1.9c) 1.1a) 1.1b) 2. A priori esimaes on a penalized equaion The exisence resul for Theorem 1.1 will be obained via an approximaion of he funcion by a convex C 1 -funcion ;, dened by u) = inf { 1 2 u v 2 + v): v R } = 1 2 u J u 2 + J u); 2.1) where J u ) 1 u): For he reader s convenience we menion some properies of his approximaion see Barbu, 1976 or Brezis, 1973 for more deails): 1 D u)= u)= 1 u J J u); 2.2a) J u J v 6 u v and lim J u =Pr Dom u) 2.2b) for all u; v R ;. We rs noe ha he convexiy of implies ha for all u R, ) u)+d u); u):

6 196 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Bu from H 3 ii) and he deniion of i follows easily ha u) = ). Hence, for all u R, 6 u)6d u);u): 2.2c) By Eq. 2.2a) and he monooniciy of he we have 1 6 D u) 1 ) D v);j u J v 1 = D u) 1 ) D v);u v 1 D u) D v) ) D u);d v)) and hen 1 D u) 1 ) 1 D v);u v + 1 ) D u) D v) 2.3) for all u; v R ; ;. Consider he approximaing equaion Y + 1 D Y s )ds=+ Fs; Y z ;Z s)ds Z s db s ; ; P a:s: 2.4) I follows from he resuls in Darling and Pardoux 1997) ha Eq. 2.4) has a unique soluion Y ;Z ) S 2; [; M 2; [;) M 2; d [;: Proposiion 2.1. Le assumpions H 1 ) H 4 ) be saised and le be a sopping ime such ha 66: Then [ E sup e Y 2 + e s Y s 2 + Z s 2 )ds 6C 1 ; ) 2.5) 66 wih 1 dened by Eq. 1.5a). Proof. Iô s formula for e Y 2 yields e ) Y 2 + e s Y s 2 + Z s 2 )ds+ 2 =e 2 +2 e s Fs; Y s ;Z s);y s )ds 2 Bu from Eq. 2.2c) ) 1 D y);y and from Schwarz s inequaliy e s D Y s );Y s )ds e s Y s ;Z s db s ): 2Fs; y; z);y)62 +1+r) 2 +r) y r z r Fs; ; ) 2 :

7 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Hence, e ) Y 2 + 6e r We choose ; r ) : e s [ 2 2 r1 + 2 )) Y s 2 + e s Fs; ; ) 2 ds 2 e s Y s ;Z s db s ); r 1+r Z s 2 ds ; a:s: 2.6) The resul wihou he sup in he expecaion follows by aing he expecaion in he above inequaliy. Finally, he resul follows by a combinaion wih Burholder Davis Gundy s inequaliy. Indeed, he rs sep yields, in paricular, ha E e s Z s 2 ds6c; and one hen obains sup e Y 2 6e e s Fs; ; ) 2 ds + 2 sup 66 r Then, from Burholder Davis Gundy s inequaliy, E sup e Y )6C E 66 and he resul follows. 6C E sup 66 sup ) e s Y s ;Z s db s ) e Y 2 ) + C 2 E e s Y s ;Z s db s ) : e s Z s 2 ds Proposiion 2.2. Under he condiions of Proposiion 2.1, here exiss a posiive consan C such ha for any sopping ime ; 2 1 E e s D Y s ) ) ds6c 2 ; ); 2.7a) Ee J Y )+E e s J Y )ds6c 2; ); Ee Y J Y ) 2 )6 2 C 2 ; ); 2.7b) 2.7c) where 2; ) is given by Eq. 1.5b). Proof. Wriing he subdierenial inequaliy e s Y s ) e s e r ) Y s )+e r Y r )+e r D Y r );Y s Y r )

8 198 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) for s = i+1 ; r = i ; where = 1 2 and i+1 i =1=n, summing up over i, and passing o he limi as n, we deduce: e Y )+ e s Y s )ds+ 1 e s D Y s ) 2 ds 6e )+ e s D Y s );Fs; Y s ;Z s)) ds e s D Y s );Z s db s ); ; a:s: 2.8) The resul follows by combining his wih he following inequaliies and Eq. 2.5) he righ side of he second inequaliy follows from Eq. 2.2c)) 1 2 D y) 2 + J y)= y); J y)6 y); y)6 y)6 D y);y); )6 ); D y); y + Fs; y; z)) D y) 2 + y + Fs; y; z) ) D y) y 2 + Fs; y; z) 2 ) D y) 2 + [ 2 y z y s)): Proposiion 2.3. Le assumpions H 1 ) H 4 ) be saised and ;. Then [ E e s Y s Ys 2 + Z s Zs 2 )ds 6 +)C ); where 2.9a) E sup e Y Y )6 2 + )C ); 2.9b) 66 [ )=E e 2 + )) + e s Fs; ; ) 2 ds : 2.1) Proof. By Iô s formula e ) Y Y 2 + e s [ Y s Y s 2 + Z s Z s 2 ds +2 e s Y s Ys ; 1 D Y s ) 1 ) D Ys ) ds

9 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) =2 Y s Ys ;Fs; Y s ;Z s) Fs; Ys ;Zs)) ds 2 We have, moreover, Y s Ys ; Z s Zs )db s ): 2Y Y ;Fs; Y ;Z ) Fs; Y ;Z )) r) 2 ) Y Y r Z Z 2 and by Eq. 2:3b) i follows ha e ) Y Y 2 + e s [ 2 2 r 2 ) Y s Y s 2 + r 1 1+r Z s Zs 2 ds ) e s D Y s D Ys ) ds Now, from Eq. 2.7a) ) E 2 e s Y s Ys ; Z s Zs )db s ): 2.11) e s D Y s D Y s ) ds6c + ) ): Eq. 2.9a) hen follows by aing he expecaion in Eq. 2.11), and Eq. 2.9b) follows from Eqs. 2.11), 2.9a) and Burholder Davis Gundy s inequaliy. 3. Proofs of he exisence and uniqueness of he soluion We begin wih he Proof of Proposiion 1.1. From Iô s formula we have e ) Y Ỹ e s U s Ũ s ;Y s Ỹ s )ds e s Y s Ỹ s 2 + Z s Z s 2 )ds =e 2 +2 e s Y s Ỹ s ;Fs; Y s ;Z s ) Fs; Ỹ s ; Z s )) ds 2 e s Y s Ỹ s ;Z s Z s )db s ): 3.1)

10 2 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Bu 2U s Ũ s ;Y s Ỹ s ) ; dp ds a:e:; 2Y Ỹ;Fs; Y; Z) Fs; Ỹ; Z)) r) 2 +r) Y Ỹ r Z Z r Fs; Y; Z) Fs; Y; Z) 2 wih r given by Eq. 2.6), where, are replaced by,. Wih hese inequaliies and Eq. 3.1), aing he expecaion, we clearly have Eq. 1.6a). Then in a sandard manner from Eqs. 3.1) and 1:6a), via Burholder Davis Gundy s inequaliy, we obain easily Eq. 1.6b). Proof of Theorem 1.1. Uniqueness is a consequence of Proposiion 1.1. The exisence of he soluion Y; Z; U) is obained as limi of he riple Y s ;Z s; 1 D Y s )): From Proposiion 2.3 we have Y S 2; [; M 2; [;; Z M 2; d s:: lim Y = Y in S 2; [; M 2; [;; lim Z = Z in M 2; d ; 3.2) and Eqs. 1.4a) and 1:4b) follows by passing o he limi in Eq. 2.5). Also, from Eqs. 2.7a) and 2:7c) we have lim J Y )=Y in M 2; [;; lim Ee J Y ) Y 2 )= for any sopping ime, 66: Eqs. 1.3b) and 1:4c) follow from Eqs. 2.7b), 2:9b) and he fac ha is l.s.c. Hence, he limi pair Y; Z) saises Eqs. 1.3a), 1:3b) and 1.4a) 1.4c). For each, dene U =1= )D Y ) and U = U s ds. I follows from our convergence resuls and Eq. 2.4) ha here exiss a progressively measurable R -valued process { U ; 66} such ha for all T, ) E sup U U 2 ; : 66T Moreover, from Eq. 2.7a), sup E e U 2 d : From his, i follows ha for each T, U is bounded in he space L 2 ; H 1 ;T )), and a leas along a susequence i converges wealy o a limi in ha space. The limi is necessarily U, hence he whole sequence converges wealy, and U L 2 ; H 1 ;T )), in paricular, i is a.s. absoluely coninuous, U aes he form U = U s ds, where {U ; 66} is progressively measurable. Now, Eq. 1.4d)

11 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) follows from he above inequaliy and Faou s lemma. Moreover, i follows e.g. from Lemma 5.8 in Gegou-Pei and Pardoux 1996) ha for all 6a b6t, V M 2 a; b), b a U ;V Y )d a a U ;V Y )d in probabiliy, and from Eq. 2.7a) b a U ;J Y ) Y )d. Now, since J Y )), b b b U ;V J Y )) d + J Y )) d6 V )d; a a a and aing he lim inf in probabiliy in he above, we obain ha b b b U ;V Y )d+ Y )d6 V )d: a a a Since a, b and he process V are arbirary, his esablishes Eq. 1.3c). Eqs. 1.3d) has also been proved. Proof of Corollary 1.1. For each n 1, le Y n ;Z n ;U n ) BSDE;n; ; F). From he esimae 1:4) in Theorem 1.1 we have n E e s Ys n 2 + Zs n 2 )ds6c 1 E e s Fs; ; ) 2 ds; [ E sup e s Ys n 2 ) 6s6n 6C 1 E e s Fs; ; ) 2 ds; E[e Y n )6C 2 E e s s) 2 ds; [ n E e s Us n 2 ds 6C 2 E e s s) 2 ds; and Ys n = Yn n =;Zs n =;Us n =; for s n: Le m n. We have Y m + n U m s ds = Y m n + n n Fs; Ys m ;Zs m )ds Zs m for all [;n;!-a.s., and from Proposiion 1.1 [ n E e s Ys n Ys m 2 + Zs n Zs m 2 )ds 6Ce n E Yn m 2 ; E sup e s Ys n Ys m )6Ce 2 n E Yn m 2 : 6s6n From Eq. 1.4b), e T E YT m 2 )6E sup e s Ys m )6C 2 1 E T66m T db s ) e s Fs; ; ) 2 ds

12 22 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) as T = n : Hence, Y S 2; M 2; ; Z M 2; d for all T, and U M 2; such ha as n Y n Y in S 2; ;T) M 2; ;T); e TE Y T 2 6CE T e F; ; ) 2 d; Z n Z in M 2; d ;T); U n U in S 2; ;T); where U n = U s n ds, U is absoluely coninuous and Y; Z; U) saises he asserions of Corollary 1.1, where U =d U=d. The soluion is unique since if Y; Z; U) and Ỹ; Z;Ũ) are wo soluions of Eqs. 1.9a), 1.9b) and 1.9c) hen from Proposiion 1.1 ) n E sup e s Y s Ỹ s 2 + E e s Y s Ỹ s 2 ds 6s6n +E n e s Z s Z s 2 ds6c 1 Ee n Y n Ỹ n 2 ) and for n we ge Y = Ỹ; Z= Z; U is uniquely dened by Eq. 1.9a). 4. Connecion wih parabolic variaional inequaliies In his secion we will show ha he BSDE sudied in he previous secions allows us o give a probabilisic represenaion of soluions of a parabolic variaional inequaliy. Le ; F;P;F ;B ) be a R d -valued Wiener process, F = {B s :6s6}) N; and b :[;T R d R d ; :[;T R d R d R d be coninuous mappings such ha b; x) b; x) + ; x) ; x) 6L 1 x x ; [;T; x; x R d 4.1) for some consan L 1 ). For each ; x) [;T R d, le {Xs x ; 6s6T} be he unique soluion of he SDE s s Xs x =x+ br; Xr x )dr+ r; Xr x )db r : 4.2) We have see Friedman, 1976) for [;T; x; x R d : X x s =x; s [;; Xs x S p d [;T; p 2; 4.3a) 4.3b)

13 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) E sup Xs x )6C1 p + x p ); 4.3c) s [;T E sup Xs x X x s )6C1 p + x p + x p ) p=2 + x x p ); 4.3d) s [;T where C = Cp; T; L 1 ;K 1 ); K 1 = sup [;T { b; ) + ; ) }: We now consider he BSDE Eq. 1.1) in he case = 1, wih he daa ; ; ; F) of he form = T;!)=gXT x!)); F!; s; y; z)=fs; Xs x!);y;z); 4.4) where g; f saises g CR d ; R) and M ; q N such ha gx) 6M1 + x q ); for all x R d ; f C[;T R d R R d ) and ; ; ; p N such ha f; x; y; ) 61 + x p + y ) y ỹ)f; x; y; z) f; x; ỹ; z))6 y ỹ 2 ; f; x; ; z) f; x; y; z) 6 z z 4.5) 4.6) for all [;T; x R d ; y; ỹ R; z; z R d ; and : R [; + is a proper; convex l:s:c: funcion; s:: y) ) = 4.7) and M ; m N such ha gx)) 6M1 + x m ); x R d : 4.8) For each we denoe by {Fs ; s [; T } he naural lraion of he Brownian moion {B s B ; s [; T } argumened wih he P-null ses of F: Under he assumpions 4.4) 4.8) i follows from Theorem 1.1 see Remar 1.1) ha for each ; x) [;T R d here exiss a unique Fs -progressively measurable riple Y x ;Z x ;U x ) S 2 [; T Md 2[; T M 2 [; T such ha T Ys x + s T Ur x dr=gxt x )+ s s [; T ; P a:s: fr; X x r T ;Yr x ;Zr x )ds s Z x r db r ; 4.9)

14 24 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) and Y x s ;U x s ; dp ds a:e: on [; T : 4.1) We shall exend Ys x ;Zs x ;Us x, for s [;T by choosing Ys x s [;. Hence T Ys x + s Ur x dr = gx x T 1 [;T r)fr; X x r ;Y x r ;Z x r )dr T )+ s T Zr x db r ; s [;T; a:s: s and Eq. 4.1) is saised a.e. on [; T. Proposiion 4.1. Under assumpions 4:1); 4:4) 4:8) we have = Y x ;Zs x =, U x s =; ) E sup Ys x 2 6C1 + x p ) 4.11) s [;T and ) E sup Ys x Y x s 2 6 C[E gxt x ) gx x T ) 2 s [;T T + E 1 [; T r)fr; Xr x ;Yr x ;Zr x ) 1 [ ;Tr)fr; X x r ;Yr x ;Zr x ) 2 dr 4.12) for all ; [;T, x; x R d C and p N are consans independen of ; [;T and x; x R d ). Proof. From inequaliy 1:4b), wih = ; = T ) in Theorem 1:1, T ) E sup Ys x 2 6C E gxt x ) 2 + E fr; Xr x ; ; ) 2 dr ; s [;T where C is independen of [;T and x R d ; which yields Eq. 4.11) using he assumpions on f and g and Eq. 4.3c). Eq. 4.12) follows from Eq. 1.6b) in Proposiion 1:1. We dene u; x)=y x ; ; x) [;T R d ; 4.14) which is a deerminisic quaniy since Y x -algebra. is F -measurable, and F is a rivial

15 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Corollary 4.1. Under assumpions 4:1) and 4:4) 4:8) he funcion u saises: u; x) Dom ; ; x) [;T R d ; 4.15a) u; x) 6CT )1 + x p=2 ); ; x) [;T R d ; 4.15b) u C[;T R d ); 4.15c) where CT) ;p N are consans independen of and x. Proof. We have u; x)) = E Y x ) + ; Eq. 4.15a) follows, Eq. 4.15b) follows from Eq. 4.11). Le n ;x n ) ; x). Then u n ;x n ) u; x) 2 = E Y nxn n Y x 2 6 2E sup Ys nxn Ys x 2 +2E Y x n Y x 2 : s [;T Using Eqs. 4:12), 4:3c) and 4:3d), we obain ha u n x n ) u; x) as n ;x n ) ; x). In he sequel, we shall prove ha he funcion u dened by Eq. 4.14) is a viscosiy soluion of he parabolic variaional inequaliy PVI): x) + L u; x)+f; x; u; x); u); u; [;T; x R d ; ut; x)=gx); x R d ; 4.16) L = ) ij ; x) j i; j=1 Remar ha a every poin y y)=[ y); +y); d i=1 b i i : where y) and +y) are he lef derivaive and he righ derivaive, respecively, a he poin y. We shall dene he noion of viscosiy soluion in he language of sub- and superjes, following Crandall Ishii Lions 1992). Sd) will denoe below he se of d d symmeric non-negaive marices. Deniion 4.1. Le u C[;T R d ) and ; x) [;T R d. We denoe by P 2+ u; x) he parabolic superje of u a ; x)) he se of riples p; q; X ) R R d Sd) which are such ha us; y) 6 u; x)+ps )+q; y x) X y x);y x)+o s + y x 2 ):

16 26 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) P 2 u; x) he parabolic subje of u a ; x)) is dened similarly as he se of riples p; q; X ) R R d Sd) which are such ha us; y) u; x)+ps )+q; y x) X y x);y x)+o s + y x 2 ): We can give now he deniion of a viscosiy soluion of he parabolic variaional inequaliy 4:16): Deniion 4.2. Le u C[;T R d ) which saises ut; x)=gx). a) u is a viscosiy subsoluion of 4:16) if: u; x) Dom ; ; x) [;T R d and a any poin ; x) ;T) R d, for any p; q; X ) P 2+ u; x) p 1 2 Tr ); x)x ) b; x);q) f; x; u; x);q; x)) 6 u; x)): 4.17) b) u is a viscosiy supersoluion of Eq. 4.16) if: u; x) Dom ; ; x) [;T R d ; and a any poin ; x) ;T) R d, for any p; q; X ) P 2 u; x) p 1 2 Tr ; x)x ) b; x);q) f; x; u; x);q; x)) +u; x)): 4.18) c) u is a viscosiy soluion of Eq. 4.16) if i is boh a viscosiy sub- and supersoluion. Theorem 4.1. Le assumpions 4:1) and 4:4) 4:8) be saised. Then he funcion u; x) dened by Eq. 4.14) is a viscosiy soluion of Eq. 4.16). Proof. For each ; x) [;T R d ; ; 1; le Y ; x s;z ; x s), s [; T ; he soluion of BSDE Y x ; s + T s 1 T T D Y ; x r)dr=gxt x )+ fr; Xr x ;Y ; x r;z ; x r)dr Z ; x r db r : s s I is nown see Pardoux, 1997) ha u ; x)=y x ; ; [;T; x R d is he viscosiy soluion of he parabolic dierenial ; x) + L u ; x)+f; x; u ; x); u ); x)) = D u ; x)); u T; x)=gx); [;T; x R d : 4.19)

17 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) From Proposiion 2:3 we have u ; x) u; x) 2 6E sup Y ; x s Ys x 2 6C1 + x p ) s [; T for all ; x) [;T R d C and p N are consans independen of and ; x) [;T R d ). Firs, we shall show ha u is a subsoluion. From Lemma 6:1 in Crandall Ishii Lions 1992), if ; x) [;T R d and p; q; X ) P 2+ u; x), hen here exis sequences n n ;x n ) [;T R d ; p n ;q n ;X n ) P 2+ u n n ;x n ); such ha n ;x n ;u n n ;x n );p n ;q n ;X n ) ; x; u; x);p;q;x) as n : Bu for any n: p n 1 2 Tr ) n ;x n )X n ) b n ;x n );q n ) f n ;x n ;u n n ;x n );q n n ;x n ))6 1 n D n u n n ;x n )): 4.2) We can assume ha u; x) inf Dom ) since for u; x) = inf Dom ) we have u; x)) = and inequaliy 4:17) in Deniion 4:2 is clearly saised. Le y Dom, y u; x). The uniformly convergence u u on compacs implies ha n = n ; x; y) such ha y u n n ;x n ); n n. We muliply Eq. 4.2) by u n n ;x n ) y, one follows: [ p n 1 2 Tr ) n ;x n )X n ) b n ;x n );q n ) f n ;x n ;u n n ;x n );q n n ;x n )u n n ;x n )) y) + J n u n n ;x n )))6 y): 4.21) Passing o lim inf n in Eq. 4.21) we obain [ p 1 2 Tr ); x)x ) b; x);q)f; x; u; x);q; x))u; x) y) + u; x))6 y); hence, p 1 2 Tr ); x)x ) b; x);q) f; x; u; x);q; x)) u; x)) y) 6 ; u; x) y for all y u; x), which implies Eq. 4.17). Le us show ha u is a supersoluion. Similarly, given ; x) [;T R d p; q; X ) P 2 u; x) here exis he sequences n n ;x n ) [;T R d ; p n ;q n ;X n ) P 2 u n n ;x n ); and

18 28 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) such ha n ;x n ;u n n ;x n );p n ;q n ;X n ) ; x; u; x);p;q;x) as n : For any n: p 1 2 Tr ) n ;x n )X n ) b n ;x n );q n ) f n ;x n ;u n n ;x n );q n n ;x n )) 1 D n u n n ;x n )): 4.22) n We can assume ha u; x) supdom ) since for u; x) = supdom ) we have +u; x))=+ and Eq. 4.18) is saised. Le y Dom, u; x) y. Then here exiss n = n ; x; y) such ha u n n ;x n ) y; n n. We muliply Eq. 4.22) by y u n n ;x n ), and we have [ p n 1 2 Tr ) n ;x n )X n ) b n ;x n );q n ) f n ;x n ;u n n ;x n );q n n ;x n ))y u n n ;x n ))) J n u n n ;x n ))) y); y u; x); from where passing o lim inf n inequaliy 4.18) follows. We can now improve Eq. 4.15a). Corollary 4.2. a) u; x) ); ; x) [;T R d. b) Y x s ); s [;T; P-a:s:!. s; X x s Proof. b) follows from a) since Ys ; x = Ys =us; Xs x ). To prove a) we have wo cases. c 1 ) ) = Dom and in his case, by Eq. 4.15a), u; x) ); ; x) [;T R d. c 2 ) ) Dom. Le b Dom ). Then b = supdom ) orb= inf Dom. Ifb= supdom ) and u; x)=b, hen ; ; ) P 2+ u; x) since us; y)6u; x)+o s + y x 2 ) and from Eq. 4.17) i follows b)= u; x)) and consequenly b ); a conradicion which shows ha u; x) b. We argue similarly in he case b = inf Dom ). In order o esablish a uniqueness resul, we need o impose he following addiional assumpion. For each R here exiss a coninuous funcion m R : R + R +, m R )= such ha f; x; r; p) f; y; r; p) 6m R x y 1 + p )); [;T; x ; y 6R; p R d : 4.23)

19 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Theorem 4.2. Under assumpions 4:1); 4:4) 4:8) and 4:23) he PVI 4:16) has a unique viscosiy soluion in he class of coninuous funcions which grow a mos polynomially a inniy. Proof. The exisence is proved by Theorem 4:1. The proof of uniqueness is based on he ideas in El Karoui e al. 1997). I suces o show ha if u is a subsoluion and v a supersoluion such ha ut; x)=vt; x)=gx); x R d, hen u6v. We perform he ransformaion u; x):=u; x)e 1 + x 2 ) =2 ; v; x):= v; x)+ ) e 1 + x 2 ) =2 as in he proof of Theorem 8:6 in El Karoui e al. 1997). For he simpliciy of noaions, we will wrie below u; v insead of u; v. Hence, he ransformed) u and v saisfy in he + F; x; u; x);du; x);d2 u; x))6 e + F; x; v; x);dv; x);d2 v; x)) 2 + e x) v; x) )) wih F dened as in El Karoui e al. 1997) and x)=1+ x 2 ) =2. Exacly as in El Karoui e al. 1997), we need only o show ha for any R, if B R := { x R}, sup u v) + 6 sup u v) + ; ;T) B R R since he righ-hand side ends o zero as R. To prove his fac we assume here exiss R; such ha for some ;x ) ;T) B R =u ;x ) v ;x ) = sup u v) + sup u v) + ; ;T) B R R and we shall arrive a a conradicion. We dene ˆ; ˆx; ŷ) as being a poin in [;T B R B R where he funcion ; x; y)=u; x) v; x) x y 2 2 achieves is maximum. Then by Lemma 8:7 from El Karoui e al. 1997): for large enough; ˆ; ˆx; ŷ) ;T) B R B R ; 4.24a) ˆx ŷ 2 and ˆx ŷ 2 as ; 4.24b) uˆ; ˆx) vˆ;ŷ)+: Then for large enough e ˆ ˆx)uˆ; ˆx) e ˆ ŷ) vˆ;ŷ) ˆ ) and, consequenly, e ˆ ˆx)uˆ; ˆx))6 + e ˆ ŷ) vˆ;ŷ) ˆ )) and he proof coninues exacly as in El Karoui e al. 1997). 4.24c)

20 21 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Connecion wih ellipic variaional inequaliies We consider he following ellipic variaional inequaliy EVI): Lux)+@ ux)) fx; ux); u)x)); = g; or equivalenly: x D; 5.1) Lux)+fx; ux)) u)x) [ ux)); +ux)); x)=gx); Here D is a bounded domain of R d of he form D = {x R d : x) }; x D; 5.1 ) 5.2) where C 2 R d ); x) ; {x R d :x)=}: We assume ha g CR d ); 5.3) f CR d R R d ) and R; ; such ha fx; y; ) 61 + y ); 5.4a) y ỹ)fx; y; z) fx; ỹ; z))6 y ỹ 2 ; 5.4b) fx; y; z) fx; y; z) 6 z z ; 5.4c) for all x R d ; y;ỹ R; z; z R d, and : R ;+ is a proper convex l:s:c: funcion s:: : y) )=; 5.5a) M : gx)) 6M; x D; 5.5b) and L is he inniesimal generaor of he Marov diusion process X : X x = x + bxs x )ds+ Xs x )db s ; ; i.e. L = ) ij x) j i; j=1 d i=1 b i : Here ; F;P;F ) ;B )isad-dimensional Brownian moion as in Secion 4 and b : R d R d ; :R d R d d are Lipschiz coninuous on D: 5.6)

21 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Dene he sopping-ime: x = inf { : X ) = D}: We assume ha P x )=1; x D; 5.7a) = P x )=} is a closed subse 5.7b) sup Ee x ) for some : 3 5.7c) x D Consider now for each x D he one-dimensional BSDE: Y x + x x U x s ds = gx x x )+ Y x x ;U x x ; x x fx x s;y x s ;Z x s)ds x Zs x db s ; x ;! a:s:; 5.8) a:e: on [;: I follows from Theorem 1.1 ha he BSDE 5.8) has a unique soluion Y x ;Z x ;U x ) S 2; [; x M 2; [; x ) M 2; d [; x M 2; [; x : As in Darling and Pardoux 1997) we can show ha x x is a:s: coninuous; 5.9a) ux)=y x ; x D; is a deerminis coninuous funcion; 5.9b) Y x = ux x ); 66 x ; a:s: 5.9c) Proposiion 5.1. If he Dirichle problem 5:1) has a classical soluion u C 2 D) C D); hen ux)=y x ; x D; where Y x ;Z x ;U x ) is he soluion of BSDE 5.8). Proof. Le u x)=lux)+fx; ux); ux));x D: Applying Iô s formula o e ux x ) we have x e x) ux x )+ e s [ ux s )+LuX s ) ds x x =e x ux x )+ e s ux s );X s )db s ); x and, consequenly, e x) ux x )+ x + fx s ;ux s ); u)x s )) ds + x e s u X s )ds=e x gx x )+ x x x e s [ux s ) x e s ux s );X s )db s ): 3 If for some 16i6d; inf x D ) ii x), hen such ha Eq. 5.7c) holds see Srooc and Varadhan, 1972).

22 212 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Hence, by uniqueness: Y x = ux x x ); Z x = u)x x x ); U x =u X x x ): Under he assumpions given above, we canno hope for a classical soluion o exis in general. Tha is why we dene he noion of viscosiy soluion. P 2+ ux) he ellipic superje) and P 2 ux) he ellipic subje) are dened similarly as in Deniion 4.1. Le u C D) and x D; hen q; X ) P 2; + ux) if D uy)6ux)+q; y x)+ 1 2 Xy x);y x)) + o y x 2 ); y D and q; X ) P 2 ux) if D uy) ux)+q; y x)+ 1 2 Xy x);y x)) + o y x 2 ); y D: Deniion 5.1. a) A funcion u C D) is a viscosiy subsoluion of Eq. 5.1) if x D; q; X ) PD 2+ ux), ux) Dom ; 5.1a) V x; q; X ) def = 1 2 Tr )x)x) bx);q) fx; ux);qx)+ ux))6 if x D; min{v x; q; X );ux) gx)}6if 5.1b) 5.1c) b) u C D) is a viscosiy supersoluion of Eq. 5.1), if x D; q; X ) P 2 D ux), ux) Dom ; 5.11a) V + x; q; X ) def = 1 2 Tr )x)x) bx);q) fx; ux);qx)) + +ux)) if x D; 5.11b) max{v + x; q; X );ux) gx)} if 5.11c) c) u C D) is a viscosiy soluion of Eq. 5.1) if i is boh a viscosiy subsoluion and a viscosiy supersoluion. Theorem 5.1. Under assumpions 5.2) 5.7) he funcion u C D) given by ux)= Y x is a viscosiy soluion of Eq. 5.1). Moreover, ux) ); x D;. Proof. Assuming ha u is a viscosiy soluion of Eq. 5.1), we deduce as in Corollary 4.2 ha ux) ). In order o prove ha ux)=y x is a viscosiy soluion we could use as in he previous secion an argumen based on penalizaion. Le us, however, give a direc proof of he fac ha u is a viscosiy subsoluion.

23 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Le x D and q; X ) PD 2+ ux). From he 1 law, here are wo possible cases: a) x!)= a.s. Then ux)=y x =gx) and consequenly 5.1a) is saised. b) x a.s. We wan o show ha in his case V x; q; X )6, which will conclude he proof. Suppose his is no he case. Then V x; q; X ). I follows by coninuiy of f; u; b and, lef coninuiy and monooniciy of ha here exiss ; such ha for all y x 6, 1 2 Tr[ y)x + I) by);q+x + I)y x)) fy; uy); [q +X + I)y x)y)) + uy)) : 5.13) Now, since q; X ) PD 2+ ux) here exiss 6 such ha uy) y), for all y D such ha y x 6, where Le y):=ux)+q; y x)+ 1 2 X + I)y x);y x)): := inf { ; X x x } x 1: We noe ha Y ; Z ):=Y x ;1 [; )Z x ); 661; solves he BSDE Y = ux x ) [; s)[fxs x ;uxs x ); Z s ) Us x ds Y ;U x ; dp d a:e: on [;: Moreover, i follows from Iô s formula ha Yˆ ; Ẑ ):= X);1 x [; ) )X x )); 661; saises ˆ Y = X x ) 1 1 [; s)l X x s )ds Le Ỹ ; Z ):=ˆ Y Y ;Ẑ Z ). We have 1 Ẑ s db s ; 661: Z s db s ; Le Ỹ = X x ) ux x )+ 1 1 Z s db s ;661: 1 [; s)[ L X x s ) fx x s ;ux x s ); Z s )+U x s ds s := [L X x s )+fx x s;ux x s ); Z s )1 [; s); ˆ s := [L X x s )+fx x s;ux x s );Ẑ s )1 [; s):

24 214 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Since ˆ s s 6C Ẑ s Z s, here exiss a bounded d-dimensional progressively measurable process { s ;6s61} such ha Now, ˆ s s = s ; Z s ): Ỹ = X x ) ux x )+ 1 [ ˆ s +U x s 1 + s ; Z s ) ds Z s db s : I is easily seen see e.g. he proof of Theorem 1.6 in Pardoux, 1997) ha Ỹ aes he form [ Ỹ = E X x ) ux x )) + sus x ˆ s )ds ; where = exp s; db s 1 2 We rs noe ha Y x ;U x ux x ))6U x s 2 ds): implies ha and his holds dp d a.e. Moreover, he choice of and implies ha ux x ) X x ); a.e. and for 66, i follows from Eq. 5.13) ha ˆ ux x )): All hese inequaliies and he above formula for Ỹ imply ha Ỹ, i.e. x) ux), which conradics he deniion of. Hence, V x; q; X )6. Remar 5.1. Under appropriae addiional assumpions, namely Eq. 4.23) and he fac ha is large enough, one can show ha he above ellipic variaional inequaliy has a unique viscosiy soluion, adaping he proof in Crandall Ishii Lions 1992). References Barbu, V., Nonlinear Semigroups and Dierenial Equaions in Banach Spaces. Ed. Academiei Române & Noordho Inernaional Publishing, Leiden. Brezis, H., Operaeurs Maximaux Monoones e Semigroupes de Conracions Dans les Espaces de Hilber. Norh-Holland, Amserdam. Crandall, M., Ishii, H., Lions, P.L., User s guide o he viscosiy soluions of second order parial dierenial equaions. Bull. A.M.S. 27, Cvianic, J., Karazas, I., Bacward sochasic dierenial equaions wih reecion and Dynin games. Ann. Probab. 24, Darling, R.W.R., Pardoux, E., Bacward SDE wih random erminal ime and applicaions o semilinear ellipic PDE. Ann. Probab. 25, El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.C., Reeced soluions of bacward SDE s and relaed obsacle problems for PDE s. Ann. Probab. 25, Friedman, A., Sochasic Dierenial Equaions and Applicaions. Academic Press, New Yor. Gegou-Pei, A., Pardoux, E., Equaions dierenielles sochasiques rerogrades reechies dans un convexe. Sochasics Sochasic Rep. 57,

25 E. Pardoux, A. Rascanu / Sochasic Processes and heir Applicaions ) Pardoux, E., Bacward sochasic dierenial equaions and viscosiy soluions of sysems of semilinear parabolic and elleipic PDEs of second order. In: Decreusefond, L., Gjerde, J., sendal, B., Usunel, A.S., Eds.), Sochasic Analysis and Relaed Topics VI: The Geilo Worshop, 1996, Birhauser, Basel, pp Pardoux, E., Peng, S., Bacward SDE s and quasilinear PDE s. In: Rozovsi, B.L., Sowers, R.B., Eds.), Sochasic PDE and Their Applicaions, Lecure Noes in Compuer Science vol. 176, Springer. Srooc, D.W., Varadhan, S.R.S., On degenerae ellipic parabolic operaors of second order and heir associaed diusions. Comm. Pure Appl. Mah. 25,

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations arxiv:mah/0602323v1 [mah.pr] 15 Feb 2006 Dual Represenaion as Sochasic Differenial Games of Backward Sochasic Differenial Equaions and Dynamic Evaluaions Shanjian Tang Absrac In his Noe, assuming ha he

More information

Singular control of SPDEs and backward stochastic partial diffe. reflection

Singular control of SPDEs and backward stochastic partial diffe. reflection Singular conrol of SPDEs and backward sochasic parial differenial equaions wih reflecion Universiy of Mancheser Join work wih Bern Øksendal and Agnès Sulem Singular conrol of SPDEs and backward sochasic

More information

Approximation of backward stochastic variational inequalities

Approximation of backward stochastic variational inequalities Al. I. Cuza Universiy of Iaşi, România 10ème Colloque Franco-Roumain de Mahémaiques Appliquées Augus 27, 2010, Poiiers, France Shor hisory & moivaion Re eced Sochasic Di erenial Equaions were rs sudied

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

REFLECTED SOLUTIONS OF BACKWARD SDE S, AND RELATED OBSTACLE PROBLEMS FOR PDE S

REFLECTED SOLUTIONS OF BACKWARD SDE S, AND RELATED OBSTACLE PROBLEMS FOR PDE S The Annals of Probabiliy 1997, Vol. 25, No. 2, 72 737 REFLECTED SOLUTIONS OF BACKWARD SDE S, AND RELATED OBSTACLE PROBLEMS FOR PDE S By N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez

More information

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations arxiv:mah/07002v [mah.pr] 3 Dec 2006 Local Sric Comparison Theorem and Converse Comparison Theorems for Refleced Backward Sochasic Differenial Equaions Juan Li and Shanjian Tang Absrac A local sric comparison

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Soluions o seleced problems 1. Le A B R n. Show ha in A in B bu in general bd A bd B. Soluion. Le x in A. Then here is ɛ > 0 such ha B ɛ (x) A B. This shows x in B. If A = [0, 1] and B = [0, 2], hen

More information

Couplage du principe des grandes déviations et de l homogénisation dans le cas des EDP paraboliques: (le cas constant)

Couplage du principe des grandes déviations et de l homogénisation dans le cas des EDP paraboliques: (le cas constant) Couplage du principe des grandes déviaions e de l homogénisaion dans le cas des EDP paraboliques: (le cas consan) Alioune COULIBALY U.F.R Sciences e Technologie Universié Assane SECK de Ziguinchor Probabilié

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions Recalls and basic resuls on BSDEs Uniqueness resul Links wih PDEs On he uniqueness of soluions o quadraic BSDEs wih convex generaors and unbounded erminal condiions IRMAR, Universié Rennes 1 Châeau de

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM Communicaions on Sochasic Analysis Vol. 1, No. 3 (27) 473-483 EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM P. SUNDAR AND HONG YIN Absrac. The backward sochasic Lorenz

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

arxiv: v1 [math.pr] 19 Feb 2011

arxiv: v1 [math.pr] 19 Feb 2011 A NOTE ON FELLER SEMIGROUPS AND RESOLVENTS VADIM KOSTRYKIN, JÜRGEN POTTHOFF, AND ROBERT SCHRADER ABSTRACT. Various equivalen condiions for a semigroup or a resolven generaed by a Markov process o be of

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

arxiv: v1 [math.fa] 9 Dec 2018

arxiv: v1 [math.fa] 9 Dec 2018 AN INVERSE FUNCTION THEOREM CONVERSE arxiv:1812.03561v1 [mah.fa] 9 Dec 2018 JIMMIE LAWSON Absrac. We esablish he following converse of he well-known inverse funcion heorem. Le g : U V and f : V U be inverse

More information

arxiv: v1 [math.pr] 28 Nov 2016

arxiv: v1 [math.pr] 28 Nov 2016 Backward Sochasic Differenial Equaions wih Nonmarkovian Singular Terminal Values Ali Devin Sezer, Thomas Kruse, Alexandre Popier Ocober 15, 2018 arxiv:1611.09022v1 mah.pr 28 Nov 2016 Absrac We solve a

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs Backward doubly sochasic di erenial equaions wih quadraic growh and applicaions o quasilinear SPDEs Badreddine MANSOURI (wih K. Bahlali & B. Mezerdi) Universiy of Biskra Algeria La Londe 14 sepember 2007

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH REFLECTION AND DYNKIN GAMES 1. By Jakša Cvitanić and Ioannis Karatzas Columbia University

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH REFLECTION AND DYNKIN GAMES 1. By Jakša Cvitanić and Ioannis Karatzas Columbia University The Annals of Probabiliy 1996, Vol. 24, No. 4, 224 256 BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH REFLECTION AND DYNKIN GAMES 1 By Jakša Cvianić and Ioannis Karazas Columbia Universiy We esablish

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

FEEDBACK NULL CONTROLLABILITY OF THE SEMILINEAR HEAT EQUATION

FEEDBACK NULL CONTROLLABILITY OF THE SEMILINEAR HEAT EQUATION Differenial and Inegral Equaions Volume 5, Number, January 2002, Pages 5 28 FEEDBACK NULL CONTROLLABILITY OF THE SEMILINEAR HEAT EQUATION Mihai Sîrbu Deparmen of Mahemaical Sciences, Carnegie Mellon Universiy

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability,

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability, Backward Sochasic Differenial Equaions and Applicaions Alexander Seinicke Universiy of Graz Vienna Seminar in Mahemaical Finance and Probabiliy, 6-20-2017 1 / 31 1 Wha is a BSDE? SDEs - he differenial

More information

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions Time discreizaion of quadraic and superquadraic Markovian BSDEs wih unbounded erminal condiions Adrien Richou Universié Bordeaux 1, INRIA équipe ALEA Oxford framework Le (Ω, F, P) be a probabiliy space,

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS Elecronic Journal of Differenial Equaions, Vol. 217 217, No. 118, pp. 1 14. ISSN: 172-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

More information

Optimality Conditions for Unconstrained Problems

Optimality Conditions for Unconstrained Problems 62 CHAPTER 6 Opimaliy Condiions for Unconsrained Problems 1 Unconsrained Opimizaion 11 Exisence Consider he problem of minimizing he funcion f : R n R where f is coninuous on all of R n : P min f(x) x

More information

TO our knowledge, most exciting results on the existence

TO our knowledge, most exciting results on the existence IAENG Inernaional Journal of Applied Mahemaics, 42:, IJAM_42 2 Exisence and Uniqueness of a Periodic Soluion for hird-order Delay Differenial Equaion wih wo Deviaing Argumens A. M. A. Abou-El-Ela, A. I.

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

A NOTE ON THE STRUCTURE OF BILATTICES. A. Avron. School of Mathematical Sciences. Sackler Faculty of Exact Sciences. Tel Aviv University

A NOTE ON THE STRUCTURE OF BILATTICES. A. Avron. School of Mathematical Sciences. Sackler Faculty of Exact Sciences. Tel Aviv University A NOTE ON THE STRUCTURE OF BILATTICES A. Avron School of Mahemaical Sciences Sacler Faculy of Exac Sciences Tel Aviv Universiy Tel Aviv 69978, Israel The noion of a bilaice was rs inroduced by Ginsburg

More information

Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values

Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values Backward Sochasic Differenial Equaions wih Nonmarkovian Singular Terminal Values Ali Sezer, Thomas Kruse, Alexandre Popier, Ali Sezer To cie his version: Ali Sezer, Thomas Kruse, Alexandre Popier, Ali

More information

Homogenization of random Hamilton Jacobi Bellman Equations

Homogenization of random Hamilton Jacobi Bellman Equations Probabiliy, Geomery and Inegrable Sysems MSRI Publicaions Volume 55, 28 Homogenizaion of random Hamilon Jacobi Bellman Equaions S. R. SRINIVASA VARADHAN ABSTRACT. We consider nonlinear parabolic equaions

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

EXISTENCE OF S 2 -ALMOST PERIODIC SOLUTIONS TO A CLASS OF NONAUTONOMOUS STOCHASTIC EVOLUTION EQUATIONS

EXISTENCE OF S 2 -ALMOST PERIODIC SOLUTIONS TO A CLASS OF NONAUTONOMOUS STOCHASTIC EVOLUTION EQUATIONS Elecronic Journal of Qualiaive Theory of Differenial Equaions 8, No. 35, 1-19; hp://www.mah.u-szeged.hu/ejqde/ EXISTENCE OF S -ALMOST PERIODIC SOLUTIONS TO A CLASS OF NONAUTONOMOUS STOCHASTIC EVOLUTION

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

1 Inroducion T. Lyons and T.S. Zhang ([1]) considered a saionary good symmeric Markov process (X(); ) associaed wih a Dirichle form and showed ha, for

1 Inroducion T. Lyons and T.S. Zhang ([1]) considered a saionary good symmeric Markov process (X(); ) associaed wih a Dirichle form and showed ha, for A generalized class of Lyons-Zheng processes Francesco Russo (1) Pierre Vallois () Jochen Wolf (1) (1) Universie Paris 13 Insiu Galilee, Mahemaiques Avenue J.B. Clemen F-9343 Villeaneuse () Universie de

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

Forward-backward stochastic differential equations and quasilinear parabolic PDEs

Forward-backward stochastic differential equations and quasilinear parabolic PDEs Probab. Theory Rela. Fields, 3 5 999 Forward-backward sochasic differenial equaions and quasilinear parabolic PDEs Eienne Pardoux, Shanjian Tang, LATP, CMI, Universié de Provence, 39, rue F. Jolio Curie,

More information

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Annales Academiæ Scieniarum Fennicæ Mahemaica Volumen 31, 2006, 39 46 CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Joaquim Marín and Javier

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Representation of Stochastic Process by Means of Stochastic Integrals

Representation of Stochastic Process by Means of Stochastic Integrals Inernaional Journal of Mahemaics Research. ISSN 0976-5840 Volume 5, Number 4 (2013), pp. 385-397 Inernaional Research Publicaion House hp://www.irphouse.com Represenaion of Sochasic Process by Means of

More information

On the probabilistic stability of the monomial functional equation

On the probabilistic stability of the monomial functional equation Available online a www.jnsa.com J. Nonlinear Sci. Appl. 6 (013), 51 59 Research Aricle On he probabilisic sabiliy of he monomial funcional equaion Claudia Zaharia Wes Universiy of Timişoara, Deparmen of

More information

BSDES UNDER FILTRATION-CONSISTENT NONLINEAR EXPECTATIONS AND THE CORRESPONDING DECOMPOSITION THEOREM FOR E-SUPERMARTINGALES IN L p

BSDES UNDER FILTRATION-CONSISTENT NONLINEAR EXPECTATIONS AND THE CORRESPONDING DECOMPOSITION THEOREM FOR E-SUPERMARTINGALES IN L p ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 43, Number 2, 213 BSDES UNDER FILTRATION-CONSISTENT NONLINEAR EXPECTATIONS AND THE CORRESPONDING DECOMPOSITION THEOREM FOR E-SUPERMARTINGALES IN L p ZHAOJUN

More information

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256 Tile Auhor(s) GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION Zhao, Liang Ciaion Osaka Journal of Mahemaics. 51(1) P.45-P.56 Issue Dae 014-01 Tex Version publisher URL hps://doi.org/10.18910/9195

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient

Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient 1/34 Exisence and uniqueness of soluion for mulidimensional BSDE wih local condiions on he coefficien EL HASSAN ESSAKY Cadi Ayyad Universiy Mulidisciplinary Faculy Safi, Morocco ITN Roscof, March 18-23,

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

Dedicated to the memory of Professor Dragoslav S. Mitrinovic 1. INTRODUCTION. Let E :[0;+1)!Rbe a nonnegative, non-increasing, locally absolutely

Dedicated to the memory of Professor Dragoslav S. Mitrinovic 1. INTRODUCTION. Let E :[0;+1)!Rbe a nonnegative, non-increasing, locally absolutely Univ. Beograd. Publ. Elekroehn. Fak. Ser. Ma. 7 (1996), 55{67. DIFFERENTIAL AND INTEGRAL INEQUALITIES Vilmos Komornik Dedicaed o he memory of Professor Dragoslav S. Mirinovic 1. INTRODUCTION Le E :[;)!Rbe

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

Heat kernel and Harnack inequality on Riemannian manifolds

Heat kernel and Harnack inequality on Riemannian manifolds Hea kernel and Harnack inequaliy on Riemannian manifolds Alexander Grigor yan UHK 11/02/2014 onens 1 Laplace operaor and hea kernel 1 2 Uniform Faber-Krahn inequaliy 3 3 Gaussian upper bounds 4 4 ean-value

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

On Oscillation of a Generalized Logistic Equation with Several Delays

On Oscillation of a Generalized Logistic Equation with Several Delays Journal of Mahemaical Analysis and Applicaions 253, 389 45 (21) doi:1.16/jmaa.2.714, available online a hp://www.idealibrary.com on On Oscillaion of a Generalized Logisic Equaion wih Several Delays Leonid

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS WITH QUADRATIC GROWTH. By Magdalena Kobylanski Université detours

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS WITH QUADRATIC GROWTH. By Magdalena Kobylanski Université detours The Annals of Probabiliy 2, Vol. 28, No. 2, 558 62 BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS WITH QUADRATIC GROWTH By Magdalena Kobylanski Universié detours We provide

More information

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation A proof of Io's formula using a di Tile formula Auhor(s) Fujia, Takahiko; Kawanishi, Yasuhi Sudia scieniarum mahemaicarum H Ciaion 15-134 Issue 8-3 Dae Type Journal Aricle Tex Version auhor URL hp://hdl.handle.ne/186/15878

More information

Engineering Letter, 16:4, EL_16_4_03

Engineering Letter, 16:4, EL_16_4_03 3 Exisence In his secion we reduce he problem (5)-(8) o an equivalen problem of solving a linear inegral equaion of Volerra ype for C(s). For his purpose we firs consider following free boundary problem:

More information

Existence of multiple positive periodic solutions for functional differential equations

Existence of multiple positive periodic solutions for functional differential equations J. Mah. Anal. Appl. 325 (27) 1378 1389 www.elsevier.com/locae/jmaa Exisence of muliple posiive periodic soluions for funcional differenial equaions Zhijun Zeng a,b,,libi a, Meng Fan a a School of Mahemaics

More information

arxiv: v1 [math.pr] 14 Jul 2008

arxiv: v1 [math.pr] 14 Jul 2008 Refleced Backward Sochasic Differenial Equaions Driven by Lévy Process arxiv:0807.2076v1 [mah.pr] 14 Jul 2008 Yong Ren 1, Xiliang Fan 2 1. School of Mahemaics and Physics, Universiy of Tasmania, GPO Box

More information

Quasi-sure Stochastic Analysis through Aggregation

Quasi-sure Stochastic Analysis through Aggregation E l e c r o n i c J o u r n a l o f P r o b a b i l i y Vol. 16 (211), Paper no. 67, pages 1844 1879. Journal URL hp://www.mah.washingon.edu/~ejpecp/ Quasi-sure Sochasic Analysis hrough Aggregaion H. Mee

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP Coninuous Linear Programming. Separaed Coninuous Linear Programming Bellman (1953) max c () u() d H () u () + Gsusds (,) () a () u (), < < CLP (Danzig, yndall, Grinold, Perold, Ansreicher 6's-8's) Anderson

More information

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball A Noe on Superlinear Ambrosei-Prodi Type Problem in a Ball by P. N. Srikanh 1, Sanjiban Sanra 2 Absrac Using a careful analysis of he Morse Indices of he soluions obained by using he Mounain Pass Theorem

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems

On Boundedness of Q-Learning Iterates for Stochastic Shortest Path Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 2, May 2013, pp. 209 227 ISSN 0364-765X (prin) ISSN 1526-5471 (online) hp://dx.doi.org/10.1287/moor.1120.0562 2013 INFORMS On Boundedness of Q-Learning Ieraes

More information

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero JOURNAL OF MAEMAICAL ANALYSIS AND APPLICAIONS 24, 7887 1997 ARICLE NO. AY965143 A Necessary and Sufficien Condiion for he Soluions of a Funcional Differenial Equaion o Be Oscillaory or end o Zero Piambar

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.10 (22 (2014, 67 76 DOI: 10.5644/SJM.10.1.09 CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS ALMA OMERSPAHIĆ AND VAHIDIN HADŽIABDIĆ Absrac. This paper presens sufficien

More information

Essential Maps and Coincidence Principles for General Classes of Maps

Essential Maps and Coincidence Principles for General Classes of Maps Filoma 31:11 (2017), 3553 3558 hps://doi.org/10.2298/fil1711553o Published by Faculy of Sciences Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma Essenial Maps Coincidence

More information

A remark on the H -calculus

A remark on the H -calculus A remark on he H -calculus Nigel J. Kalon Absrac If A, B are secorial operaors on a Hilber space wih he same domain range, if Ax Bx A 1 x B 1 x, hen i is a resul of Auscher, McInosh Nahmod ha if A has

More information

BY PAWE L HITCZENKO Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC , USA

BY PAWE L HITCZENKO Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC , USA Absrac Tangen Sequences in Orlicz and Rearrangemen Invarian Spaces BY PAWE L HITCZENKO Deparmen of Mahemaics, Box 8205, Norh Carolina Sae Universiy, Raleigh, NC 27695 8205, USA AND STEPHEN J MONTGOMERY-SMITH

More information

Quadratic and Superquadratic BSDEs and Related PDEs

Quadratic and Superquadratic BSDEs and Related PDEs Quadraic and Superquadraic BSDEs and Relaed PDEs Ying Hu IRMAR, Universié Rennes 1, FRANCE hp://perso.univ-rennes1.fr/ying.hu/ ITN Marie Curie Workshop "Sochasic Conrol and Finance" Roscoff, March 21 Ying

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems.

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems. di ernardo, M. (995). A purely adapive conroller o synchronize and conrol chaoic sysems. hps://doi.org/.6/375-96(96)8-x Early version, also known as pre-prin Link o published version (if available):.6/375-96(96)8-x

More information

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990),

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990), SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F Trench SIAM J Marix Anal Appl 11 (1990), 601-611 Absrac Le T n = ( i j ) n i,j=1 (n 3) be a real symmeric

More information

ROOT S BARRIER, VISCOSITY SOLUTIONS OF OBSTACLE PROBLEMS AND REFLECTED FBSDES

ROOT S BARRIER, VISCOSITY SOLUTIONS OF OBSTACLE PROBLEMS AND REFLECTED FBSDES T S BAIE, VISCSITY SLUTINS F BSTACLE PBLEMS AND EFLECTED FBSDES PAUL GASSIAT, HAALD BEHAUSE, AND GNÇAL DS EIS ABSTACT. We revisi work of os [49, Dupire [ and Cox Wang [16 on connecions beween oo s soluion

More information

A class of multidimensional quadratic BSDEs

A class of multidimensional quadratic BSDEs A class of mulidimensional quadraic SDEs Zhongmin Qian, Yimin Yang Shujin Wu March 4, 07 arxiv:703.0453v mah.p] Mar 07 Absrac In his paper we sudy a mulidimensional quadraic SDE wih a paricular class of

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information