ECE 470 Electric Machines Review of Maxwell s Equations in Integral Form. 1. To discuss a classification of materials

Size: px
Start display at page:

Download "ECE 470 Electric Machines Review of Maxwell s Equations in Integral Form. 1. To discuss a classification of materials"

Transcription

1 EE 470 Electric Mchines Review of Mxwell s Equtions in Integrl Form Objectives: 1. To discuss clssifiction of mterils 2. To discuss properties of homogeneous, liner, isotropic, nd time-invrint mterils 3. To review Mxwell s equtions in integrl form. pecificlly: 4. To discuss Guss Lw for the Electric Field 5. To discuss Guss Lw for the Mgnetic Field 1

2 lssifiction of Mterils 1. onductors { Good Bd 2. emiconductors 3. Dielectrics (Insultors) { Perfect Imperfect 4. Mgnetic Mterils 2

3 Mgnetic lssifiction of Mterils 1. Prmgnetic (µ r 1+) 2. Dimgnetic (µ r 1 ) 3. Nonmgnetic metls (µ r = 1) 4. uperconducting (µ r = 0) 5. Ferromgnetic (µ r = 100-1,000,000) 6. Ferrimgnetic (hrd nd soft mterils with low electric conductivities) 3

4 Properties of Mterils Homogeneous: hrcteristics of mteril do not depend on the loction in the mteril medium (Opposite: Non-Homogeneous) Isotropic: hrcteristics re not dependent on the direction of excittion fields (Opposite: Anisotropic) Liner: hrcteristics re not dependent on the mgnitude of excittion fields (Opposite: Nonliner) Time-Invrint: hrcteristics do not chnge with time (Opposite: Time-Vrying) Notes: In this course, we will del with: 1. Homogeneous, isotropic, time-invrint mterils. 2. Liner nd nonliner mterils. 4

5 oncepts E Electric Field Intensity Vector (V/m) D Displcement Flux Density Vector (/m 2 ) B Mgnetic Flux Density Vector (Wb/m 2 or T) H Mgnetic Field Intensity Vector (A-turn/m) J onduction urrent Density Vector (A/m 2 ) ρ hrge Density (/m 3 ) ϵ Mteril Permittivity (F/m) ϵ r Reltive Permittivity ϵ o Permittivity of Free pce (F/m) µ Mteril Permebility (H/m) µ r Reltive Permebility µ o Permebility of Free pce (H/m) σ onductivity (/m) c Velocity of Light in Free pce (m/s) 5

6 Mxwell s Equtions in Integrl Form 1. Guss Lw for the Electric Field: D d = V ρ dv = Q enclosed 2. Guss Lw for the Mgnetic Field: B d = 0 3. Ampère Lw: H dl = J d + d D d 4. Frdy s Lw: E dl = d B d 6

7 onstitutive Equtions for Liner Isotropic Mterils D = ϵ E = ϵr ϵ o E (F/m) B = µ H = µr µ o H (H/m) J = σ E (A/m 2 ) onstnts ϵ o = (F/m) µ o = 4π 10 7 (H/m) ϵ o µ o c 2 = 1 c = (m/s) ϵ o 1 36π 10 9 (F/m) 7

8 Liner Isotropic Dielectric Mteril: D = ϵo E (In Free pce) P: Polriztion Vector χ e : Electric usceptibility P = ϵo χ e E D = ϵo E + P = ϵo (1 + χ e ) E = ϵ o ϵ r E D = ϵ E (In Mteril Medium) ϵ = ϵ r ϵ o (F/m) ϵ o = (F/m) 8

9 Liner Isotropic Mgnetic Mteril: B = µo H (In Free pce) M: Mgnetiztion Vector χ m : Mgnetic usceptibility M = χ m 1+χ m Bµo H = Bµo χ m 1+χ m Bµo = B µ o (1+χ m ) = B µo µ r B = µ H (In Mteril Medium) µ = µ r µ o (H/m) µ o = 4π 10 7 (H/m) 9

10 Guss Lw for the Electric Field d D urfce hrge Density ρ Q enclosed in Volume V D d = V ρ dv = Q enclosed The totl electric flux out of closed surfce is equl to the totl chrge enclosed. Note 1: The differentil surfce vector d is oriented outwrds. Note 2: D = ϵ r ϵ o E for liner isotropic dielectric mteril. 10

11 Exmple 1: Find the electric field E due to point chrge q t distnce x from the chrge. Gussin urfce : phere of rdius x centered t the point chrge q x d E D d = Qenclosed D d = q D d = q ϵ o E(4πx 2 ) = q q E = 4πϵ o x 2 11

12 Exmple 2: Find the electric field E due to chrge Q uniformly distributed on hollow sphere of rdius r t distnce 0 x < r. Q Gussin urfce : phere of rdius x concentric to the r x d E sphere of rdius r. D d = Qenclosed D d = 0 D d = 0 ϵ o E(4πx 2 ) = 0 E = 0 12

13 Exmple 3: Find the electric field E due to chrge Q uniformly distributed on hollow sphere of rdius r t distnce x > r. Q Gussin urfce : phere of rdius x concentric to the sphere of rdius r. r x d E D d = Qenclosed D d = Q D d = Q ϵ o E(4πx 2 ) = Q E = Q 4πϵ o x 2 13

14 Guss Lw for the Mgnetic Field d o 1 d o B d i B 2 B d o = 0 The totl mgnetic flux out of closed surfce is equl to zero. Note 1: The differentil surfce vector d o is oriented outwrds. Note 2: B = µ r µ o H for liner isotropic mgnetic mteril. 14

15 Another Form of Guss Lw for the Mgnetic Field d o 1 d o B d i B 2 B d o + 1 B d i + 1 B d o = 0 B d o = 0 2 B d o = 0 2 B d i = B d o } 1 {{ }} 2 {{ } ϕ in = ϕ out 15

16 Ampère s Lw I d J d D dl H H dl = J d + d D d Note: The differentil surfce vector d is oriented ccording to the right-hnd rule by following the direction of the contour. 16

17 Ampère s Lw Mgnetic-Field ystem I d J dl H H dl = J d = Ienclosed An electric current induces mgnetic field. Note: For mgnetic-field systems excited with low frequencies: d D d 0 17

18 Ampère s Lw Mgnetic-Field ystem (ont d) I d J dl H ross ection A H dl = J d H dl = J d = J A ( I ) H dl = JA = A A H dl = I = Ienclosed A d 18

19 Ampère s Lw Mgnetic-Field ystem (ont d) I d θ J ross ection A dl H A cos θ H dl = H dl = J d J cos θ d = J cos θ A/ cos θ ( A ) H dl = (J cos θ) cos θ H dl = I = Ienclosed ( I = JA = A A) A/ cos θ 19 d

20 Ampère s Lw Mgnetic-Field ystem (ont d) I 1 I 2 I 3 d J 1 A 1 d A 2 d J 3 A 3 dl J 2 H dl = J 1 d + J 2 d + J 3 d A 1 A 2 A 3 H dl = J 1 d J 2 d + J 3 d A 1 A 2 A 3 H dl = J1 d J 2 d + J 3 d A 1 A 2 A 3 H dl = J1 A 1 J 2 A 2 + J 3 A 3 H dl = I1 I 2 + I 3 = I enclosed 20

21 Infinitely-Long Wire I d J dl H H dl = Ienclosed H dl = I H dl = I H(2πx) = I H = I 2πx, B = µ oh = µ oi 2πx 21

22 Frdy s Lw d B dl E E dl = d B d A time-vrying mgnetic flux induces voltge. Note: The differentil surfce vector d is oriented ccording to the right-hnd rule by following the direction of the contour. 22

23 Frdy s Lw for n Electrosttic Field (No Mgnetic Field) c b dl E b c E dl = 0 E dl + } {{ } E dl + } b {{ } E dl } c {{ } = 0 KVL: v b + v bc + v c = 0 23

24 Frdy s Lw (ont d) d B =NA, A=Are of One Loop N turns dl Mgnetic Flux ϕ (Unit: weber, Wb): ϕ = B d 1 loop Mgnetic Flux Linkges λ (Unit: weber-turn, Wb-t): λ = B d λ = B d N loops λ = N B d 1 loop λ = Nϕ 24

25 Grvittionl Potentil P m=1 kg g h h b dl g c h b e level g P = P b = P P b = P = b b g dl g dh = g(h h b ) = g h Electrosttic Potentil V V = V b = V V b = b E dl 25

26 Frdy s Lw (ont d) b d B dl E i dl E o + Region of negligible flux Region of considerble flux b d E dl = = dλ B d E i dl + E o dl } {{ }} b {{ } v b,in + v b,out = dλ 0 v b,out = dλ v = v b,out = dλ 26

27 Frdy s Lw with Moving ontour c d l B v V d + ril sliding conductor b x E dl = d B d b c d E dl + E dl + b c E dl + d E dl = dλ V d = dλ V d = dλ V d = d (Blx) V d = Blv 27

28 Ohm s Lw for Resistor dl E b J = σ E + v = v b Ohm s Lw: J = σe b b v = E dl = E dl ( J v = El = l = σ) 1 ( i l ( ) σ A) 1 l Ohm s Lw: v = i = Ri σ A 28

29 Ohm s Lw for pcitor +q Are A ε l E E E dl E E q Are A b Guss Lw: ϵea = q b b v = E dl = ( q ) v = El = l ( ϵa ϵa ) Ohm s Lw: q = v = v l i(t) = dq = dv E dl 29

30 Ohm s Lw for n Inductor + d λ v = d B N turns φ d Depth d ross ection A = wd Men Pth Length l µ w Wih w Frdy s Lw: v(t) = dλ λ = Nϕ = NBA Ampère s Lw: Hl = Ni λ = N(µH)A = L = N2 R = N 2 (l/µa) v(t) = dλ = L di µn2 A i = Li l 30

31 Mxwell s Equtions for Engineers 1. Guss Lw for the Electric Field: DA = ϵea = Q enclosed 2. Guss Lw for the Mgnetic Field: ϕ in = ϕ out 3. Ampère Lw for Mgnetic-Field ystem: H k l k = I enclosed k 4. Frdy s Lw: v(t) = dλ = N dϕ 31

32 Ampère s Lw of Force I 2 I 1 ^ 12 ^ 21 dl 2 dl 1 R df 1 = I 1dl1 df 2 = I 2dl2 µ o I 2 µ o I 1 dl2 â 21 4πR 2 dl1 â 12 4πR 2 32

33 Ampère s Lw of Force I 2 I 1 ^ 12 ^ 21 dl 2 dl 1 R where df 2 = I 2dl2 µ o I 1 dl1 â 12 4πR 2 = I 2 dl2 db 1 db 1 = µ oi 1dl1 â 12 4πR 2 33

34 Mgnetic Field of n Infinitely Long Wire rrying urrent I z dz ^ z α ^ R I R φ r (r, φ,0) ^ φ y x db = µ oidz â z â R 4πR 2 = µ oidz sin α 4πR 2 = µ oir dz 4πR 3 â µ o Ir dz ϕ = 4π(z 2 + r 2 ) â ϕ 3/2 âϕ 34

35 Mgnetic Field of n Infinitely Long Wire rrying urrent I z dz ^ z α ^ R I R φ r (r, φ,0) ^ φ y x B = = µ oir 4π z = db = z r 2 z 2 + r 2 z = z = µ o Ir dz 4π(z 2 + r 2 ) = µ oi 2πr âϕ 3/2 âϕ 35

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University Chpter 7 Stedy Mgnetic Field september 2016 Microwve Lbortory Sogng University Teching point Wht is the mgnetic field? Biot-Svrt s lw: Coulomb s lw of Mgnetic field Stedy current: current flow is independent

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

Physics 202, Lecture 14

Physics 202, Lecture 14 Physics 202, Lecture 14 Tody s Topics Sources of the Mgnetic Field (Ch. 28) Biot-Svrt Lw Ampere s Lw Mgnetism in Mtter Mxwell s Equtions Homework #7: due Tues 3/11 t 11 PM (4th problem optionl) Mgnetic

More information

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o 6. THE TATC MAGNETC FELD 6- LOENTZ FOCE EQUATON Lorent force eqution F = Fe + Fm = q ( E + v B ) Exmple 6- An electron hs n initil velocity vo = vo y in uniform mgnetic flux density B = Bo. () how tht

More information

Lecture 1: Electrostatic Fields

Lecture 1: Electrostatic Fields Lecture 1: Electrosttic Fields Instructor: Dr. Vhid Nyyeri Contct: nyyeri@iust.c.ir Clss web site: http://webpges.iust.c. ir/nyyeri/courses/bee 1.1. Coulomb s Lw Something known from the ncient time (here

More information

This final is a three hour open book, open notes exam. Do all four problems.

This final is a three hour open book, open notes exam. Do all four problems. Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from

More information

Phys 4321 Final Exam December 14, 2009

Phys 4321 Final Exam December 14, 2009 Phys 4321 Finl Exm December 14, 2009 You my NOT use the text book or notes to complete this exm. You nd my not receive ny id from nyone other tht the instructor. You will hve 3 hours to finish. DO YOUR

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016 Physics 333, Fll 16 Problem Set 7 due Oct 14, 16 Reding: Griffiths 4.1 through 4.4.1 1. Electric dipole An electric dipole with p = p ẑ is locted t the origin nd is sitting in n otherwise uniform electric

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance ECE 3318 Applied Electricity nd Mgnetism Spring 018 Prof. Dvid R. Jckson Dept. of ECE Notes 31 nductnce 1 nductnce ˆn S Single turn coil The current produces flux though the loop. Definition of inductnce:

More information

Chapter 4 Syafruddin Hasan

Chapter 4 Syafruddin Hasan Chpter 4 Syfruddin Hsn Chpter Objectives Mgnetic force The totl electromgnetic force, known s Lorentz force Biot Svrt lw Guss s lw for mgnetism Ampere s lw Vector mgnetic potentil 3diff different ttypes

More information

Physics 202, Lecture 13. Today s Topics

Physics 202, Lecture 13. Today s Topics Physics 202, Lecture 13 Tody s Topics Sources of the Mgnetic Field (Ch. 30) Clculting the B field due to currents Biot-Svrt Lw Emples: ring, stright wire Force between prllel wires Ampere s Lw: infinite

More information

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

Problems for HW X. C. Gwinn. November 30, 2009

Problems for HW X. C. Gwinn. November 30, 2009 Problems for HW X C. Gwinn November 30, 2009 These problems will not be grded. 1 HWX Problem 1 Suppose thn n object is composed of liner dielectric mteril, with constnt reltive permittivity ɛ r. The object

More information

CAPACITORS AND DIELECTRICS

CAPACITORS AND DIELECTRICS Importnt Definitions nd Units Cpcitnce: CAPACITORS AND DIELECTRICS The property of system of electricl conductors nd insultors which enbles it to store electric chrge when potentil difference exists between

More information

Problem 1. Solution: a) The coordinate of a point on the disc is given by r r cos,sin,0. The potential at P is then given by. r z 2 rcos 2 rsin 2

Problem 1. Solution: a) The coordinate of a point on the disc is given by r r cos,sin,0. The potential at P is then given by. r z 2 rcos 2 rsin 2 Prolem Consider disc of chrge density r r nd rdius R tht lies within the xy-plne. The origin of the coordinte systems is locted t the center of the ring. ) Give the potentil t the point P,,z in terms of,r,

More information

Homework Assignment 9 Solution Set

Homework Assignment 9 Solution Set Homework Assignment 9 Solution Set PHYCS 44 3 Mrch, 4 Problem (Griffiths 77) The mgnitude of the current in the loop is loop = ε induced = Φ B = A B = π = π µ n (µ n) = π µ nk According to Lense s Lw this

More information

Chapter 1 Magnetic Circuits

Chapter 1 Magnetic Circuits Principles of Electric Machines and Power Electronics Third Edition P. C. Sen Chapter 1 Magnetic Circuits Chapter 1: Main contents i-h relation, B-H relation Magnetic circuit and analysis Property of magnetic

More information

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics Mgnetic forces on moving chrge o fr we ve studied electric forces between chrges t rest, nd the currents tht cn result in conducting medium 1. Mgnetic forces on chrge 2. Lws of mgnetosttics 3. Mgnetic

More information

Electricity and Magnetism

Electricity and Magnetism PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Version 001 HW#6 - Electromagnetism arts (00224) 1

Version 001 HW#6 - Electromagnetism arts (00224) 1 Version 001 HW#6 - Electromgnetism rts (00224) 1 This print-out should hve 11 questions. Multiple-choice questions my continue on the next column or pge find ll choices efore nswering. rightest Light ul

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

Phys102 General Physics II

Phys102 General Physics II Phys1 Generl Physics II pcitnce pcitnce pcitnce definition nd exmples. Dischrge cpcitor irculr prllel plte cpcitior ylindricl cpcitor oncentric sphericl cpcitor Dielectric Sls 1 pcitnce Definition of cpcitnce

More information

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW Physics 10 Jonthn Dowling Physics 10 ecture 9 FIRST MIDTERM REVIEW A few concepts: electric force, field nd potentil Electric force: Wht is the force on chrge produced by other chrges? Wht is the force

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5.

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5. PHY1 Electricity Topic 5 (Lectures 7 & 8) pcitors nd Dielectrics In this topic, we will cover: 1) pcitors nd pcitnce ) omintions of pcitors Series nd Prllel 3) The energy stored in cpcitor 4) Dielectrics

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

Potential Formulation Lunch with UCR Engr 12:20 1:00

Potential Formulation Lunch with UCR Engr 12:20 1:00 Wed. Fri., Mon., Tues. Wed. 7.1.3-7.2.2 Emf & Induction 7.2.3-7.2.5 Inductnce nd Energy of 7.3.1-.3.3 Mxwell s Equtions 10.1 -.2.1 Potentil Formultion Lunch with UCR Engr 12:20 1:00 HW10 Generliztion of

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION EMF Notes 9; Electromgnetic nduction EECTOMAGNETC NDUCTON (Y&F Chpters 3, 3; Ohnin Chpter 3) These notes cover: Motionl emf nd the electric genertor Electromgnetic nduction nd Frdy s w enz s w nduced electric

More information

IMPORTANT. Read these directions carefully:

IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Finl Exm, Secs. 506 510. 7 My. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Physics 241 Exam 1 February 19, 2004

Physics 241 Exam 1 February 19, 2004 Phsics 241 Em 1 Februr 19, 24 One (both sides) 8 1/2 11 crib sheet is llowed. It must be of our own cretion. k = 1 = 9 1 9 N m2 4p 2 2 = 8.85 1-12 N m 2 e =1.62 1-19 c = 2.99792458 1 8 m/s (speed of light)

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

Lecture 5 Capacitance Ch. 25

Lecture 5 Capacitance Ch. 25 Lecture 5 pcitnce h. 5 rtoon - pcitnce definition nd exmples. Opening Demo - Dischrge cpcitor Wrm-up prolem Physlet Topics pcitnce Prllel Plte pcitor Dielectrics nd induced dipoles oxil cle, oncentric

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form ections: 3.1, 3.2, 3.3 Homework: ee homework file Faraday s Experiment (1837), Electric Flux ΨΨ charge transfer from inner to outer sphere

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

lim = F F = F x x + F y y + F z

lim = F F = F x x + F y y + F z Physics 361 Summary of Results from Lecture Physics 361 Derivatives of Scalar and Vector Fields The gradient of a scalar field f( r) is given by g = f. coordinates f g = ê x x + ê f y y + ê f z z Expressed

More information

P812 Midterm Examination February Solutions

P812 Midterm Examination February Solutions P8 Midterm Exmintion Februry s. A one dimensionl chin of chrges consist of e nd e lterntively plced with neighbouring distnce. Show tht the potentil energy of ech chrge is given by U = ln. 4πε Explin qulittively

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

Chapter 2 Basics of Electricity and Magnetism

Chapter 2 Basics of Electricity and Magnetism Chapter 2 Basics of Electricity and Magnetism My direct path to the special theory of relativity was mainly determined by the conviction that the electromotive force induced in a conductor moving in a

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

Electric vs Magnetic Comparison

Electric vs Magnetic Comparison 5. MAGNETOSTATICS Electric vs Magnetic Comparison J=σE Most dielectrics µ = µo excluding ferromagnetic materials Gauss s Law E field is conservative Gauss s law (integral) Conservative E field Electric

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1 EE 6340 Intermediate EM Waves Fall 2016 Prof. David R. Jackson Dept. of EE Notes 1 1 Maxwell s Equations E D rt 2, V/m, rt, Wb/m T ( ) [ ] ( ) ( ) 2 rt, /m, H ( rt, ) [ A/m] B E = t (Faraday's Law) D H

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

Today in Physics 122: work, energy and potential in electrostatics

Today in Physics 122: work, energy and potential in electrostatics Tody in Physics 1: work, energy nd potentil in electrosttics Leftovers Perfect conductors Fields from chrges distriuted on perfect conductors Guss s lw for grvity Work nd energy Electrosttic potentil energy,

More information

Physics 2212 GH Quiz #2 Solutions Spring 2015

Physics 2212 GH Quiz #2 Solutions Spring 2015 Physics 2212 GH uiz #2 Solutions Spring 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0 = 8.854 10

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Msschusetts Institute of Technology Deprtment of Physics Physics 8.07 Fll 2005 Problem Set 3 Solutions Problem 1: Cylindricl Cpcitor Griffiths Problems 2.39: Let the totl chrge per unit length on the inner

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

Electromagnetic Potentials and Topics for Circuits and Systems

Electromagnetic Potentials and Topics for Circuits and Systems C H A P T E R 5 Electromgnetic Potentils nd Topics for Circuits nd Systems In Chpters 2, 3, nd 4, we introduced progressively Mxwell s equtions nd studied uniform plne wves nd ssocited topics. Two quntities

More information

Version 001 Exam 1 shih (57480) 1

Version 001 Exam 1 shih (57480) 1 Version 001 Exm 1 shih 57480) 1 This print-out should hve 6 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Holt SF 17Rev 1 001 prt 1 of ) 10.0

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/11/5 ection_4_4_e-field_clcultion_uing_coulomb_lw_empty.doc 1/1 4-4 E-field Clcultion uing Coulomb Lw Reding Aignment: pp. 9-98 Specificlly: 1. HO: The Uniform, Infinite Line Chrge. HO: The Uniform Dik

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

Electromagnetic Induction & Inductors

Electromagnetic Induction & Inductors Electromagnetic Induction & Inductors 1 Revision of Electromagnetic Induction and Inductors (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Magnetic Field

More information

6. Intermediate state

6. Intermediate state 6. Intermedite stte Without the specimen l l l ext AB BDEFA Demgnetiztion d = d + d = Ni With the specimen l l in l ext AB BDEFA d = d + d = Ni Due to the dimgnetism of the specimen, > Therefore, < in

More information

Idz[3a y a x ] H b = c. Find H if both filaments are present:this will be just the sum of the results of parts a and

Idz[3a y a x ] H b = c. Find H if both filaments are present:this will be just the sum of the results of parts a and Chapter 8 Odd-Numbered 8.1a. Find H in cartesian components at P (, 3, 4) if there is a current filament on the z axis carrying 8mAinthea z direction: Applying the Biot-Savart Law, we obtain H a = IdL

More information

Form #221 Page 1 of 7

Form #221 Page 1 of 7 Version Quiz #2 Form #221 Name: A Physics 2212 GH Spring 2016 Recitation Section: Print your name, quiz form number (3 digits at the top of this form), and student number (9 digit Georgia Tech ID number)

More information

Relevant Electrostatics and Magnetostatics (Old and New)

Relevant Electrostatics and Magnetostatics (Old and New) Unit 1 Relevant Electrostatics and Magnetostatics (Old and New) The whole of classical electrodynamics is encompassed by a set of coupled partial differential equations (at least in one form) bearing the

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information

F is on a moving charged particle. F = 0, if B v. (sin " = 0)

F is on a moving charged particle. F = 0, if B v. (sin  = 0) F is on moving chrged prticle. Chpter 29 Mgnetic Fields Ech mgnet hs two poles, north pole nd south pole, regrdless the size nd shpe of the mgnet. Like poles repel ech other, unlike poles ttrct ech other.

More information

Lecture 23 Flux Linkage and Inductance

Lecture 23 Flux Linkage and Inductance Lecture 3 Flux Linkage and nductance Sections: 8.10 Homework: See omework file te sum of all fluxes piercing te surfaces bounded by all turns (te total flux linking te turns) Λ= NΦ, Wb Flux Linkage in

More information

Hung problem # 3 April 10, 2011 () [4 pts.] The electric field points rdilly inwrd [1 pt.]. Since the chrge distribution is cylindriclly symmetric, we pick cylinder of rdius r for our Gussin surfce S.

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Chapter 15 Magnetic Circuits and Transformers

Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers 1. Understand magnetic fields and their interactio with moving charges. 2. Use the right-hand rule to determine

More information

Electromagnetism Answers to Problem Set 10 Spring 2006

Electromagnetism Answers to Problem Set 10 Spring 2006 Electromgnetism 76 Answers to Problem Set 1 Spring 6 1. Jckson Prob. 5.15: Shielded Bifilr Circuit: Two wires crrying oppositely directed currents re surrounded by cylindricl shell of inner rdius, outer

More information

TIME VARYING MAGNETIC FIELDS AND MAXWELL S EQUATIONS

TIME VARYING MAGNETIC FIELDS AND MAXWELL S EQUATIONS TIME VARYING MAGNETIC FIED AND MAXWE EQUATION Introuction Electrosttic fiels re usull prouce b sttic electric chrges wheres mgnetosttic fiels re ue to motion of electric chrges with uniform velocit (irect

More information

Version: A. Earth s gravitational field g = 9.81 N/kg Vacuum Permeability µ 0 = 4π 10 7 T m/a

Version: A. Earth s gravitational field g = 9.81 N/kg Vacuum Permeability µ 0 = 4π 10 7 T m/a PHYS 2212 GJ Quiz and Exam Formulæ & Constants Fall 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0

More information

AMPERE'S LAW. B dl = 0

AMPERE'S LAW. B dl = 0 AMPERE'S LAW The figure below shows a basic result of an experiment done by Hans Christian Oersted in 1820. It shows the magnetic field produced by a current in a long, straight length of current-carrying

More information

Version: A. Earth s gravitational field g = 9.81 N/kg Mass of a Proton m p = kg

Version: A. Earth s gravitational field g = 9.81 N/kg Mass of a Proton m p = kg PHYS 2212 G & J Quiz and Exam Formulæ & Constants Fall 2017 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Earth s gravitational field g = 9.81 N/kg Mass of a Proton m p

More information

Last Time emphasis on E-field. Potential of spherical conductor. Quick quiz. Connected spheres. Varying E-fields on conductor.

Last Time emphasis on E-field. Potential of spherical conductor. Quick quiz. Connected spheres. Varying E-fields on conductor. Lst Time emphsis on Efiel Electric flux through surfce Guss lw: Totl electric flux through close surfce proportionl to chrge enclose Q " E = E = 4$k e Q % o Chrge istribution on conuctors Chrge ccumultes

More information

Maxwell s Equations:

Maxwell s Equations: Course Instructor Dr. Raymond C. Rumpf Office: A-337 Phone: (915) 747-6958 E-Mail: rcrumpf@utep.edu Maxwell s Equations: Terms & Definitions EE-3321 Electromagnetic Field Theory Outline Maxwell s Equations

More information

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822). mpc2w4.tex Week 4. 2.11.2011 2. THE HEAT EQUATION (Joseph FOURIER (1768-1830) in 1807; Théorie nlytique de l chleur, 1822). One dimension. Consider uniform br (of some mteril, sy metl, tht conducts het),

More information

Problem Set 4: Mostly Magnetic

Problem Set 4: Mostly Magnetic University of Albm Deprtment of Physics nd Astronomy PH 102 / LeClir Summer 2012 nstructions: Problem Set 4: Mostly Mgnetic 1. Answer ll questions below. Show your work for full credit. 2. All problems

More information

For the flux through a surface: Ch.24 Gauss s Law In last chapter, to calculate electric filede at a give location: q For point charges: K i r 2 ˆr

For the flux through a surface: Ch.24 Gauss s Law In last chapter, to calculate electric filede at a give location: q For point charges: K i r 2 ˆr Ch.24 Guss s Lw In lst hpter, to lulte eletri filed t give lotion: q For point hrges: K i e r 2 ˆr i dq For ontinuous hrge distributions: K e r 2 ˆr However, for mny situtions with symmetri hrge distribution,

More information

Energy creation in a moving solenoid? Abstract

Energy creation in a moving solenoid? Abstract Energy cretion in moving solenoid? Nelson R. F. Brg nd Rnieri V. Nery Instituto de Físic, Universidde Federl do Rio de Jneiro, Cix Postl 68528, RJ 21941-972 Brzil Abstrct The electromgnetic energy U em

More information

Exam 1 September 21, 2012 Instructor: Timothy Martin

Exam 1 September 21, 2012 Instructor: Timothy Martin PHY 232 Exm 1 Sept 21, 212 Exm 1 September 21, 212 Instructor: Timothy Mrtin Stuent Informtion Nme n section: UK Stuent ID: Set #: Instructions Answer the questions in the spce provie. On the long form

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

That reminds me must download the test prep HW. adapted from (nz118.jpg)

That reminds me must download the test prep HW. adapted from   (nz118.jpg) Tht reminds me must downlod the test prep HW. dpted from http://www.neringzero.net (nz118.jpg) Em 1: Tuesdy, Feb 14, 5:00-6:00 PM Test rooms: Instructor Sections Room Dr. Hle F, H 104 Physics Dr. Kurter

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

Chapter 1 VECTOR ALGEBRA

Chapter 1 VECTOR ALGEBRA Chpter 1 VECTOR LGEBR INTRODUCTION: Electromgnetics (EM) m be regrded s the stud of the interctions between electric chrges t rest nd in motion. Electromgnetics is brnch of phsics or electricl engineering

More information

ACE. Engineering Academy. Hyderabad Delhi Bhopal Pune Bhubaneswar Bengaluru Lucknow Patna Chennai Vijayawada Visakhapatnam Tirupati Kukatpally Kolkata

ACE. Engineering Academy. Hyderabad Delhi Bhopal Pune Bhubaneswar Bengaluru Lucknow Patna Chennai Vijayawada Visakhapatnam Tirupati Kukatpally Kolkata ES D: 5 CE Engineering cdemy Hyderbd Delhi hopl Pune hubneswr engluru Lucknow Ptn Chenni ijywd iskhptnm irupti Kuktplly Kolkt H.O: 4, Floor, hmn Plz, Opp. Methodist School, bids, Hyderbd-5, Ph: 4-33448,

More information

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept

Conceptually, a capacitor consists of two conducting plates. Capacitors: Concept apacitors and Inductors Overview Defining equations Key concepts and important properties Series and parallel equivalents Integrator Differentiator Portland State University EE 221 apacitors and Inductors

More information

Sample Exam 5 - Skip Problems 1-3

Sample Exam 5 - Skip Problems 1-3 Smple Exm 5 - Skip Problems 1-3 Physics 121 Common Exm 2: Fll 2010 Nme (Print): 4 igit I: Section: Honors Code Pledge: As n NJIT student I, pledge to comply with the provisions of the NJIT Acdemic Honor

More information

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine Magnetostatic Fields Dr. Talal Skaik Islamic University of Gaza Palestine 01 Introduction In chapters 4 to 6, static electric fields characterized by E or D (D=εE) were discussed. This chapter considers

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information