Capturing Network Traffic Dynamics Small Scales. Rolf Riedi

Size: px
Start display at page:

Download "Capturing Network Traffic Dynamics Small Scales. Rolf Riedi"

Transcription

1 Capturing Network Traffic Dynamics Small Scales Rolf Riedi Dept of Statistics Stochastic Systems and Modelling in Networking and Finance Part II Dependable Adaptive Systems and Mathematical Modeling Kaiserslautern, August 26

2 Model and Physical Reality Queuing prediction Estimation of LRD Phenomenon Physical System User responsible for bursts at large scale Statistical Model LRD Self-similarity Large scales well understood Stochastic Model Convergence of ON-OFF to fbm Physical Model

3 Failure of classical prediction Interarrivaltimes Not exponential Not independent Paxson-Floyd, 1995

4 Multiscale Hurst

5 Measured Data Time series (A k,z k ) collected at gateway of LAN k= number of data packet A k = arrival time of packet B k = size of packet Work load until time t: Working arrival per m time units

6 Long Range Dependence High variability at large scales caused by correlation Auto-covariance function LRD Slowly decaying auto-covariance Cox: for ½ < H < 1 (presence of LRD) Var-time-plot: simple first diagnostics for LRD

7 ON-OFF: Physical Traffic Model (Taqqu Levy 1986)

8 fbm Historic facts Brown (182): observes particle motion Markov (19+): Markov chains Einstein (195): Heat equ for Brownian motion Wiener (1923): continuous Markov process Kolmogorov (193 s): theory of stochastic processes Kolmogorov (194): fbm Levy, Lamperti: H-sssi processes (1962) Mandelbrot & VanNess: integral representation (1965) Adler: fractal path properties of fbm Samorodnitsky & Taqqu: self-similar stable motion

9 Connection-level Analysis and Modeling of Network Traffic

10 Aggregate Traffic at small scales Trace: Time stamped headers Sender-Receiver IP!! Large scales Gaussian LRD(high variability) Small scales Non-Gaussian Positive process Burstiness Objective : Origins of bursts number of bytes Auckland Gateway (2) Aggregate Bytes per time x histogram Gaussian: 1% Real traffic: 3% Gaussian: 1% Real traffic: 3% 99% 99% x 1 5 time (1 unit=5ms) Mean Mean Kurtosis - Gaussian : 3 - Real traffic: 5.8

11 Bursts in the ON/OFF framework ON/OFF model Superposition of sources Connection level model Explains large scale variability: LRD, Gaussian Cause: Costumers Heavy tailed file sizes!! Small scale bursts: Non-Gaussianity Conspiracy of sources?? Flash crowds?? (dramatic increase of active sources)

12 Non-Gaussianity: A Conspiracy? Load: Bytes per 5 ms 99% Mean The number of active connections is close to Gaussian; provides no indication of bursts in the load Number of active connections 99% Mean Indication for: - No conspiracy of sources - No flash crowds

13 Non-Gaussianity: a case study Typical Gaussian arrival (5 ms time slot) Histogram of load offered in same time bin per connection: Considerable balanced field of connections Typical bursty arrival (5 ms time slot) Histogram of load offered in same time bin per connection: One connection dominates 1 Kb 15 Kb

14 Non-Gaussianity and Dominance Circled in Red: Instances where one connections contributes over 5% of load (resolution 5 ms) 99% Mean Dominant connections correlate with bursts

15 Non-Gaussianity and Dominance Systematic study: time series separation For each bin of 5 ms: remove packets of the ONE strongest connection Leaves Gaussian residual traffic 99% = Mean + Overall traffic 1 Strongest connection Residual traffic

16 Separation on Connection Level Definition: Alphaconnections: Peak rate > mean arrival rate + 1 std dev Betaconnections: Residual traffic Findings are similar for different time series Auckland (2+21), Berkeley, Bellcore, DEC 5ms, 5ms, 5ms resolution

17 Alpha Traffic Component There are few Alpha connections < 1% (AUCK 2: 427 of 64,87 connections) 3% of load Alpha connections cause bursts: Multifractal spectrum: Wide spectrum means bursty Alpha is extremely bursty Beta is little bursty Overall traffic is quite bursty Balanced (5% alpha) very bursty

18 Multifractal spectrum: Microscope for Bursts α=.7 α=.9 α=.8 Collect points t with same α : Large Deviation type result a

19 Beta Traffic Component Constitutes main load Governs LRD properties of overall traffic Is Gaussian at sufficient utilization (Kurtosis = 3) Is well matched by ON/OFF model 99% Mean Variance time plot Beta traffic Number of connections = ON/OFF

20 Simple Connection Taxonomy Careful analysis on connection level shows : this is the only systematic reason Bursts arise from large transfers over fast links. But: bandwidth = rate RTT

21 Cwnd or RTT? 1 2 Colorado State University trace, 3, packets 1 5 Beta Alpha Beta Alpha 1/RTT (1/s) peak-rate (Bps) Correlation coefficient=.68 cwnd (B) peak rate 1/RTT peak-rate (Bps) Correlation coefficient=.1 RTT has strong influence on bandwidth and dominance cwnd

22 Examples of Alpha/Beta Connections one beta connection one alpha connection (9678, 196, 8, 59486) packet size (bytes) forward direction packet size (bytes) forward direction reverse direction packet arrival time (second) -2 reverse direction packet arrival time (second) Notice the different time scales Alpha connections burst because of short round trip time, not large rate

23 Physical Model Modeling Network Traffic Traffic (user): superposition of ON/OFF sources requesting files with heavy tailed size Network: heterogeneous bandwidth variable sending-rates (fixed per ON/OFF source) Explains properties of traffic: LRD: heavy tailed transfer of beta sources (crowd) Bursts: few large transfers of few alpha sources Mathematical Model accommodate this insight within ON-OFF?

24 Modeling of Alpha Traffic ON/OFF model revisited: High variability in connection rates (RTTs) Low rate = beta High rate = alpha = = fractional Gaussian noise Non-Gaussian limit??

25 Modeling of Alpha Traffic ON/OFF model revisited: High variability in connection rates (RTTs) number of bytes x 1 5 Low rate = beta time (1 unit=5ms) fractional Gaussian noise number of bytes High rate = alpha x time (1 unit=5ms) Non-Gaussian limit

26 Towards mathematical models Renewal reward processes

27 Parameters: Stable distributions Equivalent definitions: Stable Limit of iid sums Known special cases: Gaussian Cauchy Characteristic fct

28

29 High Multiplex vs Large Scale

30 Different Limits for ON-OFF model Recall limits of ON-OFF sources multiplexed Possible limits of renewal reward aggregate Willinger Paxson R Taqqu

31 ON-OFF traffic model revisited

32 Modeling of Alpha Traffic ON/OFF model revisited: High variability in connection rates (RTTs) Low rate = beta High rate = alpha = = fractional Gaussian noise stable Levy noise

33 Impact: Simulation Simulation: ns topology to include alpha links Simple: equal bandwidth Realistic: heterogeneous end-to-end bandwidth Congestion control Design and management

34 Inpact: Understanding Multifractal Smalltime scale Network topology Control at flow level Simulation LRD Largetime scales approx. Gaussian Client behavior Bandwidth over Buffer packet scheduling round-trip time session lifetime network management < 1 msec msec-sec minutes hours Structure: Multiplicative Additive Model: hybrid tree Mixture of Gaussian - Stable

35 Impact: Performance Beta Traffic rules the small Queues Alpha Traffic causes the large Queue-sizes (despite small Window Size) Total traffic Queue-size overlapped with Alpha Peaks Alpha connections

36 Self-similar Burst Model Alpha component = self-similar stable (limit of a few ON-OFF sources in the limit of fast time) This models heavy-tailed bursts (heavy tailed files) TCP control: alpha CWND arbitrarily large (short RTT, future TCP mutants) Analysis via De-Multiplexing: Optimal setup of two individual Queues to come closest to aggregate Queue Beta (top) + Alpha De-Multiplexing: Equal critical time-scales Q-tail Pareto Due to Levy noise

37 ON-OFF Burst Model Alpha traffic = High rate ON-OFF source (truncated) This models bi-modal bandwidth distribution TCP: bottleneck is at the receiver (flow control through advertised window) Current state of measured traffic Analysis: de-multiplexing and variable rate queue Beta (top) + Alpha Variable Service Rate Queue-tail Weibull (unaffected) unless rate of alpha traffic larger than capacity average beta arrival and duration of alpha ON period heavy tailed

38 On-off parameters Free parameters in on-off model? File size = duration * rate : these variables are dependent Assuming two of them are independent leads to following models: Power model File size and rate independent Patience model: File size and duration independent Real trace Real trace Simulation using observed size and rate independently Simulation using observed size and duration independently Simulation: same behavior for entire traffic results in poor match. Different models (power/patience) for alpha and beta?

39 Free parameters: statistical analysis Beta users: rate determines file size Alpha users are free Alpha Beta Duration and Rate (Alpha) 12 Duration and Rate (Beta) 9 Duration -Rate Rate (bytes per sec) 1k 1k Rate (bytes per sec) 1k 1k Duration (s) Duration (s) Filesize and Rate (Alpha) Filesize and Rate (Beta) Size -Rate Rate (bytes per sec) 1k 1k Rate (bytes per sec) 1k 1k X k 1k 1M Size (bytes) 1 1 1k 1k 1M Size (bytes)

40 Free parameters: SIMULATION Total Bytes x Real Trace Bytes per time (overall) Time bin (1 unit = 5ms) Bytes Scheme RD: Rate Duration independent x 1 5 Bytes per time (overall) Time bin (1 unit = 5ms) Bytes Scheme SD: Size Duration independent x 1 7 Bytes per time (overall) Time bin (1 unit = 5ms) Bytes Scheme SR: Size Rate independent x 1 5 Bytes per time (overall) Time bin (1 unit = 5ms) Alpha x Bytes per time (Alpha) 8 x 1 5 Bytes per time (Alpha) 6 x 1 7 Bytes per time (Beta) 8 x 1 5 Bytes per time (Alpha) Bytes Bytes Bytes Bytes Time bin (1 unit = 5ms) Time bin (1 unit = 5ms) Time bin (1 unit = 5ms) Time bin (1 unit = 5ms) Beta Bytes x Bytes per time (Beta) Bytes x 1 5 Bytes per time (overall) Bytes x Bytes per time (Beta) Bytes x 1 5 Bytes per time (Beta) Time bin (1 unit = 5ms) Time bin (1 unit = 5ms) Time bin (1 unit = 5ms) Time bin (1 unit = 5ms)

41 Network-User Driven Traffic model Bytes x Bytes per time (overall) Bytes Bytes per time (overall) x Time bin (1 unit = 5ms) Time bin (1 unit = 5ms) Original trace (Bellcore) Alpha (SR) + Beta (RD) CONCLUSION: Rates for alpha drawn to be large, beta drawn to be small but: Alpha: power model: Rate independent of Size Beta: patience factor: Rate independent of Duration New limiting results needed for novel ON-OFF settings

42 Model and Physical Reality Queuing prediction Detection of alpha users Phenomenon Physical System User responsible for bursts at large scale Statistical Model Small scales sufficiently understood. Choice of physical model not clear ON-OFF with asympt. regimes. Renewal Reward. Two component model (alpha/beta users) Stochastic Model Self-similar limits are fbm (multiplexed beta) or Levy stable (fast alpha)

Network Traffic Characteristic

Network Traffic Characteristic Network Traffic Characteristic Hojun Lee hlee02@purros.poly.edu 5/24/2002 EL938-Project 1 Outline Motivation What is self-similarity? Behavior of Ethernet traffic Behavior of WAN traffic Behavior of WWW

More information

Effect of the Traffic Bursts in the Network Queue

Effect of the Traffic Bursts in the Network Queue RICE UNIVERSITY Effect of the Traffic Bursts in the Network Queue by Alireza KeshavarzHaddad A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Approved, Thesis

More information

Internet Traffic Modeling and Its Implications to Network Performance and Control

Internet Traffic Modeling and Its Implications to Network Performance and Control Internet Traffic Modeling and Its Implications to Network Performance and Control Kihong Park Department of Computer Sciences Purdue University park@cs.purdue.edu Outline! Motivation! Traffic modeling!

More information

Mice and Elephants Visualization of Internet

Mice and Elephants Visualization of Internet Mice and Elephants Visualization of Internet Traffic J. S. Marron, Felix Hernandez-Campos 2 and F. D. Smith 2 School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 4853,

More information

Multiplicative Multifractal Modeling of. Long-Range-Dependent (LRD) Trac in. Computer Communications Networks. Jianbo Gao and Izhak Rubin

Multiplicative Multifractal Modeling of. Long-Range-Dependent (LRD) Trac in. Computer Communications Networks. Jianbo Gao and Izhak Rubin Multiplicative Multifractal Modeling of Long-Range-Dependent (LRD) Trac in Computer Communications Networks Jianbo Gao and Izhak Rubin Electrical Engineering Department, University of California, Los Angeles

More information

Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic

Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic Proceedings of the 3th ITC Specialist Seminar on IP Measurement, Modeling and Management, Monterey, CA, September 2000, pp. 2--2-0 Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic Stefan

More information

A discrete wavelet transform traffic model with application to queuing critical time scales

A discrete wavelet transform traffic model with application to queuing critical time scales University of Roma ÒLa SapienzaÓ Dept. INFOCOM A discrete wavelet transform traffic model with application to queuing critical time scales Andrea Baiocchi, Andrea De Vendictis, Michele Iarossi University

More information

Network Traffic Modeling using a Multifractal Wavelet Model

Network Traffic Modeling using a Multifractal Wavelet Model 5-th International Symposium on Digital Signal Processing for Communication Systems, DSPCS 99, Perth, 1999 Network Traffic Modeling using a Multifractal Wavelet Model Matthew S. Crouse, Rudolf H. Riedi,

More information

Packet Size

Packet Size Long Range Dependence in vbns ATM Cell Level Trac Ronn Ritke y and Mario Gerla UCLA { Computer Science Department, 405 Hilgard Ave., Los Angeles, CA 90024 ritke@cs.ucla.edu, gerla@cs.ucla.edu Abstract

More information

Analysis of Scalable TCP in the presence of Markovian Losses

Analysis of Scalable TCP in the presence of Markovian Losses Analysis of Scalable TCP in the presence of Markovian Losses E Altman K E Avrachenkov A A Kherani BJ Prabhu INRIA Sophia Antipolis 06902 Sophia Antipolis, France Email:altman,kavratchenkov,alam,bprabhu}@sophiainriafr

More information

A Stochastic Model for TCP with Stationary Random Losses

A Stochastic Model for TCP with Stationary Random Losses A Stochastic Model for TCP with Stationary Random Losses Eitan Altman, Kostya Avrachenkov Chadi Barakat INRIA Sophia Antipolis - France ACM SIGCOMM August 31, 2000 Stockholm, Sweden Introduction Outline

More information

Stochastic Hybrid Systems: Applications to Communication Networks

Stochastic Hybrid Systems: Applications to Communication Networks research supported by NSF Stochastic Hybrid Systems: Applications to Communication Networks João P. Hespanha Center for Control Engineering and Computation University of California at Santa Barbara Deterministic

More information

May 3, To the Graduate School:

May 3, To the Graduate School: May 3, 2002 To the Graduate School: This thesis entitled Simulation of Self-similar Network Traffic Using High Variance ON/OFF Sources and written by Philip M. Wells is presented to the Graduate School

More information

Processor Sharing Flows in the Internet

Processor Sharing Flows in the Internet STANFORD HPNG TECHNICAL REPORT TR4-HPNG4 Processor Sharing Flows in the Internet Nandita Dukkipati, Nick McKeown Computer Systems Laboratory Stanford University Stanford, CA 9434-93, USA nanditad, nickm

More information

Source Traffic Modeling Using Pareto Traffic Generator

Source Traffic Modeling Using Pareto Traffic Generator Journal of Computer Networks, 207, Vol. 4, No., -9 Available online at http://pubs.sciepub.com/jcn/4//2 Science and Education Publishing DOI:0.269/jcn-4--2 Source Traffic odeling Using Pareto Traffic Generator

More information

Stochastic Network Calculus

Stochastic Network Calculus Stochastic Network Calculus Assessing the Performance of the Future Internet Markus Fidler joint work with Amr Rizk Institute of Communications Technology Leibniz Universität Hannover April 22, 2010 c

More information

Stochastic Hybrid Systems: Applications to Communication Networks

Stochastic Hybrid Systems: Applications to Communication Networks research supported by NSF Stochastic Hybrid Systems: Applications to Communication Networks João P. Hespanha Center for Control Engineering and Computation University of California at Santa Barbara Talk

More information

Modeling Impact of Delay Spikes on TCP Performance on a Low Bandwidth Link

Modeling Impact of Delay Spikes on TCP Performance on a Low Bandwidth Link Modeling Impact of Delay Spikes on TCP Performance on a Low Bandwidth Link Pasi Lassila and Pirkko Kuusela Networking Laboratory Helsinki University of Technology (HUT) Espoo, Finland Email: {Pasi.Lassila,Pirkko.Kuusela

More information

A Study of Traffic Statistics of Assembled Burst Traffic in Optical Burst Switched Networks

A Study of Traffic Statistics of Assembled Burst Traffic in Optical Burst Switched Networks A Study of Traffic Statistics of Assembled Burst Traffic in Optical Burst Switched Networs Xiang Yu, Yang Chen and Chunming Qiao Department of Computer Science and Engineering State University of New Yor

More information

c Copyright by Guanghui He, 2004

c Copyright by Guanghui He, 2004 c Copyright by Guanghui He, 24 EXPLOITATION OF LONG-RANGE DEPENDENCE IN INTERNET TRAFFIC FOR RESOURCE AND TRAFFIC MANAGEMENT BY GUANGHUI HE B.E., Tsinghua University, 1993 M.E., Tsinghua University, 1996

More information

Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by Self-similar Traffic

Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by Self-similar Traffic Èíôîðìàöèîííûå ïðîöåññû, Òîì 5, 1, 2005, ñòð. 4046. c 2004 D'Apice, Manzo. INFORMATION THEORY AND INFORMATION PROCESSING Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by

More information

Some Background Information on Long-Range Dependence and Self-Similarity On the Variability of Internet Traffic Outline Introduction and Motivation Ch

Some Background Information on Long-Range Dependence and Self-Similarity On the Variability of Internet Traffic Outline Introduction and Motivation Ch On the Variability of Internet Traffic Georgios Y Lazarou Information and Telecommunication Technology Center Department of Electrical Engineering and Computer Science The University of Kansas, Lawrence

More information

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min JetMax: Scalable Max-Min Min Congestion Control for High- Speed Heterogeneous Networks Yueping Zhang Joint work with Derek Leonard and Dmitri Loguinov Internet Research Lab Department of Computer Science

More information

Accelerated Simulation of Power-Law Traffic in Packet Networks

Accelerated Simulation of Power-Law Traffic in Packet Networks Accelerated Simulation of Power-Law Traffic in Packet Networks By Ho I Ma SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Supervised by Dr. John A. Schormans Department of Electronic Engineering Queen

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 4 Transport Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Agenda Internetworking n Routing across LANs, layer2-layer3 n DHCP n NAT Transport layer

More information

Wavelets come strumento di analisi di traffico a pacchetto

Wavelets come strumento di analisi di traffico a pacchetto University of Roma ÒLa SapienzaÓ Dept. INFOCOM Wavelets come strumento di analisi di traffico a pacchetto Andrea Baiocchi University of Roma ÒLa SapienzaÓ - INFOCOM Dept. - Roma (Italy) e-mail: baiocchi@infocom.uniroma1.it

More information

IP Packet Level vbns Trac. fjbgao, vwani,

IP Packet Level vbns Trac.   fjbgao, vwani, IP Packet Level vbns Trac Analysis and Modeling Jianbo Gao a,vwani P. Roychowdhury a, Ronn Ritke b, and Izhak Rubin a a Electrical Engineering Department, University of California, Los Angeles, Los Angeles,

More information

Accurate and Fast Replication on the Generation of Fractal Network Traffic Using Alternative Probability Models

Accurate and Fast Replication on the Generation of Fractal Network Traffic Using Alternative Probability Models Accurate and Fast Replication on the Generation of Fractal Network Traffic Using Alternative Probability Models Stenio Fernandes, Carlos Kamienski & Djamel Sadok Computer Science Center, Federal University

More information

Teletrac modeling and estimation

Teletrac modeling and estimation Teletrac modeling and estimation File 2 José Roberto Amazonas jra@lcs.poli.usp.br Telecommunications and Control Engineering Dept. - PTC Escola Politécnica University of São Paulo - USP São Paulo 11/2008

More information

PERFORMANCE-RELEVANT NETWORK TRAFFIC CORRELATION

PERFORMANCE-RELEVANT NETWORK TRAFFIC CORRELATION PERFORMANCE-RELEVANT NETWORK TRAFFIC CORRELATION Hans-Peter Schwefel Center for Teleinfrastruktur Aalborg University email: hps@kom.aau.dk Lester Lipsky Dept. of Comp. Sci. & Eng. University of Connecticut

More information

Exploring regularities and self-similarity in Internet traffic

Exploring regularities and self-similarity in Internet traffic Exploring regularities and self-similarity in Internet traffic FRANCESCO PALMIERI and UGO FIORE Centro Servizi Didattico Scientifico Università degli studi di Napoli Federico II Complesso Universitario

More information

TCP over Cognitive Radio Channels

TCP over Cognitive Radio Channels 1/43 TCP over Cognitive Radio Channels Sudheer Poojary Department of ECE, Indian Institute of Science, Bangalore IEEE-IISc I-YES seminar 19 May 2016 2/43 Acknowledgments The work presented here was done

More information

Solutions to COMP9334 Week 8 Sample Problems

Solutions to COMP9334 Week 8 Sample Problems Solutions to COMP9334 Week 8 Sample Problems Problem 1: Customers arrive at a grocery store s checkout counter according to a Poisson process with rate 1 per minute. Each customer carries a number of items

More information

Performance Analysis of Priority Queueing Schemes in Internet Routers

Performance Analysis of Priority Queueing Schemes in Internet Routers Conference on Information Sciences and Systems, The Johns Hopkins University, March 8, Performance Analysis of Priority Queueing Schemes in Internet Routers Ashvin Lakshmikantha Coordinated Science Lab

More information

Model Fitting. Jean Yves Le Boudec

Model Fitting. Jean Yves Le Boudec Model Fitting Jean Yves Le Boudec 0 Contents 1. What is model fitting? 2. Linear Regression 3. Linear regression with norm minimization 4. Choosing a distribution 5. Heavy Tail 1 Virus Infection Data We

More information

Dynamic resource sharing

Dynamic resource sharing J. Virtamo 38.34 Teletraffic Theory / Dynamic resource sharing and balanced fairness Dynamic resource sharing In previous lectures we have studied different notions of fair resource sharing. Our focus

More information

Resource Allocation for Video Streaming in Wireless Environment

Resource Allocation for Video Streaming in Wireless Environment Resource Allocation for Video Streaming in Wireless Environment Shahrokh Valaee and Jean-Charles Gregoire Abstract This paper focuses on the development of a new resource allocation scheme for video streaming

More information

Estimation of the long Memory parameter using an Infinite Source Poisson model applied to transmission rate measurements

Estimation of the long Memory parameter using an Infinite Source Poisson model applied to transmission rate measurements of the long Memory parameter using an Infinite Source Poisson model applied to transmission rate measurements François Roueff Ecole Nat. Sup. des Télécommunications 46 rue Barrault, 75634 Paris cedex 13,

More information

Network Traffic Modeling using a Multifractal Wavelet Model

Network Traffic Modeling using a Multifractal Wavelet Model Proceedings European Congress of Mathematics, Barcelona 2 Network Traffic Modeling using a Multifractal Wavelet Model Rudolf H. Riedi, Vinay J. Ribeiro, Matthew S. Crouse, and Richard G. Baraniuk Abstract.

More information

Tuan V. Dinh, Lachlan Andrew and Philip Branch

Tuan V. Dinh, Lachlan Andrew and Philip Branch Predicting supercomputing workload using per user information Tuan V. Dinh, Lachlan Andrew and Philip Branch 13 th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Delft, 14 th -16

More information

Queue Analysis for Wireless Packet Data Traffic

Queue Analysis for Wireless Packet Data Traffic Queue Analysis for Wireless Packet Data Traffic Shahram Teymori and Weihua Zhuang Centre for Wireless Communications (CWC), Department of Electrical and Computer Engineering, University of Waterloo, Waterloo,

More information

Fractal Behavior of Video and Data Traffic. Abstract

Fractal Behavior of Video and Data Traffic. Abstract Fractal Behavior of Video and Data Traffic Wolfgang Frohberg wfrohber@rcs.sel de The Networks Group International Computer Science Institute 947 Center Street., Berkeley, CA 9474 TR-96-27 July 996 Abstract

More information

Data Network Models of

Data Network Models of Data Network Models of Sidney Resnick School of Operations Research and Industrial Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA http://www.orie.cornell.edu/ sid sir1@cornell.edu August

More information

Approximate Fairness with Quantized Congestion Notification for Multi-tenanted Data Centers

Approximate Fairness with Quantized Congestion Notification for Multi-tenanted Data Centers Approximate Fairness with Quantized Congestion Notification for Multi-tenanted Data Centers Abdul Kabbani Stanford University Joint work with: Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji Prabhakar

More information

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control Saurabh Jain Joint work with Dr. Dmitri Loguinov June 21, 2007 1 Agenda Introduction Analysis of RCP QI-RCP PIQI-RCP Comparison Wrap

More information

FRACTIONAL BROWNIAN MOTION WITH H < 1/2 AS A LIMIT OF SCHEDULED TRAFFIC

FRACTIONAL BROWNIAN MOTION WITH H < 1/2 AS A LIMIT OF SCHEDULED TRAFFIC Applied Probability Trust ( April 20) FRACTIONAL BROWNIAN MOTION WITH H < /2 AS A LIMIT OF SCHEDULED TRAFFIC VICTOR F. ARAMAN, American University of Beirut PETER W. GLYNN, Stanford University Keywords:

More information

Impact of Cross Traffic Burstiness on the Packet-scale Paradigm An Extended Analysis

Impact of Cross Traffic Burstiness on the Packet-scale Paradigm An Extended Analysis Impact of ross Traffic Burstiness on the Packet-scale Paradigm An Extended Analysis Rebecca Lovewell and Jasleen Kaur Technical Report # TR11-007 Department of omputer Science University of North arolina

More information

A NOVEL APPROACH TO THE ESTIMATION OF THE HURST PARAMETER IN SELF-SIMILAR TRAFFIC

A NOVEL APPROACH TO THE ESTIMATION OF THE HURST PARAMETER IN SELF-SIMILAR TRAFFIC Proceedings of IEEE Conference on Local Computer Networks, Tampa, Florida, November 2002 A NOVEL APPROACH TO THE ESTIMATION OF THE HURST PARAMETER IN SELF-SIMILAR TRAFFIC Houssain Kettani and John A. Gubner

More information

Analytic Performance Evaluation of the RED Algorithm

Analytic Performance Evaluation of the RED Algorithm Prof. Dr. P. Tran-Gia Analytic Performance Evaluation of the RED Algorithm Stefan Köhler, Michael Menth, Norbert Vicari TCP Model RED Model TCP over RED Results TCP > Reliable transmission > Closed loop

More information

Multiscale Fitting Procedure using Markov Modulated Poisson Processes

Multiscale Fitting Procedure using Markov Modulated Poisson Processes Multiscale Fitting Procedure using Markov Modulated Poisson Processes Paulo Salvador (salvador@av.it.pt) University of Aveiro / Institute of Telecommunications, Aveiro, Portugal Rui Valadas (rv@det.ua.pt)

More information

SAMPLING AND INVERSION

SAMPLING AND INVERSION SAMPLING AND INVERSION Darryl Veitch dveitch@unimelb.edu.au CUBIN, Department of Electrical & Electronic Engineering University of Melbourne Workshop on Sampling the Internet, Paris 2005 A TALK WITH TWO

More information

High speed access links. High speed access links. a(t) process (aggregate traffic into buffer)

High speed access links. High speed access links. a(t) process (aggregate traffic into buffer) Long Range Dependence in Network Traffic and the Closed Loop Behaviour of Buffers Under Adaptive Window Control Arzad A. Kherani and Anurag Kumar Dept. of Electrical Communication Engg. Indian Institute

More information

CS276 Homework 1: ns-2

CS276 Homework 1: ns-2 CS276 Homework 1: ns-2 Erik Peterson October 28, 2006 1 Part 1 - Fairness between TCP variants 1.1 Method After learning ns-2, I wrote a script (Listing 3) that runs a simulation of one or two tcp flows

More information

CHAPTER 7. Trace Resampling and Load Scaling

CHAPTER 7. Trace Resampling and Load Scaling CHAPTER 7 Trace Resampling and Load Scaling That which is static and repetitive is boring. That which is dynamic and random is confusing. In between lies art. John A. Locke ( 70) Everything that can be

More information

Long Range Mutual Information

Long Range Mutual Information Long Range Mutual Information Nahur Fonseca Boston University 111 Cummington St Boston, Massachusetts, USA nahur@cs.bu.edu Mark Crovella Boston University 111 Cummington St Boston, Massachusetts, USA crovella@cs.bu.edu

More information

A Mathematical Model of the Skype VoIP Congestion Control Algorithm

A Mathematical Model of the Skype VoIP Congestion Control Algorithm A Mathematical Model of the Skype VoIP Congestion Control Algorithm Luca De Cicco, S. Mascolo, V. Palmisano Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari 47th IEEE Conference on Decision

More information

Design of IP networks with Quality of Service

Design of IP networks with Quality of Service Course of Multimedia Internet (Sub-course Reti Internet Multimediali ), AA 2010-2011 Prof. Pag. 1 Design of IP networks with Quality of Service 1 Course of Multimedia Internet (Sub-course Reti Internet

More information

A Measurement-Analytic Approach for QoS Estimation in a Network Based on the Dominant Time Scale

A Measurement-Analytic Approach for QoS Estimation in a Network Based on the Dominant Time Scale 222 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003 A Measurement-Analytic Approach for QoS Estimation in a Network Based on the Dominant Time Scale Do Young Eun and Ness B. Shroff, Senior

More information

A source model for ISDN packet data traffic *

A source model for ISDN packet data traffic * 1 A source model for ISDN packet data traffic * Kavitha Chandra and Charles Thompson Center for Advanced Computation University of Massachusetts Lowell, Lowell MA 01854 * Proceedings of the 28th Annual

More information

A Virtual Queue Approach to Loss Estimation

A Virtual Queue Approach to Loss Estimation A Virtual Queue Approach to Loss Estimation Guoqiang Hu, Yuming Jiang, Anne Nevin Centre for Quantifiable Quality of Service in Communication Systems Norwegian University of Science and Technology, Norway

More information

Wireless Internet Exercises

Wireless Internet Exercises Wireless Internet Exercises Prof. Alessandro Redondi 2018-05-28 1 WLAN 1.1 Exercise 1 A Wi-Fi network has the following features: Physical layer transmission rate: 54 Mbps MAC layer header: 28 bytes MAC

More information

A Practical Guide to Measuring the Hurst Parameter

A Practical Guide to Measuring the Hurst Parameter A Practical Guide to Measuring the Hurst Parameter Richard G. Clegg June 28, 2005 Abstract This paper describes, in detail, techniques for measuring the Hurst parameter. Measurements are given on artificial

More information

AIMD, Fairness and Fractal Scaling of TCP Traffic

AIMD, Fairness and Fractal Scaling of TCP Traffic AIMD, Fairness and Fractal Scaling of TCP Traffic Francois Baccelli & Dohy Hong INRIA-ENS, ENS, 45 rue d Ulm 755 Paris, France, Francois.Baccelli, Dohy.Hong@ens.fr Abstract We propose a natural and simple

More information

Before proceeding to bad news: connection between heavy-tailedness and google? saga of two lucky kids (aka grad students ) lesson to be drawn?

Before proceeding to bad news: connection between heavy-tailedness and google? saga of two lucky kids (aka grad students ) lesson to be drawn? Before proceeding to bad news: connection between heavy-tailedness and google? saga of two lucky kids (aka grad students ) lesson to be drawn? dave goliath Now, to the bad news! Bad news #1: queueing on

More information

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions Queueing Theory II Summary! M/M/1 Output process! Networks of Queue! Method of Stages " Erlang Distribution " Hyperexponential Distribution! General Distributions " Embedded Markov Chains M/M/1 Output

More information

Reliable Data Transport: Sliding Windows

Reliable Data Transport: Sliding Windows Reliable Data Transport: Sliding Windows 6.02 Fall 2013 Lecture 23 Exclusive! A Brief History of the Internet guest lecture by Prof. Hari Balakrishnan Wenesday December 4, 2013, usual 6.02 lecture time

More information

THE key objective of this work is to bridge the gap

THE key objective of this work is to bridge the gap 1052 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997 The Effect of Multiple Time Scales and Subexponentiality in MPEG Video Streams on Queueing Behavior Predrag R. Jelenković,

More information

The Modified Allan Variance as Time-Domain Analysis Tool for Estimating the Hurst Parameter of Long-Range Dependent Traffic

The Modified Allan Variance as Time-Domain Analysis Tool for Estimating the Hurst Parameter of Long-Range Dependent Traffic The Modified Allan Variance as Time-Domain Analysis Tool for Estimating the urst Parameter of Long-Range Dependent Traffic Stefano Bregni, Senior Member, IEEE, Luca Primerano Politecnico di Milano, Dept.

More information

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks by Doo Il Choi, Charles Knessl and Charles Tier University of Illinois at Chicago 85 South

More information

Resource dimensioning through buffer sampling. Michel Mandjes and Remco van de Meent. Abstract

Resource dimensioning through buffer sampling. Michel Mandjes and Remco van de Meent. Abstract Resource dimensioning through buffer sampling 1 Michel Mandjes and Remco van de Meent Abstract Link dimensioning, i.e., selecting a (minimal) link capacity such that the users performance requirements

More information

Self-Similarity and Long Range Dependence on the Internet: A Second Look at the Evidence, Origins and Implications

Self-Similarity and Long Range Dependence on the Internet: A Second Look at the Evidence, Origins and Implications Self-Similarity and Long Range Dependence on the Internet: A Second Look at the Evidence, Origins and Implications Wei-Bo Gong Dept. of Electrical Engineering University of Massachusetts Amherst, MA 13

More information

SPLITTING AND MERGING OF PACKET TRAFFIC: MEASUREMENT AND MODELLING

SPLITTING AND MERGING OF PACKET TRAFFIC: MEASUREMENT AND MODELLING SPLITTING AND MERGING OF PACKET TRAFFIC: MEASUREMENT AND MODELLING Nicolas Hohn 1 Darryl Veitch 1 Tao Ye 2 1 CUBIN, Department of Electrical & Electronic Engineering University of Melbourne, Vic 3010 Australia

More information

Delay Bounds in Communication Networks with Heavy-Tailed and Self-Similar Traffic

Delay Bounds in Communication Networks with Heavy-Tailed and Self-Similar Traffic Delay Bounds in Communication Networks with Heavy-Tailed and Self-Similar Traffic Jörg Liebeherr, Almut Burchard, Florin Ciucu 1 Abstract Traffic with self-similar and heavy-tailed characteristics has

More information

Markovian Model of Internetworking Flow Control

Markovian Model of Internetworking Flow Control Информационные процессы, Том 2, 2, 2002, стр. 149 154. c 2002 Bogoiavlenskaia. KALASHNIKOV MEMORIAL SEMINAR Markovian Model of Internetworking Flow Control O. Bogoiavlenskaia Petrozavodsk State University

More information

The self-similar burstiness of the Internet

The self-similar burstiness of the Internet NEM12 12//03 0:39 PM Page 1 INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 04; 14: 000 000 (DOI:.02/nem.12) 1 Self-similar and fractal nature of Internet traffic By D. Chakraborty* A.

More information

Performance Evaluation and Service Rate Provisioning for a Queue with Fractional Brownian Input

Performance Evaluation and Service Rate Provisioning for a Queue with Fractional Brownian Input Performance Evaluation and Service Rate Provisioning for a Queue with Fractional Brownian Input Jiongze Chen 1, Ronald G. Addie 2, Moshe Zukerman 1 Abstract The Fractional Brownian motion (fbm) traffic

More information

Modeling Video Traffic Using M/G/ Input Processes: A Compromise Between Markovian and LRD Models. Marwan M. Krunz and Armand M.

Modeling Video Traffic Using M/G/ Input Processes: A Compromise Between Markovian and LRD Models. Marwan M. Krunz and Armand M. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 5, JUNE 1998 733 Modeling Video Traffic Using M/G/ Input Processes: A Compromise Between Markovian and LRD Models Marwan M. Krunz and Armand

More information

Wavelet and SiZer analyses of Internet Traffic Data

Wavelet and SiZer analyses of Internet Traffic Data Wavelet and SiZer analyses of Internet Traffic Data Cheolwoo Park Statistical and Applied Mathematical Sciences Institute Fred Godtliebsen Department of Mathematics and Statistics, University of Tromsø

More information

Computer Networks ( Classroom Practice Booklet Solutions)

Computer Networks ( Classroom Practice Booklet Solutions) Computer Networks ( Classroom Practice Booklet Solutions). Concept Of Layering 0. Ans: (b) Sol: Data Link Layer is responsible for decoding bit stream into frames. 0. Ans: (c) Sol: Network Layer has the

More information

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009.

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009. Capacity management for packet-switched networks with heterogeneous sources Linda de Jonge Master Thesis July 29, 2009 Supervisors Dr. Frank Roijers Prof. dr. ir. Sem Borst Dr. Andreas Löpker Industrial

More information

Statistical analysis of peer-to-peer live streaming traffic

Statistical analysis of peer-to-peer live streaming traffic Statistical analysis of peer-to-peer live streaming traffic Levente Bodrog 1 Ákos Horváth 1 Miklós Telek 1 1 Technical University of Budapest Probability and Statistics with Applications, 2009 Outline

More information

Analysis of Measured ATM Traffic on OC Links

Analysis of Measured ATM Traffic on OC Links The University of Kansas Technical Report Analysis of Measured ATM Traffic on OC Links Sarat Chandrika Pothuri, Logeshwaran Vijayan, and David W. Petr ITTC-FY2001-TR-18838-01 March 2001 Project Sponsor:

More information

Stochastic-Process Limits

Stochastic-Process Limits Ward Whitt Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues With 68 Illustrations Springer Contents Preface vii 1 Experiencing Statistical Regularity

More information

Performance Evaluation of a Queue Fed by a Poisson Pareto Burst Process

Performance Evaluation of a Queue Fed by a Poisson Pareto Burst Process Performance Evaluation of a Queue Fed by a Poisson Pareto Burst Process Ronald G. Addie University of Southern Queensland Toowoomba Qld 4350, Australia Phone: (+61 7) 4631 5520 Fax: (+61 7) 4631 5550 Email:

More information

A flow-based model for Internet backbone traffic

A flow-based model for Internet backbone traffic A flow-based model for Internet backbone traffic Chadi Barakat, Patrick Thiran Gianluca Iannaccone, Christophe iot Philippe Owezarski ICA - SC - EPFL Sprint Labs LAAS-CNRS {Chadi.Barakat,Patrick.Thiran}@epfl.ch

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

MODELS FOR COMPUTER NETWORK TRAFFIC

MODELS FOR COMPUTER NETWORK TRAFFIC MODELS FOR COMPUTER NETWORK TRAFFIC Murad S. Taqqu Boston University Joint work with Walter Willinger, Joshua Levy and Vladas Pipiras,... Web Site http://math.bu.edu/people/murad OUTLINE Background: 1)

More information

Fractal Analysis of Intraflow Unidirectional Delay over W-LAN and W-WAN WAN Environments

Fractal Analysis of Intraflow Unidirectional Delay over W-LAN and W-WAN WAN Environments Fractal Analysis of Intraflow Unidirectional Delay over W-LAN and W-WAN WAN Environments Dimitrios Pezaros with Manolis Sifalakis and Laurent Mathy Computing Department Lancaster University [dp@comp.lancs.ac.uk]

More information

Modeling and Analysis of Traffic in High Speed Networks

Modeling and Analysis of Traffic in High Speed Networks The University of Kansas Technical Report Modeling and Analysis of Traffic in High Speed Networks Soma S. Muppidi Victor S. Frost ITTC-FY98-TR-10980-22 August 1997 Project Sponsor: Sprint Corporation Under

More information

PRACTICAL ASPECTS OF SIMULATING SYSTEMS HAVING ARRIVAL PROCESSES WITH LONG-RANGE DEPENDENCE. Robert Geist James Westall

PRACTICAL ASPECTS OF SIMULATING SYSTEMS HAVING ARRIVAL PROCESSES WITH LONG-RANGE DEPENDENCE. Robert Geist James Westall Proceedings of the 2 Winter Simulation Conference J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds. PRACTICAL ASPECTS OF SIMULATING SYSTEMS HAVING ARRIVAL PROCESSES WITH LONG-RANGE DEPENDENCE

More information

CONVERGENCE TO FRACTIONAL BROWNIAN MOTION AND LOSS PROBABILITY. Jin-Chun Kim and Hee-Choon Lee

CONVERGENCE TO FRACTIONAL BROWNIAN MOTION AND LOSS PROBABILITY. Jin-Chun Kim and Hee-Choon Lee Kangweon-Kyungki Math. Jour. (2003), No., pp. 35 43 CONVERGENCE TO FRACTIONAL BROWNIAN MOTION AND LOSS PROBABILITY Jin-Chun Kim and Hee-Choon Lee Abstract. We study the weak convergence to Fractional Brownian

More information

ON THE CONVERGENCE OF FARIMA SEQUENCE TO FRACTIONAL GAUSSIAN NOISE. Joo-Mok Kim* 1. Introduction

ON THE CONVERGENCE OF FARIMA SEQUENCE TO FRACTIONAL GAUSSIAN NOISE. Joo-Mok Kim* 1. Introduction JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 26, No. 2, May 2013 ON THE CONVERGENCE OF FARIMA SEQUENCE TO FRACTIONAL GAUSSIAN NOISE Joo-Mok Kim* Abstract. We consider fractional Gussian noise

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

TWO PROBLEMS IN NETWORK PROBING

TWO PROBLEMS IN NETWORK PROBING TWO PROBLEMS IN NETWORK PROBING DARRYL VEITCH The University of Melbourne 1 Temporal Loss and Delay Tomography 2 Optimal Probing in Convex Networks Paris Networking 27 Juin 2007 TEMPORAL LOSS AND DELAY

More information

The Analysis of Microburst (Burstiness) on Virtual Switch

The Analysis of Microburst (Burstiness) on Virtual Switch The Analysis of Microburst (Burstiness) on Virtual Switch Chunghan Lee Fujitsu Laboratories 09.19.2016 Copyright 2016 FUJITSU LABORATORIES LIMITED Background What is Network Function Virtualization (NFV)?

More information

384Y Project June 5, Stability of Congestion Control Algorithms Using Control Theory with an application to XCP

384Y Project June 5, Stability of Congestion Control Algorithms Using Control Theory with an application to XCP 384Y Project June 5, 00 Stability of Congestion Control Algorithms Using Control Theory with an application to XCP . Introduction During recent years, a lot of work has been done towards the theoretical

More information

Delay Bounds for Networks with Heavy-Tailed and Self-Similar Traffic

Delay Bounds for Networks with Heavy-Tailed and Self-Similar Traffic Delay Bounds for Networks with Heavy-Tailed and Self-Similar Traffic Jörg Liebeherr, Almut Burchard, Florin Ciucu Abstract 1 arxiv:0911.3856v1 [cs.ni] 19 Nov 2009 We provide upper bounds on the end-to-end

More information

In Proceedings of the Tenth International Conference on on Parallel and Distributed Computing Systems (PDCS-97), pages , October 1997

In Proceedings of the Tenth International Conference on on Parallel and Distributed Computing Systems (PDCS-97), pages , October 1997 In Proceedings of the Tenth International Conference on on Parallel and Distributed Computing Systems (PDCS-97), pages 322-327, October 1997 Consequences of Ignoring Self-Similar Data Trac in Telecommunications

More information

Non-Gaussian and Long Memory Statistical Characterisations for Internet Traffic with Anomalies.

Non-Gaussian and Long Memory Statistical Characterisations for Internet Traffic with Anomalies. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, OCTOBER 26, FOR PUBLICATION 1 Non-Gaussian and Long Memory Statistical Characterisations for Internet Traffic with Anomalies. A. Scherrer,

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information