BIOINFORMATICS TRIAL EXAMINATION MASTERS KT-OR

Size: px
Start display at page:

Download "BIOINFORMATICS TRIAL EXAMINATION MASTERS KT-OR"

Transcription

1 BIOINFORMATICS KT Maastricht University Faculty of Humanities and Science Knowledge Engineering Study TRIAL EXAMINATION MASTERS KT-OR Examiner: R.L. Westra Date: March 30, 2007 Time: 13:30 15:30 Place: TS06, room Notes: 1. The exam is an open-book exam. 2. The textbooks and lecture slides can be used during the exam. 3. The exam consists of x pages (including this page). 4. The exam time is 3 hours (180 minutes). 5. The number of exam questions is The number of points for each question is given (in bold). 7. The maximum number of points is The final exam grade is the sum of the points of the questions answered correctly. 9. The final course grade is the sum of the final exam grade plus the bonus grade that you earned from the student lectures, mini-exams, and skills class hand-ins. The final course grade will be rounded to Before answering the questions, please first read all the exam questions, and then make a plan to spend the three hours. 11. When answer the questions please do not forget: to write your name and student number on each answer page; to number the answers; and to number the answer pages. 1

2 EXERCISE 1: Short questions: 2 points i. What is a change point, and how could you detect it? ii. What is the importance of the KA/KS ratio? iii. How can you find the root on an unrooted phylogenetic tree? iv. Which operations on a chromosome can change block synteny? v. Why is average linkage better than single linkage? EXERCISE 2: Statistical sequence analysis: 2 points Suppose that we analyse a DNA sequence with the following observed multinomial distribution: p(a) = 0.5 p(c) = 0.1 p(g) = 0.3 p(t) = 0.1 Moreover, suppose that we also observe the following di-nucleotide frequencies: *A *C *G *T A* C* G* T* Use this information to determine unusual dimers (=di-nucleotides). 2

3 EXERCISE 3: Genetic distance: 2 points As the time of divergence between two sequences grows, the count of differences, d, increases. The true genetic distance, K, between the sequences, however, is not equal to d. a. Explain this phenomenon and describe a method for correcting d to estimate K. b. Describe how the role of transitions and transversions can improve this estimate for K. c. Suppose that two sequences of equal length of 1000 nucleotides, differ at 150 positions. Estimate, following the Jukes- Cantor model, the true genetic distance K, including the magnitude of the error. d. Determine when, for two sequences of equal lengths n, following the Jukes- Cantor model, determining the genetic distance becomes entire inconclusive because the variance exceeds the estimate K. EXERCISE 4: Sequence alignment: 2 points In sequence alignment sequences are compared in order to determine their degree of resemblance. a. Describe the difference(s) between local and global alignment. Suppose that in global alignment we use the following simple scoring function: σ(-,a) = σ(a,-) = σ(a,b) = -1 for all a b σ(a,b) = 1 if a = b for all letters a,b in {A,C,G,T}, and with - representing an indel. Now, suppose we have the following two amino acid sequences: s 1 = FILM s 1 = FEIM b. Write down the dynamic programming table resulting from the global alignment of the two strings s 1 and s 2 using the Needleman-Wunsch algorithm. c. Write down the optimal global alignment of s 1 and s 2 according to the dynamic programming table obtained above. 3

4 EXERCISE 5: Hidden Markov model: 2 points Consider an odorant receptor, i.e. a protein molecule that sticks in the cell membrane, extending in both the interior and exterior of the cell. This is visualised in the picture below, where the fat curved line represents the folded protein. The floating of this molecule in the cell mebrane is caused by parts of the molecule that likes to be in the membrane (hydrophylic) and parts that definitily not like this (hydrophobic). Therefore, we consider that a part of the molecule can be in two states: H + = hydrophylic, and H = hydrophobic. We employ a Hidden Markov model to estimate the hydrophobic and hydrophylic parts of the molecule, represented as: H H A: 0.1 R: 0.2 N: 0 D: 0.5 C: 0.2 A: 0.3 R: 0.2 N: 0.4 D: 0 C: 0.1 Suppose that we have the following protein sequence: NARNRDCCRN Determine the most likeli hidden sequence of hydrophobicity-states over the molecule using the Viterbi algorithm. 4

5 ANSWERS ANSWER to EXERCISE 1 Look in book ANSWER to EXERCISE 2 Divifde each possition p2[i,j] by p1[i]*p1[j] and look where this deviates considerably from 1. ANSWER to EXERCISE 3: The Jukes - Cantor Correction As the time of divergence between two sequences increases the probability of a second substitution at any one nucleotide site increases and the increase in the count of differences is slowed. This makes these counts not a desirable measure of distance. In some way, this slow down must be accounted for. The solution to this problem was first noted by Jukes and Cantor (1969; Evol.of Protein Molecules, Academic Press). Instead of calculating distance as a simple count take the distance as (Kimura and Ohta 1972; J.Mol.Evol.2:87-90). A plot of this function for the same range of parameters as in Figure 1 is given in Figure 2. This figure shows that this distance measure increases linearly with time (this is one property that is desirable for a distance measure). This is termed the Jukes & Cantor correction to distance and clearly indicates that divergence is a logarithmic function of time. Observe the large increase in the variance as time increases. As D gets closer and closer over time to 0.75 the variance increases. In the limit as D approaches 0.75, the variance approaches infinity. This is an indication that the measure of distance becomes increasingly less reliable as time increases. Note that in expectation D is less than 0.75 but in reality D can be greater than If this is the case then a Jukes-Cantor correction cannot be done - is undefined because the argument of the logarithm will be zero. In this case you can apply a method developed by Tajima (1993, MBE 10: ). He suggests using the modified estimator 5

6 where and With variance This is actually just a different formulation of the same quantity using a Taylor series expansion to avoid the logarithm. This estimator of distance is defined for all parameter values and actually has less bias than Jukes and Cantor's original correction for small levels of divergence. 6

7 a: Jukes-Cantor b: Kimura 2-param c: d = 150/1000 => K = , Var K ~ *10-4, => error = n*sqrt(vark) = 1000*V ~ => K = 167 +/- 14 d. n = -d(1-d)/((1-4d/3)^2ln(1-4d/3)) ANSWER to EXERCISE 4 a. book b. See book pages 55-58, esp p58 c. F I L M I I I F E I - M ANSWER to EXERCISE 5 See book page 75 7

Quantifying sequence similarity

Quantifying sequence similarity Quantifying sequence similarity Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 16 th 2016 After this lecture, you can define homology, similarity, and identity

More information

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

More information

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM)

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Bioinformatics II Probability and Statistics Universität Zürich and ETH Zürich Spring Semester 2009 Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Dr Fraser Daly adapted from

More information

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject)

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) Bioinformática Sequence Alignment Pairwise Sequence Alignment Universidade da Beira Interior (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) 1 16/3/29 & 23/3/29 27/4/29 Outline

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

Lecture 4: Evolutionary models and substitution matrices (PAM and BLOSUM).

Lecture 4: Evolutionary models and substitution matrices (PAM and BLOSUM). 1 Bioinformatics: In-depth PROBABILITY & STATISTICS Spring Semester 2011 University of Zürich and ETH Zürich Lecture 4: Evolutionary models and substitution matrices (PAM and BLOSUM). Dr. Stefanie Muff

More information

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 17: lecture 5 Substitution matrices Multiple sequence alignment Substitution matrices Used to score aligned positions, usually of amino acids. Expressed as the log-likelihood ratio of

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

Lecture Notes: Markov chains

Lecture Notes: Markov chains Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

Maximum Likelihood Until recently the newest method. Popularized by Joseph Felsenstein, Seattle, Washington.

Maximum Likelihood Until recently the newest method. Popularized by Joseph Felsenstein, Seattle, Washington. Maximum Likelihood This presentation is based almost entirely on Peter G. Fosters - "The Idiot s Guide to the Zen of Likelihood in a Nutshell in Seven Days for Dummies, Unleashed. http://www.bioinf.org/molsys/data/idiots.pdf

More information

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

Lecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/22

Lecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/22 Lecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 24. Phylogeny methods, part 4 (Models of DNA and

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

Understanding relationship between homologous sequences

Understanding relationship between homologous sequences Molecular Evolution Molecular Evolution How and when were genes and proteins created? How old is a gene? How can we calculate the age of a gene? How did the gene evolve to the present form? What selective

More information

How Molecules Evolve. Advantages of Molecular Data for Tree Building. Advantages of Molecular Data for Tree Building

How Molecules Evolve. Advantages of Molecular Data for Tree Building. Advantages of Molecular Data for Tree Building How Molecules Evolve Guest Lecture: Principles and Methods of Systematic Biology 11 November 2013 Chris Simon Approaching phylogenetics from the point of view of the data Understanding how sequences evolve

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Using algebraic geometry for phylogenetic reconstruction

Using algebraic geometry for phylogenetic reconstruction Using algebraic geometry for phylogenetic reconstruction Marta Casanellas i Rius (joint work with Jesús Fernández-Sánchez) Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya IMA

More information

Evolutionary Analysis of Viral Genomes

Evolutionary Analysis of Viral Genomes University of Oxford, Department of Zoology Evolutionary Biology Group Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS, U.K. Fax: +44 1865 271249 Evolutionary Analysis of Viral

More information

Lecture 4. Models of DNA and protein change. Likelihood methods

Lecture 4. Models of DNA and protein change. Likelihood methods Lecture 4. Models of DNA and protein change. Likelihood methods Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 4. Models of DNA and protein change. Likelihood methods p.1/36

More information

Using Bioinformatics to Study Evolutionary Relationships Instructions

Using Bioinformatics to Study Evolutionary Relationships Instructions 3 Using Bioinformatics to Study Evolutionary Relationships Instructions Student Researcher Background: Making and Using Multiple Sequence Alignments One of the primary tasks of genetic researchers is comparing

More information

Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/26

Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/26 Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 27. Phylogeny methods, part 4 (Models of DNA and

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

Additive distances. w(e), where P ij is the path in T from i to j. Then the matrix [D ij ] is said to be additive.

Additive distances. w(e), where P ij is the path in T from i to j. Then the matrix [D ij ] is said to be additive. Additive distances Let T be a tree on leaf set S and let w : E R + be an edge-weighting of T, and assume T has no nodes of degree two. Let D ij = e P ij w(e), where P ij is the path in T from i to j. Then

More information

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution Massachusetts Institute of Technology 6.877 Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution 1. Rates of amino acid replacement The initial motivation for the neutral

More information

进化树构建方法的概率方法 第 4 章 : 进化树构建的概率方法 问题介绍. 部分 lid 修改自 i i f l 的 ih l i

进化树构建方法的概率方法 第 4 章 : 进化树构建的概率方法 问题介绍. 部分 lid 修改自 i i f l 的 ih l i 第 4 章 : 进化树构建的概率方法 问题介绍 进化树构建方法的概率方法 部分 lid 修改自 i i f l 的 ih l i 部分 Slides 修改自 University of Basel 的 Michael Springmann 课程 CS302 Seminar Life Science Informatics 的讲义 Phylogenetic Tree branch internal node

More information

Markov Models & DNA Sequence Evolution

Markov Models & DNA Sequence Evolution 7.91 / 7.36 / BE.490 Lecture #5 Mar. 9, 2004 Markov Models & DNA Sequence Evolution Chris Burge Review of Markov & HMM Models for DNA Markov Models for splice sites Hidden Markov Models - looking under

More information

Test 3 Version A. On my honor, I have neither given nor received inappropriate or unauthorized information at any time before or during this test.

Test 3 Version A. On my honor, I have neither given nor received inappropriate or unauthorized information at any time before or during this test. Student s Printed Name: Instructor: CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop,

More information

Test 3 Version A. On my honor, I have neither given nor received inappropriate or unauthorized information at any time before or during this test.

Test 3 Version A. On my honor, I have neither given nor received inappropriate or unauthorized information at any time before or during this test. Student s Printed Name: Instructor: CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop,

More information

Pairwise & Multiple sequence alignments

Pairwise & Multiple sequence alignments Pairwise & Multiple sequence alignments Urmila Kulkarni-Kale Bioinformatics Centre 411 007 urmila@bioinfo.ernet.in Basis for Sequence comparison Theory of evolution: gene sequences have evolved/derived

More information

MA EXAM 3 INSTRUCTIONS VERSION 01 April 18, Section # and recitation time

MA EXAM 3 INSTRUCTIONS VERSION 01 April 18, Section # and recitation time MA 16600 EXAM 3 INSTRUCTIONS VERSION 01 April 18, 2018 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a #2 pencil on the scantron sheet (answer sheet). 2. Check that

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas CG-Islands Given 4 nucleotides: probability of occurrence is ~ 1/4. Thus, probability of

More information

Tree Building Activity

Tree Building Activity Tree Building Activity Introduction In this activity, you will construct phylogenetic trees using a phenotypic similarity (cartoon microbe pictures) and genotypic similarity (real microbe sequences). For

More information

Motivating the need for optimal sequence alignments...

Motivating the need for optimal sequence alignments... 1 Motivating the need for optimal sequence alignments... 2 3 Note that this actually combines two objectives of optimal sequence alignments: (i) use the score of the alignment o infer homology; (ii) use

More information

Nucleotide substitution models

Nucleotide substitution models Nucleotide substitution models Alexander Churbanov University of Wyoming, Laramie Nucleotide substitution models p. 1/23 Jukes and Cantor s model [1] The simples symmetrical model of DNA evolution All

More information

Lab 3: Practical Hidden Markov Models (HMM)

Lab 3: Practical Hidden Markov Models (HMM) Advanced Topics in Bioinformatics Lab 3: Practical Hidden Markov Models () Maoying, Wu Department of Bioinformatics & Biostatistics Shanghai Jiao Tong University November 27, 2014 Hidden Markov Models

More information

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES INTRODUCTION CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES This worksheet complements the Click and Learn developed in conjunction with the 2011 Holiday Lectures on Science, Bones, Stones, and Genes:

More information

First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences

First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences 140.638 where do sequences come from? DNA is not hard to extract (getting DNA from a

More information

Modeling Noise in Genetic Sequences

Modeling Noise in Genetic Sequences Modeling Noise in Genetic Sequences M. Radavičius 1 and T. Rekašius 2 1 Institute of Mathematics and Informatics, Vilnius, Lithuania 2 Vilnius Gediminas Technical University, Vilnius, Lithuania 1. Introduction:

More information

Molecular Evolution, course # Final Exam, May 3, 2006

Molecular Evolution, course # Final Exam, May 3, 2006 Molecular Evolution, course #27615 Final Exam, May 3, 2006 This exam includes a total of 12 problems on 7 pages (including this cover page). The maximum number of points obtainable is 150, and at least

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Exam 2 November 4th, 208 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show

More information

EVOLUTIONARY DISTANCE MODEL BASED ON DIFFERENTIAL EQUATION AND MARKOV PROCESS

EVOLUTIONARY DISTANCE MODEL BASED ON DIFFERENTIAL EQUATION AND MARKOV PROCESS August 0 Vol 4 No 005-0 JATIT & LLS All rights reserved ISSN: 99-8645 wwwjatitorg E-ISSN: 87-95 EVOLUTIONAY DISTANCE MODEL BASED ON DIFFEENTIAL EUATION AND MAKOV OCESS XIAOFENG WANG College of Mathematical

More information

7.36/7.91 recitation CB Lecture #4

7.36/7.91 recitation CB Lecture #4 7.36/7.91 recitation 2-19-2014 CB Lecture #4 1 Announcements / Reminders Homework: - PS#1 due Feb. 20th at noon. - Late policy: ½ credit if received within 24 hrs of due date, otherwise no credit - Answer

More information

Lecture 3: Markov chains.

Lecture 3: Markov chains. 1 BIOINFORMATIK II PROBABILITY & STATISTICS Summer semester 2008 The University of Zürich and ETH Zürich Lecture 3: Markov chains. Prof. Andrew Barbour Dr. Nicolas Pétrélis Adapted from a course by Dr.

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all your work on the standard response

More information

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics Bioinformatics 1 Biology, Sequences, Phylogenetics Part 4 Sepp Hochreiter Klausur Mo. 30.01.2011 Zeit: 15:30 17:00 Raum: HS14 Anmeldung Kusss Contents Methods and Bootstrapping of Maximum Methods Methods

More information

Phylogenetic inference

Phylogenetic inference Phylogenetic inference Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, March 7 th 016 After this lecture, you can discuss (dis-) advantages of different information types

More information

MA EXAM 3 Form A November 12, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA EXAM 3 Form A November 12, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 6200 EXAM 3 Form A November 2, 205 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME. You must use a #2 pencil on the mark sense sheet (answer sheet). 2. If the cover of your question booklet is GREEN,

More information

MA EXAM 3 Form A April 16, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA EXAM 3 Form A April 16, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 16200 EXAM Form A April 16, 2015 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a #2 pencil on the mark sense sheet (answer sheet). 2. If the cover of your question booklet is GREEN,

More information

Phylogenetics: Building Phylogenetic Trees

Phylogenetics: Building Phylogenetic Trees 1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should

More information

Statistics 992 Continuous-time Markov Chains Spring 2004

Statistics 992 Continuous-time Markov Chains Spring 2004 Summary Continuous-time finite-state-space Markov chains are stochastic processes that are widely used to model the process of nucleotide substitution. This chapter aims to present much of the mathematics

More information

Test 3 - Answer Key Version B

Test 3 - Answer Key Version B Student s Printed Name: Instructor: CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop,

More information

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Exam 2 April th, 208 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: Distance-based methods Ultrametric Additive: UPGMA Transformed Distance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Without fully opening the exam, check that you have pages 1 through 13.

Without fully opening the exam, check that you have pages 1 through 13. MTH 33 Solutions to Exam November th, 08 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

What Is Conservation?

What Is Conservation? What Is Conservation? Lee A. Newberg February 22, 2005 A Central Dogma Junk DNA mutates at a background rate, but functional DNA exhibits conservation. Today s Question What is this conservation? Lee A.

More information

Reading for Lecture 13 Release v10

Reading for Lecture 13 Release v10 Reading for Lecture 13 Release v10 Christopher Lee November 15, 2011 Contents 1 Evolutionary Trees i 1.1 Evolution as a Markov Process...................................... ii 1.2 Rooted vs. Unrooted Trees........................................

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

Lecture 18 - Selection and Tests of Neutrality. Gibson and Muse, chapter 5 Nei and Kumar, chapter 12.6 p Hartl, chapter 3, p.

Lecture 18 - Selection and Tests of Neutrality. Gibson and Muse, chapter 5 Nei and Kumar, chapter 12.6 p Hartl, chapter 3, p. Lecture 8 - Selection and Tests of Neutrality Gibson and Muse, chapter 5 Nei and Kumar, chapter 2.6 p. 258-264 Hartl, chapter 3, p. 22-27 The Usefulness of Theta Under evolution by genetic drift (i.e.,

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/14/07 CAP5510 1 CpG Islands Regions in DNA sequences with increased

More information

NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR. Sp ' 00

NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR. Sp ' 00 NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR Sp ' 00 May 3 OPEN BOOK exam (students are permitted to bring in textbooks, handwritten notes, lecture notes

More information

Contra Costa College Course Outline

Contra Costa College Course Outline Contra Costa College Course Outline Department & Number: BIOSC 110 Course Title: Introduction to Biological Science Pre-requisite: None Corequisite: None Advisory: None Entry Skill: None Lecture Hours:

More information

Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Sepp Hochreiter

Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Sepp Hochreiter Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Institute of Bioinformatics Johannes Kepler University, Linz, Austria Sequence Alignment 2. Sequence Alignment Sequence Alignment 2.1

More information

value mean standard deviation

value mean standard deviation Mr. Murphy AP Statistics 2.4 The Empirical Rule and z - Scores HW Pg. 208 #4.45 (a) - (c), 4.46, 4.51, 4.52, 4.73 Objectives: 1. Calculate a z score. 2. Apply the Empirical Rule when appropriate. 3. Calculate

More information

A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6

A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6 GEORGIA INSTITUTE OF TECHNOLOGY School of Chemistry and Biochemistry Spring 2004 A SURVEY OF ORGANIC CHEMISTRY CHEMISTRY 1315 TuTr 9:35-10:55 am, Boggs B6 Instructor: Marcus Weck Office: Boggs 3-85 Phone:

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Molecular Evolution and Phylogenetic Tree Reconstruction

Molecular Evolution and Phylogenetic Tree Reconstruction 1 4 Molecular Evolution and Phylogenetic Tree Reconstruction 3 2 5 1 4 2 3 5 Orthology, Paralogy, Inparalogs, Outparalogs Phylogenetic Trees Nodes: species Edges: time of independent evolution Edge length

More information

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate.

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. OEB 242 Exam Practice Problems Answer Key Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. First, recall

More information

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Introduction to bioinformatics 2007 Lecture 5 Pair-wise Sequence Alignment Bioinformatics Nothing in Biology makes sense except in

More information

Practice Questions for Final Exam - Math 1060Q - Fall 2014

Practice Questions for Final Exam - Math 1060Q - Fall 2014 Practice Questions for Final Exam - Math 1060Q - Fall 01 Before anyone asks, the final exam is cumulative. It will consist of about 50% problems on exponential and logarithmic functions, 5% problems on

More information

Numerical Methods Lecture 7 - Statistics, Probability and Reliability

Numerical Methods Lecture 7 - Statistics, Probability and Reliability Topics Numerical Methods Lecture 7 - Statistics, Probability and Reliability A summary of statistical analysis A summary of probability methods A summary of reliability analysis concepts Statistical Analysis

More information

NUMB3RS Activity: DNA Sequence Alignment. Episode: Guns and Roses

NUMB3RS Activity: DNA Sequence Alignment. Episode: Guns and Roses Teacher Page 1 NUMB3RS Activity: DNA Sequence Alignment Topic: Biomathematics DNA sequence alignment Grade Level: 10-12 Objective: Use mathematics to compare two strings of DNA Prerequisite: very basic

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

S H/T 0 ph = log([h + ]) E = mc 2 S = klnw G = H T S ph = pk a + log([a ]/[HA]) K a = [H + ][A ]/[HA] G = RTlnK eq e iπ + 1 = 0

S H/T 0 ph = log([h + ]) E = mc 2 S = klnw G = H T S ph = pk a + log([a ]/[HA]) K a = [H + ][A ]/[HA] G = RTlnK eq e iπ + 1 = 0 Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Prof. Jason Kahn Exam I (100 points total) July 27, 2007 You have 80 minutes for this

More information

Introduction to population genetics & evolution

Introduction to population genetics & evolution Introduction to population genetics & evolution Course Organization Exam dates: Feb 19 March 1st Has everybody registered? Did you get the email with the exam schedule Summer seminar: Hot topics in Bioinformatics

More information

Lecture 1. ASTR 111 Section 002 Introductory Astronomy Solar System. Dr. Weigel. Outline. Course Overview Topics. Course Overview General Information

Lecture 1. ASTR 111 Section 002 Introductory Astronomy Solar System. Dr. Weigel. Outline. Course Overview Topics. Course Overview General Information Lecture 1 Course Overview Topics ASTR 111 Section 002 Introductory Astronomy Solar System Dr. Weigel Outline 1.1 Course Overview 1.2 Course Logistics and Syllabus 1.3 Angular Measurements 1.4 Accuracy

More information

How should we go about modeling this? Model parameters? Time Substitution rate Can we observe time or subst. rate? What can we observe?

How should we go about modeling this? Model parameters? Time Substitution rate Can we observe time or subst. rate? What can we observe? How should we go about modeling this? gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG Model parameters? Time Substitution rate Can we observe time or subst. rate? What

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package COURSE INFORMATION Is this a new course or a proposed modification to an existing course? Please check the appropriate box.

More information

Unit 2: Chemistry. Unit Overview:

Unit 2: Chemistry. Unit Overview: Unit 2: Chemistry Unit Overview: This unit will focus on basic chemistry and some of the major process of organic chemistry (dehydration synthesis, hydrolysis, and enzyme action) that help form carbon

More information

Welcome to Chemistry 376

Welcome to Chemistry 376 CHM 376 Spring 2014 Welcome to Chemistry 376 This course will give you a chance to explore the experimental world of physical chemistry. In each of six experiments you will study how simple physical models,

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models A selection of slides taken from the following: Chris Bystroff Protein Folding Initiation Site Motifs Iosif Vaisman Bioinformatics and Gene Discovery Colin Cherry Hidden Markov Models

More information

C.DARWIN ( )

C.DARWIN ( ) C.DARWIN (1809-1882) LAMARCK Each evolutionary lineage has evolved, transforming itself, from a ancestor appeared by spontaneous generation DARWIN All organisms are historically interconnected. Their relationships

More information

Algorithms in Computational Biology (236522) spring 2008 Lecture #1

Algorithms in Computational Biology (236522) spring 2008 Lecture #1 Algorithms in Computational Biology (236522) spring 2008 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: 15:30-16:30/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office hours:??

More information

Campbell Biology AP Edition 11 th Edition, 2018

Campbell Biology AP Edition 11 th Edition, 2018 A Correlation and Narrative Summary of Campbell Biology AP Edition 11 th Edition, 2018 To the AP Biology Curriculum Framework AP is a trademark registered and/or owned by the College Board, which was not

More information

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Math 164-1: Optimization Instructor: Alpár R. Mészáros Math 164-1: Optimization Instructor: Alpár R. Mészáros First Midterm, April 20, 2016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By writing

More information

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013 Sequence Alignments Dynamic programming approaches, scoring, and significance Lucy Skrabanek ICB, WMC January 31, 213 Sequence alignment Compare two (or more) sequences to: Find regions of conservation

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas Forward Algorithm For Markov chains we calculate the probability of a sequence, P(x) How

More information

Inferring Phylogenetic Trees. Distance Approaches. Representing distances. in rooted and unrooted trees. The distance approach to phylogenies

Inferring Phylogenetic Trees. Distance Approaches. Representing distances. in rooted and unrooted trees. The distance approach to phylogenies Inferring Phylogenetic Trees Distance Approaches Representing distances in rooted and unrooted trees The distance approach to phylogenies given: an n n matrix M where M ij is the distance between taxa

More information

General Calculus II. Course Text. Course Description. Course Objectives. Course Prerequisites. Important Terms

General Calculus II. Course Text. Course Description. Course Objectives. Course Prerequisites. Important Terms Course Text General Calculus II Students may select any one of these texts aligned to this course: Larson, R., Hostetler, R. P., and Edwards, B. Calculus Early Transcendental Functions, 3rd edition. Houghton

More information

Hidden Markov Models. based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes

Hidden Markov Models. based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes Hidden Markov Models based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes music recognition deal with variations in - actual sound -

More information

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre Bioinformatics Scoring Matrices David Gilbert Bioinformatics Research Centre www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow Learning Objectives To explain the requirement

More information

1. (4 % each, total 20 %) Answer each of the following. (No need to show your work for this problem). 3 n. n!? n=1

1. (4 % each, total 20 %) Answer each of the following. (No need to show your work for this problem). 3 n. n!? n=1 NAME: EXAM 4 - Math 56 SOlutions Instruction: Circle your answers and show all your work CLEARLY Partial credit will be given only when you present what belongs to part of a correct solution (4 % each,

More information