Research Survey of human mitochondrial diseases using new genomic/proteomic tools

Size: px
Start display at page:

Download "Research Survey of human mitochondrial diseases using new genomic/proteomic tools"

Transcription

1 Research Survey of human mitochondrial diseases using new genomic/proteomic tools 6D =I 2 =IJAHAH 6A F A 5 EJD V JJ+ DH W )@@HAIIAI *E A?K =H- CE AAHE C4AIA=H?D+A A J B2D=H =? CO * IJ 7 ELAHIEJO5?D B A@E?E A & - +? H@5JHAAJ * IJ ) & 75) V *E A?K =H- CE AAHE C4AIA=H?D+A JAH * IJ 7 ELAHIEJO+ ACA B- CE AAHE C!$ +K E CJ 5JHAAJ * IJ ) # 75) W *E A?K =H- CE AAHE C4AIA=H?D+A A J B+DA EIJHO * IJ 7 ELAHIEJO #'+ MA= JD)LA KA * IJ ) # 75) + 5? JJ+ DH - =E DH(@=HME >K A@K Published: 1 June 2001 Genome Biology 2001, 2(6):research The electronic version of this article is the complete one and can be found online at Plasterer et al., licensee BioMed Central Ltd (Print ISSN ; Online ISSN ) Abstract Background: We have constructed Bayesian prior-based, amino-acid sequence profiles for the complete yeast mitochondrial proteome and used them to develop methods for identifying and characterizing the context of protein mutations that give rise to human mitochondrial diseases. (Bayesian priors are conditional probabilities that allow the estimation of the likelihood of an event - such as an amino-acid substitution - on the basis of prior occurrences of similar events.) Because these profiles can assemble sets of taxonomically very diverse homologs, they enable identification of the structurally and/or functionally most critical sites in the proteins on the basis of the degree of sequence conservation. These profiles can also find distant homologs with determined threedimensional structures that aid in the interpretation of effects of missense mutations. Results: This survey reports such an analysis for 15 missense mutations, one insertion and three deletions involved in Leber s hereditary optic neuropathy, Leigh syndrome, mitochondrial neurogastrointestinal encephalomyopathy, Mohr-Tranebjaerg syndrome, iron-storage disorders related to Friedreich s ataxia, and hereditary spastic paraplegia. We present structural correlations for seven of the mutations. Conclusions: Of the 19 mutations analyzed, 14 involved changes in very highly conserved parts of the affected proteins. Five out of seven structural correlations provided reasonable explanations for the malfunctions. As additional genetic and structural data become available, this methodology can be extended. It has the potential for assisting in identifying new disease-related genes. Furthermore, profiles with structural homologs can generate mechanistic hypotheses concerning the underlying biochemical processes - and why they break down as a result of the mutations. Background )IMA LAE J JDAF IJ CA AAH= >E E B H =JE?IJ I FH LE@A = F MAHBK A= I B HC= E E C E JACH=JE C E B H =JE HA =JA@J DAHA@EJ=HO@EIA=IAI 9AFHAIA JDAHA =FH J JOFAIJK@O BJDEI=FFH =?D 7IE C=@=J=>=IA B= Received: 8 February 2001 Revised: 3 April 2001 Accepted: 26 April 2001 E@A JEBE=> AFH JAE IJD=J? JHE>KJAJ H >E IO JDAIEI BOA=IJ5=??D=H O?AI?AHALEIE=A MAD=LACA AH=JA@= E>H=HO BFH JAE FH BE AI JD=J A => AIKIJ E@A JEBOD CIE =ME@AH= CA BCA AI E? K@E C DK = )I = HAIK J MA D=LA =L=E => A IAJI B comment reviews reports deposited research refereed research interactions information

2 2 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= DECD O =??KH=JA = E =?E@ IAGKA?A = EC A JI LAH JDA? IAHLA@ HACE I JD=J? J JDAIA FH BE AI *O =FFE C M DK HA =JA@ KJ=JE I J JDAIA = EC A JI MA?= E LAIJEC=JA JDA HA =JE IDEFI J IAGKA?A? IAHL=JE J IAGKA?A L=HE=JE I 1 JDA?=IAI MDAHA A H HA B JDA E@A JEBEA@ D CI D=I E A@IJHK?JKHA JDAIA KJ=JE I?= >AE JAHFHAJA@E IJHK?JKH= JAH I = ME A?D= EIJE?E BAHA?AI 9AD=LAKIA@FH BE A= = OIEI>=IA@ *=OAIE= FHE = FH >=>E EJEAIJD=J= MJDAAIJE =JE BJDA E A E B= ALA J JDA>=IEI BFHE H??KHHA?AI BIE E =H ALA JI J = A JDEI E>H=HO B IAGKA?A FH BE AI 6DA IJHA CJD B FHE H >=IA@ FH BE A = = OIEI EAI E EJI =>E EJO J?=FJKHA D C KI FH =E I =I HA =JA@ > A?JI -=?D@ =E EIHAFHAIA JA@=I= =JHEN B= E =?E@FH > =>E EJEAI HA FHA?EIA O C E A L= KAI MDAHA A=?D F IEJE E JDA@ =E D=I= AIJE =JA@FH >=>E EJO B>AE C??KFEA@ >O = O F=HJE?K =H = E =?E@ 6DA IE E =HEJEAI B HAIE@KA? IAHL=JE >AJMAA D C KI IAGKA?AIHALA= F IEJE I?HEJE?= B HFH JAE BK?JE ) FH BE A K JEF A = EC A =OI E KJ=> AF IEJE I FDOIE??DA E?= O? IAHLA@F IEJE I DECD O L=HE=> A F IEJE I 6DA AN= F AI FHAIA JA@ E JDEI F=FAH ID M D M IK?D = EC A JI FH LE@A E IECDJ E J DK = F=JD CEAI FH JAE I=HA= =JJH=?JELAIK>IAJ BJDA?A K =HFH JA AJ = = O A>A?=KIAJDAOFAHB H = K >AH B? HHA =JA@ BK?JE I E JAH=?J ANJA IELA O MEJD A = JDAH 6DAEHFH HHAB A?J= E JACH=JA@ IOIJA B@EBBAHA J KJ=JE =?D= CAI?= >A A= E CBK O?H II? F=HA@ 6DAIKHLAO BJDEI E E= JKHAFH JA AID = O BJDABA=JKHAIJD=J?D=H =?JAHE A JDA =HCAH? F AJA FH JA AI B AK =HO JE??A JOFAI F=JD CEAI = I FHAIA J K EGKA O? F ANAL KJE AJE?BA=JKHAI=I=HAIK J BJDAEH HECE MEJDE HC= A AI@AHELA@BH =?EA JIO >E JDA IJHE?J O =JAH = E DAHEJ=?A F=JJAH B MA@ >O = E F HJ= JIK>IAJ BJDAHA AL= JCA AI Mitochondrial genome overview 6DA CA AEJIA B CA AI 6DA =HCAIJ CA LAHA@ BJDAFH JEIJ4A? E =I = AHE?= H '%CA JAE 4 )IE = IF= B $'!" >=IA F=EHI 0K = )EI K?DI = AH C!%CA JAE I H4 J4 )I LAH$ #$'>=IAF=EHI! ) JAE I=HA@EHA?J OE L LA@E NE@=JELA FD IFD HO =JE E? K@A? F A JI B? F AN 1 CA =IA IK>K EJI,,,!,",",#,$? F AN111?OJ?DH A>? F AN 18?OJ?DH A NE@=IA IK>K EJI F AN8 )62=IAIK>K " ) JDAH DK = CA AI C FH JAE I J J= AIJE =JA@=J=H # =HAJH= I?HE>A@E JDA K? AKI JH= I =JA@ E JDA?OJ F =I JDAEH E F HJA@ E J 6DA E JAHF =O >AJMAA HC= A K? A=HCA AI=?? K JIB H= =HCAF=HJ B JDA@ELAHIEJOE F=JD CEAI -=?D DK =?A? J=E I K JEF A = E?= O E JAH? A?JA@ E =? F AN HAJE?K =H AJM H $ % A=?D =O? J=E JA H HA ) J, ) A?K AI 7IK= O =? FEAI B J, ) =HA E@A JE?= = IJ=JA M =I D F =I O??=IE = O D MALAH J, ) KJ=JE I??KH JDAHA =HEIA JM H HA F FK =JE I B J, ) = IJ=JA?= A@ DAJAH F =I O " 1 B=?J DAJAH F =I E? J, ) KCDJJ >A HA =JELA O?? IE@AHE CJD=JDK = J, ) KJ=JAI JE AI B=IJAH JD= K? A=H, ) =I = HAIK J B E =@A GK=JAFH BHA=@E C>O )F O AH=IAI " E EJA@ J, )HAF=EH?=F=>E EJO 6DEIANFA?J=JE EIJ I AANJA J> H A KJ>OJDAHA =JELAFH E A?A H@AHI=HEIE CBH KJ=JE IE JDA J, ) = JD KCD EJ EI = I E F HJ= J J JA JD=J IK?D KJ=JE I >AE C? F=H=JELA OA=IOJ E@A JEBO>OIAGKA?E C ME =J KH= OD=LA>AA = CJDABEHIJJ >A?D=H=?JAHE A@ Disease classification 5?D=FEH=D=I@ALEIA@=? =IIEBE?=JE I?DA AB H & >=IA@FHE =HE O MDAJDAH H JJDA=BBA?JA@ CA A O E L LA@ E NE@=JELA FD IFD HO = J, ) H K? A=H, ) )FHE =HO@ABA?JE NE@=JELAFD IFD HO AI? =II 1,EIJE?J F=JD CEAI =O LAH =F HAJD= A? =II B HAN= F A AIAA>A M 5K>? =II 1=E? K@AI@EIA=IAI=HEIE CBH KJ=JE IE J, )CA AI C IK>K EJI B FH JAE I E L LA@ E NE@=JELA FD I FD HO =JE J4 ) CA AI H4 ) CA AI 6DEI IK>? =II D=I JDHAA HA C JDA =JKHA B JDA OE C KJ=JE I E =HCA I?= A J, AJE E?=JE I EE F E J KJ=JE I I = HA=HH= CA A JI E FH C J, ) HACE I EEE I = I?= A J, ) KJ=JE I E J4 )CA AI & 1 H@AHB H=? =II1=F=JD CO J FHAIA JEJIA B JDA J, ) KJ=JE KIJ??KHE =IEC EB E?= J BH=?JE B JDA DAJAH F =I E? J, ) F FK =JE =I DECD=I$B H J, )@A AJE I ' 1= KFJ '#B HJ4 ) KJ=JE I1= EEE + KJ=JE IE = O K? A=H CA CFH JAE IK>K EJIE L LA@E NE@=JELAFD I FD HO =JE # 6DAIA KJ=JE I?=??KH E AN I H E JH I=IMA =IFH JAHI + =II H@AHI IJA E NE@=JELA FD IFD HO =JE + =II 11= CA AJE? F=JD CEAI=HA?D=H=?JAHE A@>O KJ=JE IE K? A=H FH JAE CA AI MD IA =HA E F HJA@ E J JDA >KJ =HA J IK>K EJI B JDA NE@=JELA

3 FD IFD HO =JE =FF=H=JKI 6DAHA =HA B KH IK>JOFAI E J, )=> H = EJO@KAJ KJ=JE IE K? A=HCA AI=BBA?J E C J, )JH= I?HEFJE JH= I =JE HHAF E?=JE EE@EHA?J J, =CA E J, ) HAF=EH NE@=JELA FD IFD HO =JE IK>K EJ E F HJ NE@=JELA FD IFD HO =JE IK>K EJ =IIA > O & 6OFA 11> F=JD CEAI=HEIABH CA CA KIJ NE I Results 6=> A IK =HE AI JDA AN= F >A M 6DAO E? K@A =?=IAI B H MDE?D IKBBE?EA J O IFA?EBE? KJ=JE = E B H =JE ANEIJIJ A => AABBA?JELAKIA BJDAFH BE AJ Primary mutational disorders of oxidative phosphorylation (class I) Leber s hereditary optic neuropathy A>AH\I DAHA@EJ=HO FJE? AKH F=JDO 0 JDA IJ??=KIA B = A=@ AI?A J> AII EI=JJHE>KJA@J KJ=JE IE J, )CA CIK>K EJI B? F AN1 CA =IA, = JAH =JELA O JAH A@ ),0 + 3 HA@K?J=IA 6DA IJBHAGKA J OA? K JAHA@ KJ=JE # B?=IAI = C -KH FA= I '# = C )IE= I EI /%%&) E," )HC!" 0EI )@@EJE = O /!"$) ) =# 6DH E, > JD 6""&"+ AJ$" 8= =% 8= E,$H= = CJDA JDAH FHE =HO 0 =II?E=JA@ KJ=JE I " Table 1 Selected mutations associated with human mitochondrial disorders )IIAA E ECKHA JDA=HCE E AHAIE@KA=JF IEJE!"E JDADK = IAGKA?AB H," 7" 07 ) MDE?D? H J F IEJE! B JDA FH BE A EI =>I KJA O? IAHLA@ =?H II /H= F IEJELA 4L!#% /H= AC=JELA -+ %% =H?D=A= 2)*"! AK =HO JE? J=N= 7" 07 ) =@" 24) 6DA F=JD CA E? KJ= JE B =HCE E A J DEIJE@E A =J JDEI F IEJE HAFHAIA JI O IEC EBE?= E IAGKA?A IK>IJEJKJE C = E E@= ACH KFB H=CK= E@E CH KF 6DAJM = E =?E@IE@A?D=E I@EBBAHE ID=FA DO@H CA C?=F=>E B F IEJELA?D=HCA =HCE E A = M=OI >AE C F IE JELA O?D=HCA@ =J FDOIE CE?= F0 DEIJE@E A O D=LE C = F IEJELA?D=HCA=> KJD= BJDAJE A 6DA? EIIA IA IK>IJEJKJE E, JD=J A=@I J 0 ) =# AI JD=LA=I >LE KI= ANF = = JE B HEJIABBA?J 1 IFA?JE BJDAIAJ B= EC A@IAGKA?AI ECKHA ID MI JD=J JDEI F IEJE J AH=JAI C O?E A AJDE E A=IMA =I= = E A 5K>IJEJKJE C=JDHA E AB H JDA = = E A E JDA DK = IAGKA?A =@@I = >AJ= >H=?DA@ = E =?E@?=F=> A C?= JAHJE=HO IJHK?JKHA H F IIE> O E JAHIK>K EJ E JAH=?JE I 6DA DO@H NO CH KF B JDA JDHA E A =O = I B H DO@H CA AECD> HE C= E =?E@HAIE@KAII =IJ =@@J JDEI F JA KHJDAH IJHK?JKH= IJK@O B? F AN 1 ME >A HAGKEHA@ J ANF =E D M JDEI KJ=JE? JHE>KJAIJ 0 Disorder Affected protein DNA change Protein change Evolutionary conservation Structural environment LHON ND4 G11778A R340H Absolute N/A ND1 G3460A A52T Slight N/A ND6 T14484C M64V Moderate N/A G14459A A72V High N/A Leigh syndrome ATP6 T8993G L156R Absolute Subunit interface PDHA1 C892G R263G Slight Near active site SURF1 G385A G124E Absolute N/A T751C I246T High Predicted β-sheet SDHA C1684T R554W High Surface-exposed MNGIE TP G1419A G145R High Near active site G1443A G153S Absolute Near active site A2744G K222S Absolute Near active site A3371 E289A Absolute Not in active site Deafness-dystonia DDP1 T151del (1 nt) Truncation - see text High N/A A183del (10 nt) Truncation - see text High NA C198G C66W Absolute N/A Iron-storage ABCB7 ATT ATG I400M High Predicted tight turn HSP Paraplegin 784del (2 nt) 60% truncated High N/A 2228ins (1 nt = A) 7.2% Truncated Moderate N/A ABCB7, ATP-binding cassette, subfamily B, member 7; ATP4, adenosine triphosphate synthase subunit 4 (ATP6 subunit 6); DDP1, deafness-dystonia peptide 1, del, deletion; HSP, hereditary spastic paraplegia; ins, insertion; LHON, Leber s hereditary optic neuropathy; MNGIE, mitochondrial neurogastrointestinal encephalomyopathy; N/A, not available; ND, NADH dehydrogenase; ND1 NDn, ND subunits 1 n; nt, nucleotide; PDHA1, pyruvate dehydrogenase subunit E1α; SDHA, succinate dehydrogenase subunit A; SURF1, surfeit locus protein 1; TP, thymidine phosphorylase. comment reviews reports deposited research refereed research interactions information

4 4 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= (a) Rv3157 EC2277 PAB1402 NU4M_HUMAN nad4_pra (b) PATTERN hhxfxfaxhh axxhxaffff jxxfxxxxir XfXXXXGaXs XfXfXXXXXf Rv3157 GSTLYMLNHG LSTAAVFLIA GFLIARRGSR SIADYGGVQK VAPILAGTFM EC2277 GAVIQMIAHG LSAAGLFILC GQLYERIHTR DMRMMGGLWS KMKWLPALSL PAB1402 AALFHLINHA IAKALLFLAV GVFIHVAGSR NIDDLAGLGR KMPITTFSLA NU4M_HUMAN GAVILMIAHG LTSSLLFCLA NSNYERTHSR IMILSQGLQT LLPLMAFWWL nad4_pra GSILLMLSHG IVSSALFLCI GVLYDRHKTR LLKYYSGVVQ TMPIFATLFM Conserved Arg340 His Figure 1 Profile-induced multiple alignment of NADH dehydrogenase, subunit 4. (a) Protein domain diagram. Profile-aligned regions (in red) set the boundaries for sequence domains. Gaps are indicated by gray interruptions in the red bars. Coordinates in the domain diagram are based on the aligned set of sequences. Amino-acid position is given on the scale above. (b) The zoomed-in aligned region marked by the yellow box on the domain diagram (see Additional data files). The alignment is colored according to amino-acid class assignments, with red indicating identity. Coordinates in the aligment are taken from the position in the profile. For more details see [48,53]. Sequences are obtained from Mycobacterium tuberculosis (Rv3157), Escherichia coli (EC2277), Pyrococcus abyssi (PAB1402), Homo sapiens mitochondrion (NU4M_HUMAN) and Reclinomonas americana mitochondrion (nad4_pra). 6DA JM? F=JD CA E? KJ=JE I E,$ AJ$" 8= =% 8= A=@J = B H B 0 HAIFA?JELA O )I O? >=?JAHEK JK>AH?K IEI = HA=@O KIAI = L= E A E F IEJE $" ECKHA! EJ A JD=J JDA AJ$" 8= IK>IJEJKJE ID = AII FDA JOFA 1 F IEJE % O = = E AJDE E AD=LA>AA IAA = CJDAE@A JEBEA@ D CI )I IK?D JDA E B L= E A =@@I = β >H=?DA@ = E =?E@ =J =? IAHLA@ β >H=?DA@ DO@H FD >E? F IEJE )@@EJE = O JDA JM AK =HO JAI :A FKI =ALEI 0 I=FEA I D=LA? IAHLA@ JDA = = E A MDAHA=I JDA J O HA =JA@ IFA?EAI =? IAHLA= AJDE E A 9DAHA=I O A BJDA CA =IAIK>K EJ KJ=JE I??KHI=J= =>I KJA O? IAHLA@ F IEJE JDAHA=HAHA=I => AANF = =JE IB HD MJDA JDAH KJ=JE I? = EBAIJJDAEH E A OF=JD CO Leigh syndrome AECD A = I M =I IK>=?KJA A?H JE E C A?AFD= OA F=JDOEI= JDAH? J, ) H@AH BHAGKA J O =II?E=JA@ MEJD?OJ?DH A NE@=IA + :@ABE?EA?O! JD HA =JA@ KJ=JE I BJDA J, ) :IK>K EJID=LA>AA HAF HJA@ ) IE C A6 J /JH= ILAHIE =J J, )F IEJE & ''!?D= CAI AK?E A#$ B)62IO JD=IAIK>K EJ$J =HCE E A AK#$ )HC " ECKHA "= MAH? FO K >AHI BJDEI KJ=JE %=HA=II?E=JA@ MEJD AKH F=JDO =J=NE= HAJE EJEI FEC A J I= )42 MDAHA=IDECD? FO K >AHI 'CELAHEIAJ A # KJ=JE C JDA? IAHLA@ AK?E A J =HCE E A =J F IEJE #$ EI C = γ >H=?DA@ = EFD=JE? HAIE@KA MEJD = >=IE? CK= E@E CH KF = = H?DA E?= FHAIK => O IJHK?JKH= IK>IJEJKJE 1 => AIAA ECKHA A=H O JDA AO?=JE B JDEI HAIE@KA =J JDA FH JAE FH JAE E JAHB=?A BJM BJDAIK>K EJI BJDA? F A J B? F AN8)62IO JD=IA KJ=JE IB =J A=IJJM K? A=HCA AI= I? HHA =JA MEJD AECD A A B H = IK>K EJ B JDA CA =IA? F AN A B H IKHBAEJ?KI FH JAE

5 Rv3152 EC2282 AF1831 nad1_pra NU1M_HUMAN PATTERN naxhxfqxrx GPXXVhggXX GXaQXfADXf nffxrexfxx XXXsXXfdXX Rv3152 KLLGRMQLRP GPNRVG--PK GALQSLADGI KLALKESITP GGIDRFVYFV EC2282 RLLGLFQNRY GPNRVG--WG GSLQLVADMI KMFFKEDWIP KFSDRVIFTL AF1831 KLTARIQWRV GPLEVARPIR GAIQALADGI RYFFQEAIVH REAHRPYFVQ nad1_pra KVIAAMQQRK GPNVVG--VF GLLQPLADGL KLLLKETIVP TRANSAIFIL NU1M_HUMAN KILGYMQLRK GPNVVG--PY GLLQPFADAM KLFTKEPLKP ATSTITLYIT Non-conserved Ala52 Figure 2 Domain diagram and partial alignment for NADH dehydrogenase, subunit 1 (ND1). The column indicated by the arrow at the bottom is position 52 of NU1M_HUMAN. Sequences are from M. tuberculosis (Rv3152), E. coli (EC2282), Archaeoglobus fulgidus (AF1831), H. sapiens mitochondrion (NU1M_HUMAN) and R. americana mitochondrion (nad1_pra). Colors are as in Figure MDE?DEIE L LA@E JDA=IIA > O B?OJ?DH A? NE@=IA )IJDAIA=HA J NE@=JELAFD IFD HO =JE FH JAE I JDA KJ=JE IGK= EBO=I? =II11@EI H@AHI ) EIIA IA KJ= JE )HC $! / OE JDA-α IK>K EJ BFOHKL=JA@ADO@H CA =IA 2,0) D=I >AA =II?E=JA@ MEJD AECD A ECKHA # 6DEI KJ=JE IAA I J =BBA?J =IIA > O B JDA -α -β DAJAH JAJH= AH $ 6DA CA A\I?=JE JDA :?DH I A? F E?=JAI EJI ANFHAIIE F=JJAH E BA = AI =I=HAIK J F=JJAH B:E =?JEL=JE % 9DAHA=I OJDADK = IAGKA?AKIAI=HCE E A=JJDEIF IE JE = JDAH J=N= KIA = =HCA DO@H FD >E? = E =?E@ AEJDAH JOH IE A H AK?E A JA JD=J ALA = =HCE E A IE@A?D=E D=I=IK>IJ= JE= DO@H FD >E?IAC A J>A=HE CEJIJAH E = CK= E@E CH KF 5K>IJEJKJE CJDAI = JKH B H E C C O?E A HAIE@KA? D=LA = IEC EBE?= J E F=?J FH FAH C B JDEI IK>K EJ )I ID M E ECKHA #> )HC $! EI?=JA@GKEJA? IAJ JDA=?JELAIEJA BJDAA O A =HACE BJDAIJHK?JKHAMDAHAALA I = FAHJKH>=JE I? =HCAABBA?JI =?JELEJO 6DACA AB =OI KJ=JE I/ O " / 1 A "$ 6DHJD=J?= = I A=@J A & ' Thr ) K >AH AJE I IAA E I =I MA 6DA / O " / =>I KJA O? IAHLA@ C O?E AJD=J IJFH >=> OF=HJE?EF=JAIE =JKH ECKHA $ 6DA 1 A "$ 6DH KJ=JE??KHI E FH >=> HKFJI = FHA@E?JA@ β IDAAJ >A EALA@ J >A FHAIA J E JDEI FH JAE BH = DECDAHAK =HO JAI 1J??KHIJ M=H@JDA?=H > NO JAH E KI B JDA DK = FH JAE EI JDA HACE? LAHA@>OJDAFH BE A =HAB A?JE BIAGKA?A@ELAH CA?A>AJMAA AK =HO =HO JAIE JDEIHACE KJ=JE I CELE C HEIA J AECD A D=LA = I E JDA B =L FH JAE IK>K EJ F H 5,0) B JDA IK??E CA =IA? F AN 5,0 6DA KJ= JLAHIE +$&"6 )HC##" 6HF ECKHA %= B5,0) D=I = H = E B H = =JA >KJ EI K?D HA IA M HACK =JE >O N= =?AJ=JA )) KJ=JE CJDA? IAHLA@=HCE E AHAIE@KA=JF IEJE ##"J = JHOFJ FD=?=KIAI= II B=F =?A A J MEJD= K?D =HCAH=H =JE?CH KF 1JEI J=FF=HA JBH JDA?=JE BJDEIHAIE@KAE JDAIJHK?JKHA ECKHA %>MDO JDEI?D= CAID ABBA?J BK?JE 1J EAI JDA IKHB=?A =J =? IE@AH=> BH JDA =?JELA IEJA comment reviews reports deposited research refereed research interactions information

6 6 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= nad6_pra NU6M_HUMAN Rv3154 EC2280 NU6M_XENLA PATTERN fhffxffayx GhfffaFXdX XfffXXXXXo XXXsXXXXXX XXXaXXXfXX nad6_pra IAMIFIMVYV GAIAVLFLFV VMMLNVRLVQ FNVNMLRYLP LGGVIGLIFL NU6M_HUMAN MGLMVFLIYL GGMMVVFGYT TAMAIEEYPE AWGSGVEVLV SVLVGLAMEV Rv3154 LGVVQVVVYT GAVMMLFLFV LMLIGVDSAE SLKETLRGQR VAAVLTGVGF EC2280 AGALEIIVYA GAIMVLFVFV VMMLNLGGSE IEQERQWLKP QVWIGPAIL S NU6M_XENLA LSIVLFLIYL GGMLVVFAYS AARA-KPYPE AWGS--WSVV FYVLVYLIGV Semi-conserved Met64 Val Eukaryotic-conserved Ala72 Val Figure 3 Domain diagram and partial alignment for NADH dehydrogenase, subunit 6 (ND6). The columns indicated with arrows at the bottom are positions 64 and 72 of NU6M_HUMAN. Sequences are from M. tuberculosis (Rv3154), Escherichia coli (EC2280), X. laevis mitochondrion (NUAM6_XENLA), H. sapiens mitochondrion (NU6M_HUMAN) and R. americana mitochondrion (nad6_pra). Colors are as in Figure 1. AI JD=LA= O=FF=HA JH AE IK>K EJ IK>K EJE JAH =?JE I 1 B=?J D MALAH JDADECD@ACHAA BIAGKA?A? IAH L=JE LAHJDEIA JEHAHACE ECKHA %=IKCCAIJIJD=J5,0) EIB=EH OE J AH= J B KJ=JE IDAHA 2H FAHE JAH=?JE MEJD JDA EFE@>E =OAH =OF=HJ OANF =E JDAFDA A Secondary mutational disorders in oxidative phosphorylation (class II) Mitochondrial neurogastrointestinal encephalomyopathy + =II H@AHI J KJ=JE I E K? A=H FH JAE CA AI AKH C=IJH E JAIJE = A?AFD= O F=JDO /1- EI?D=H=?JAH E A@ >O FJ IEI FH CHAIIELA ANJAH = FDJD= F ACE= C=IJH E JAIJE JE EJO JDE D=>EJKI FAHEFDAH= AKH F=JDO O F=JDO AK A?AFD= K JEF A J, )@A AJE I H J, )@AF AJE H > JD 1J EI =? =II 11 J, H@AH 1J EI >A EALA@JD=JJDAF=JD CA E? A?D= EI HA =JAIJ =>AHH= J JDO E@E A AJ=> EI CELE CHEIAJ E F=EHA@ J, )HAF E?=JE H J, ) =E JA =?A EIIA IA KJ= JE IE JDAA O AJDO E@E AFD IFD HO =IA62/ O"# )HC / O#! 5AH OI 5AH / K &' ) = = BAM JDAHI D=LA >AA B E K JEF A /1- F=JEA JI EALA@J?=KIAJDAF=JD CO 62?=J= O AI = IJAF E JDA I= L=CA F=JDM=O B H JDO E A JDO E@E A FD IFD=JA JDO E NO, HE> IA FD IFD=JA 1 DECDAH AK =HO JAI 62 F =OI JDA H A B F JDA E=?A CH MJDB=?J H! ALE@A J O >O LEHJKA B JDA B=?J JD=J NOHE> IA IKC=H EI KIA@ =I = = CE CA AIEI C B=?J H " 62 = I D=I C E IJ=JE =?JELEJO 2H BE A K JEF A = EC A JI B JDEI FH JAE ID M = B? IAHL=JE LAH JDA F=JD CA E? F IEJE I F=HJE?K =H O B H JDA / O#! 5AH KJ=JE ECKHA & / O?E AEI=>I KJA OFHAIAHLA@=JJDEI F IEJE CJD=JEJ =O>A?HEJE?= B HFH C 5K>IJEJKJE C=IAHE A? = JD KCD=FHA?A@ E C C O?E A =O F=HJE= O? FA I=JA 6DA / O"# )HC AI J@EIHKFJ= =>I KJA O? IAHLA@F IE JE =I IAHE A EI = I FAH EJJA@ >KJ EJ E = =HCA >=IE? F=HJ O DO@H FD >E? HAIE@KA JD=J FHAIK => E EIDAI =J A=IJ A AO BK?JE B 62 OI 5AH / K &' ) = > =>I KJA O? IAHLA@ IAGKA?AF IEJE I JDAB H AH BMDE?D EAI JDAFAHEFDAHO

7 (a) EC3738 ATP6_HUMAN HP0828 Q0085 Rv PATTERN fxxxxxxfxf ffxipxasxf hnxaslhfrl XhNIgXGXXf ffaafxfg-g EC3738 PFNHWAFIPV NLILEGVSLL SKPVSLGLRL FGNMYAGELI FILIAGLLPW ATP6_HUMAN QGTPTPLIPM LVIIETISLL IQPMALAVRL TANITAGHLL MHLIGSA--- HP0828 AGPVKWLAPF MFPIEIISHF SRIVSLSFRL FGNI-KGDDM FLLIMLL--- Q0085 AGTPLPLVPL LVIIETLSYF ARAISLGLRL GSNILAGHLL MVILAGL--- Rv1304 IKLLKGHVTL LAPINLVEEV AKPISLSLRL FGNIFAGGIL VALIALFP-P (b) Conserved Leu156 1 Arg Figure 4 Domain diagram and structure of ATP synthase. (a) Domain diagram and partial alignment for ATP synthase, subunit 6 (ATP6). The column indicated by the arrow at the bottom corresponds to position 156 of ATP6_HUMAN. Sequences are obtained from M. tuberculosis (Rv1304), Helicobacter pylori (HP0828), E. coli (EC3738), S. cerevisiae mitochondrion (Q0085) and H. sapiens mitochondrion (ATP6_HUMAN). Colors are as in Figure 1. (b) Ribbon diagram showing the structure of ATP synthase subunits: ATP6 (a-chain, green) and ATP9 (c-chain, red). Leucine 156 (1) is shown as a space-filling model. The structure comes from the Protein Data Bank (code: 1C17). comment reviews reports deposited research refereed research interactions information

8 8 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= (a) CT245 bsubtilis-pdha YER178W APE1677 ODPA_HUMAN PATTERN sxxfxxxxxg -galgxdxfx XfXXXXXAXr XfXsXXhPXa aexxxxrfxj CT245 SQAISYGLSS ITLNGFDLFN SLIGFREAYH HMQQTGSPII VEALCSRFRG bsubtilis-pdha KAVAAGIVGV -QVDGMDPLA VYAATAEARE RAINGEGPTL IETLTFRYGP YER178W RGQYIPGLK- --VNGMDILA VYQASKFAKD WCLSGKGPLV LEYETYRYGG APE1677 KGLAYGVPGV -RIDGNDVMV VYKIVSDAAE KARRGGGPTL IEAVTYRLGP ODPA_HUMAN RGDFIPGLR- --VDGMDILC VREATRFAAA YCRSGKGPIL MELQTYRYHG Non-conserved Arg263 Gly (b) Chain B Chain A Thiamine diphosphate Figure 5 Structures of pyruvate dehydrogenase E1-α subunit and branched-chain α-ketoacid dehydrogenase α subunit. (a) Domain diagram and partial alignment for pyruvate dehydrogenase E1-α subunit (PDHA1). The column indicated by the arrow at the bottom corresponds to position 263 of ODPA_HUMAN. Sequences come from Chlamydia trachomatis (CT245), Bacillus subtilis (bsubtilis-pdha), S. cerevisiae (YER178W), Aeropyrum pernix (APE1677) and H. sapiens (ODPA_HUMAN). Colors are as in Figure 1. (b) Ribbon diagram of branched-chain α-ketoacid dehydrogenase α subunit (H. sapiens) - a close homolog to PDHA1 (Z-score 73.2). The structure comes from the Protein Data Bank ([49]; code: 1DTWA). Chain A is colored red, chain B gray. A space-filling model of thiamine diphosphate (TPP) (center) indentifies the enzyme active site. Below and slightly to the left, the catalytic group Glu92 is also shown in space-filling representation (1), and further down (directly under the TPP) Tyr262 is similarly shown (2). Arg263 occupies this position in ODPA_HUMAN. Helix H3 is the second helix at the lower left (3).

9 CT27995 PA0110 RP733 Rv2235 SUR1_HUMAN YGR112W PATTERN gxxxfg--gs XfXDXXdXnV XfsGrdXXrX sfff-xxr CT27995 LPDDL----T DLAQMEYRLV KIRGRFLHDK EMRL-GPRSL IRPDGVETQG PA0110 -PGQL----E GLRDPAYVRV RLHGRFDERH TLLL-DNR RP L---EK VQENLLYHKV KITGQFLPNK DIYLYGIR Rv2235 LKTLLPQQDS SAPDAQWRRV TATGQYLPDV QVLA-RLR SUR1_HUMAN LPADPM---- ELKNLEYRPV KVRGCFDHSK ELYM-MPRTM VDPVRE---- YGR112W LPKSFT--PD MCEDWEYRKV ILTGHFLHNE EMFV-GPR Conserved Gly124 Glu Figure 6 Domain diagram and partial alignment for surfeit locus protein 1 (SURF1). The column indicated by an arrow at the bottom corresponds to position 124 of SUR1_HUMAN. Sequences come from Drosophila melanogaster (CT27995), Pseudomonas aeruginosa (PA0110), Rickettsia prowazekii (RP733), M. tuberculosis (Rv2235), H. sapiens (SUR1_HUMAN) and S. cerevisiae (YGR112W). Colors are as in Figure 1. B JDA =?JELA J ID M / K &' F=HJE?EF=JAI E I A F=HJ O >KHEA@? IAHLA@ E E? E JAH=?JE I HA JD= JBH JDA=?JELAIEJA@=J= JID M Deafness-dystonia,A=B E= H DH 6H= A> =AHC A EI = FH JAE E F H@AH KJ=JE I E= FAFJE@A A=@ E= 1 JM?=IAI IAA = AJE E AN 6#@A HAIK JI E = BH= AIDEBJ A=@E C J E? HF H=JE B # AM = E =?E@I =BJAH / K!& B MA@ >O = IJ 1 = = >F@A AJE E AN?=KIAI=BH= AIDEBJ=J AJ"& A=@E C J E? HF H=JE B AM HAIE@KAI = IJ # 6DAIAFH JAE I=HA D C KIJ JDAOA=IJ E F HJFH JAE 6E &F; 4!#9 ) $ )IIAA E ECKHA ' > JDBH= AIDEBJ KJ=JE I A=@J A E E = JE B=DECD O? IAHLA@ JEB +8F4 =,6 A=HJDA?=H > NO JAH E KI BJDAFAFJE@A =HACE JD=J KIJ>A?HEJE?= J FH FAHBK?JE C 6DAHA?A JFK> E?=JE BJDABEHIJ,,2 EIIA IA KJ=JE +OI$$ 6HF % IJH C O IKF F HJI JDEI FHE H?? KIE >=IA@ JDA BH= AIDEBJI )I AEJDAH6E &F H= O? IAD CD=IOAJD=@EJIIJHK? JKHA@AJAH E A@ MA?= JE BAH@AJ=E A@IJHK?JKHA BK?JE HA =JE IDEFI 6E JDA E JAH A >H= E AJDA?=JE B6E 'F 6E 'F EI?=JA@ AEJDAH E JDA %,= E F HJ? F AN >AJMAA JDA A >H= AI H JDA!,= 61? F AN A >A@@A@ E JDA E AH A >H= A &,A AJE I B6E &F=BBA?JJDA=>E EJOJ E F HJ FH JAE I JD=J >A? A A >A@@A@ E JDA E AH A >H= A ' 1J EI F IIE> A JD=J JDA BH= AIDEBJ KJ=JE I IAA E= E JAHBAHA MEJD JDA E JAHB=?A >AJMAA 6E Iron-storage disorders HEA@HAE?D\I =J=NE= = I B= I E J JDA?=JAC HO B =? =II 11 J, =CA H@AH 1J EI?D=H=?JAHE A@ >O comment reviews reports deposited research refereed research interactions information

10 10 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= (a) YKL148C YJL045W Rv3318 AF0681 CEC03G5_1 DHSA_HUMAN RP128 PATTERN YKL148C YJL045W Rv3318 AF0681 CEC03G5_1 DHSA_HUMAN RP XrsXXrasXX EKTFDDVKTT DKTFEDVHVS KERYSRITVH KERYRNVEIN YKDQAHLNVA YGDLKHLKTF RNRYKDIKIN 510 DnhXXdNiDL 520 XsXaEaXXfL 530 XXAXXXffhA 540 XXRrESRGhH DRSMIWNSDL VETLELQNLL TCASQTAVSA ANRKESRGAH DKSMIWNSDL VETLELQNLL TCATQTAVSA SKRKESRGAH DKGKRFNTDL LEAIELGFLL ELAEVTVVGA LNRKESRGGH DKSRGFNTDL TSAIEIGYML DLAEVVAIGA LKRQESRGAH DKGLVWNSDL IETLELQNLL INATQTIVAA ENREESRGAH DRGMVWNTDL VETLELQNLM LCALQTIYGA EARKESRGAH DKSLIWNSDL VEALELDNLL DQALVTVCSA AARKESRGAH Conserved Arg554 Trp (b) Flavinadenine dinucleotide 1 Figure 7 Structures of the flavoprotein subunits of succinate dehydrogenase and fumarate reductase. (a) Domain diagram and alignment for the flavoprotein subunit of succinate dehydrogenase (SDHA). The column indicated by the arrow on the bottom corresponds to position 554 of DHSA_HUMAN. Sequences come from S. cerevisiae (YKL148W and YJL045W), M. tuberculosis (Rv3318), A. fulgidus (AF0681), Caenorhabditis elegans (CEC03G5_1), H. sapiens (DHSA_HUMAN) and R. prowazekii (RP128). Colors are as in Figure 1. (b) Ribbon diagram of the flavoprotein subunit of fumarate reductase (E. coli) - a very close homolog of SDH Fp (Z-score 175.8). The structure comes from the Protein Data Bank (code: 1FUMA). Flavin adenine dinucleotide can be seen (in space-filling representation) in the middle of the structure and Thr494 is similarly indicated at the right-hand end of the bottom-most helix (1). Arg554 occupies this position in DHSA_HUMAN.

11 (a) TYPH_HUMAN TYPH_MYCPI MJ0667 EC PATTERN XXXaXXXShR haxxxhgtfd XaEXaXXXsX XXXXXsgrXa XrXXjffafG TYPH_HUMAN GCKVPMISGR GLGHTGGTLD KLESIPGFNV IQSPEQMQVL LDQAGCCIVG TYPH_MYCPI DLGVAKLSGR GLGFTGGTID KLESINVNTD IDLKNS-KKI LNIANMFIVG MJ0667 GLKIPKTSSR AITSAAGTAD VVEVLTRVDL TIEEIK-RVV KETNGCMVWG EC4382 GGYIPMISGR GLGHTGGTLD KLESIPGFDI FPDDNRFREI IKDVGVAIIa Semi-conserved Gly145 Arg Conserved Gly153 Ser (b) 2 1 Figure 8 Domain diagram and structure of thymidine phosphorylase (TP). (a) Domain diagram and partial alignment for thymidine phosphorylase. The columns indicated by arrows at the bottom correspond to positions 145 and 153 of TYPH_HUMAN. Sequences are obtained from H. sapiens (TYPH_HUMAN), Mycoplasma pyrum (TYPH_MYCPI), Methanococcus jannaschii (MJ0667) and E. coli (EC4382). Colors are as in Figure 1. (b) Ribbon diagram of TP (E. coli). Structure from the Protein Data Bank (code: 2TPT). Space-filling representations show a sulfate ion (center) (3) and two conserved glycines (left), the lower of which (1) aligns with Gly145 in TYPH_HUMAN and the other (2) with Gly153 in TYPH_HUMAN. 3 comment reviews reports deposited research refereed research interactions information

12 12 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= CEY39A3C_83_D CT4964 YJR135W-A DDP_HUMAN PATTERN XsXfXXXXXX rxoaxsfaxx EssKXrfpXX ahofspacdr KCfXsXXg-X CEY39A3C_83_D MDSA--DPQL NRFLQQ-LQA ETQRQKFTEQ VHTLTGRCWD VCFADYRPPS CT4964 MSDFENLSGN DKELQEFLLI EKQKAQVNAQ IHEFNEICWE KCIGKPS--T YJR135W-A SDLASLDDTS KKEIATFLEG ENSKQKVQMS IHQFTNICFK KCVESVND-S DDP_HUMAN SSSAAGLGAV DPQLQHFIEV ETQKQRFQQL VHQMTELCWE KCMDKPG--P PATTERN rlssxxexcf XNCVpRFaDT sxxixpxfxp X CEY39A3C_83_D KMDGKTQTCI QNCVNRMIDA SNFMVEHLSK M CT4964 KLDHATETCL SNCVDRFIDT SLLITQRFAQ M YJR135W-A NLSSQEEQCL SNCVNRFLDT NIRIVNGLQN T DDP_HUMAN KLDSRAEACF VNCVERFIDT SQFILNRLEQ T Codon-39 frameshift Codon-49 frameshift Conserved Cys66 Trp Figure 9 Domain diagram and complete alignment for Tim8p. The columns indicated by the two arrows on the right correspond to positions 39 and 49 of DDP_HUMAN. Sequences are obtained from C. elegans (CEY39A3C_83_D), D. melanogaster (CT4964), H. sapiens (DDP_HUMAN) and S. cerevisiae (YJR135W-A). Colors are as in Figure 1. FH CHAIIELA C=EJ E > =J=NE= =? B HAB FOH= E@= MA= AII E E BAHE H E >I! =? B BH=J=NE FH JAE?=KIAI = KF B EH E JDA =JHEN IF=?AI B JDA )I EH =??K K =JAI EJ? FAJAI MEJD?=J= =IA B H DO@H CA FAH NE@A B H I DO@H NO H=@E?= I A 0 A! 0 0 I?= A@HA=?JELA NOCA IFA?EAIJD=J?= =JJ=? J, ) A >H= A EFE@I?=H> DO@H=JAI FH JAE I =CA JDA A JEHA NE@=JELA FD IFD HO =JE IOIJA AIFA?E= O JDA DECD O LK AH=> A EH IK BKH?A JAHI 6DA ID HJ=CA B AI JHAIK JBH B H =JE B KJ= JFH JAE I >KJH=JDAHBH ANF= IE B=/))HAFA=JE JDABEHIJE JH B JDA BH=J=NE CA A 6DEI HAFA=J EI >A EALA@ J B H?= E A@4 JAHBAHAMEJD JH= I?HEFJE!! ;BDF ;, 9 JDA BH=J=NE D C E OA=IJ E JAH=?JI MEJD JDA OA=IJ E JAH A@E=JAFAFJE@=IA?J ;!"+J MAH =JHENEH??A FAJEJE!! H = EH D A IJ=IEI E E = JOFA BH=J=NE J? JH ABB KN * JD FH JA OJE?? A=L=CALE= H1 2? F E DA F J 052% 5I? F E A >H= A JH=BBE? E C H C=HA AA@A@B HJDA =JKHABH=J=NE FH JAE J =HHELA =J =JE E JDA =JHEN E EJI FH FAH? B H =JE 1H ABB JDAEH IK BKH? KIJAHJH= I F HJAH)J F; 4!+ ) EIIA IA KJ=JE E )>?>% H D)*+% JDADK = D C B)J F 1 A" AJ D=I >AA E F E?=JA@E : E A@IE@AH > =IJE?= A H@AH? IA O HA =JA@ J HEA@HAE?D\I =J=NE= ECKHA IK =HE AI JDA IAGKA?A FDO CA AJE?? JANJ B H JDEI F=JD CA E??D= CA ANFAHE A J= IJHK? =HA =L=E => A IJ=JA I!#!$ 0 0A /?) 5 EJD = KI?HEFJE FHAF=H=JE B H A >H= AFH JAE I? A=H KJ=JE B= I E = ANJH=?A K =H JECDJ JKH >AJMAA JH= I A >H= ADA )F=EH B?=JE JH= IF HJAHI J; J ;2 "+E OA=IJ? JH IEH E B KNE J JDA 6DEI JDAH D= B B EH D A IJ=IEI? = I A=IE O D=LA=H AE E A@IE@AH > =IJE? = A E= Hereditary spastic paraplegia 0AHA@EJ=HOIF=IJE?F=H=F ACE=052 =? =II11=IIA > O@EI H@AH EI?D=H=?JAHE A@>OFH CHAIIELA KIK= OIALAHA MAH ANJHA AH=JE BJDA C=N I B JDA?A JH= AHL KI IOIJA MDE A JDA?A HA =E E J=?J 1 DAHEJ=?A?= >A=KJ I E = J =KJ I = HA?AIIELA H: E A@ 5 A?=IAI B052HAIK JBH KJ= JE I E JDA CA A B H F=H=F ACE = K? A=H AJ= FH JA=IA E? K@E C = AJE =J F IEJE %&" MDE?D?=KIAI=BH= AIDEBJJD=JA E E =JAI$ BJDAFH JAE =@A E AE IAHJE =JF IEJE & B JDAF=H=F ACE?, ) MDE?D?HA=JAI=BH= AIDEBJHAIK JE CE JHK?=JE BJDA =IJ#%HAIE@KAI BJDEI%'# HAIE@KAFH JAE!% )I ID M E ECKHA JDAHA =HA LAHO BAM MA? IAHLA@F IEJE IE JDA@A AJA@#% HAIE@KAJ=E E F OE CJD=J JDEI =O>A=? F=H=JELA O@EI H@AHA@F=HJ BJDAFH JAE EIIA IA KJ=JE ID=LA>AA B DK = F=H=F A CE 6DEI FH JAE HAIA > AI JDHAA OA=IJ FH JAE I MDE?D BK?JE =I?D=FAH E I H FH JA=IAI )BC!F ;-4%+ 4?=F ; 4&'+ ; AF ;24 "9 6DAOF=HJE?EF=JAE HA?O? E CJDA? F A JI B? F AN8 )62 IO JD=IA =I MA =I E EJI =IIA > O 6DA B 4&'+ = AKFJDA =@A IE A JHEFD IFD=J=IA ))) FH JA=IA? F AN MDE?D EI A >A@@A@E JDAE AH A >H= AB=?E CJDA =JHEN ;24 "9 JDA E ))) FH JA=IA? F AN MDE?DB=?AIJDAE JAH A >H= AIF=?A 6DAOA=IJ )))FH JA=IA? F ANEIEJIA BHACK =JA@>OJM FH DE>EJE FH JAE I 2D> ;/4! + 2D> ;/4!+!& 2=H=F ACE D CI = = C KIJ JDAOA=IJF=H= CI

13 ABC7_HUMAN RP205 YMR301C PATTERN LXXYrshXXK 270 XisiLhfLNX Figure 10 Domain diagram and partial alignment for the Fe-S cluster transporter Atm1p. The column indicated by the arrow at the bottom corresponds to position 400 of ABC7_HUMAN. Sequences are obtained from H. sapiens (ABC7_HUMAN), R. prowazekii (RP205) and S. cerevisiae (YMR301C). Colors are as in Figure 1. )BC!F 4?=F ; AF KIJ = IJ?AHJ=E O ANEIJ DK = FH DE>EJE I =O>AANFA?JA@=IMA 2 E J KJ=JE I E? IAHLA@ HACE I B JDAIA FH JAE I?= >A ANFA?JA@ J?=KIA EIIA IA KJ=JE I =JE = JHK?=JE IJD=J ME = I A=@J DAHA@EJ=HOIF=IJE?F=H=F ACE= Discussion 6DA FH?AII C CA JOFE?= O FH?AA@I JDH KCD JDHAA IJ=CAI BEHIJ HA? C EJE B IJ=JA AE? K@E =FFE C BJDAHA =JA@ KJ=JE I A K?E@=JE B JDA >E?DA E?= >E FDOIE?= A?D= EI A=@E CJ JDA@EIA=IAFDA JOFA 5E? A?A = A E=FH LE@AI JDA? =IIE? AN= F A 1 JDA?=IA JDAHA =HA I 1!' 16 2 " 9756 # MA>IEJAI =? F=H=> A CH ME C K >AH B KJ=JE I & )I = H 0 JDA?=KI=JELA KJ=JE I =HA J A?AII=HE O? BE A@ J = IE C A FH CCA A HALA J JDA K? A=HLAHIKIJDA CA A J O JDAHA EI A J A =FFE C >AJMAA KJ=JE I H ALA MD A CA AI = F=HJE?K A@@EIA=IAA JEJO 6DKI A=?D@EIA=IAIFA?JHK =O? H J IALAH= IAJI B KJ=JE I A=?D IAJ =BBA?JE C A FH JAE HFH JAE IK>K EJ >LE KI O KJ=JE IE J J4 ) 280 GQsfIfiXhL 290 XhfMffhXsh 300 axxjsfxvgd ABC7_HUMAN LKTYETASLK STSTLAMLNF GQSAIFSVGL TAIMVLASQG IVAGTLTVGD RP205 LQAYEKSATK ITNSLSILNI GQDVIISLGL VSLMILSVNA INQNKMMVGD YMR301C LMNYRDSQIK VSQSLAFLNS GQNLIFTTAL TAMMYMGCTG VIGGNLTVGD Conserved Ile400 Met J H4 JAE IJD=J=BBA?J CA AANFHAI IE ME = I F JA JE= OD=LAF AE JH FE?ABBA?JI 6DAHAIK JIFHAIA JA@DAHA=@@HAIIJDAJDEH@IJ=CA CCA AJE?@EIA=IA = A OJDA?D=H=?JAHE =JE FDA JOFA =J JDA A?K =H ALA MEJD = LEAM J ANF =E E C EJI >E?DA E?= A?D= EI 1 FHE?EF A JDA =FFH =?D?= >A =FF EA@ J = O KJ=JA@ FH C CA A 9DA IJHK?JKH= E B H =JE EI =L=E => A JDA AN=?J A?D= EI B@EIA=IA?=KI=JE =O>A=I?AHJ=E => A=JJDA A?K =H ALA A>O A= I B?=HABK OJ=HCAJA@ ANFAHE A JI ) BKHJDAH ANJA IE B JDEI >=IE? M A@CA =FFH =?D EAIE JDA@EHA?JE B A?K =HAL KJE )IMA ME ID M A IAMDAHA K FK> EIDA@ >IAHL=JE I JDA IAJI B D CI =IIA > A@ KIE CFHE H >=IA@FH BE AIFH LE@A=HE?DI KH?A BFDO CA AJE? E B H =JE J O ID EJ >A F IIE> A J I AJ?D KJJDADEIJ HO BJDA@ALA F A J B@EBBAHA J>E?DA E?= =?DE AHEAI EJ ID = I >A F IIE> A J AIJ=> EID MDE?D F=HJI BJDAFH JAE I=HA IJ?HEJE?= J BK?JE JDA>=IEI B = E =?E@ IAGKA?A? IAHL=JE? HHA =JA@ MEJD JDA IJHK?JKH=? JANJI M A@CAC=E A@>OJDA=FFH =?D@AI?HE>A@DAHAD=I >LE KI =FF E?=JE J > JDJDA@E=C = KJ=JE D=I >AA?D=H=?JAHE A@ JDA AN=?J comment reviews reports deposited research refereed research interactions information

14 14 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= YER017C YPR024W YMR089C bsubtilis-ftsh hum paraplegin hum parapleg_ins XF PATTERN alxkrxkrar XfhpXLLrXE XasXXpfXXa fxxxxxjxg- -gxrxxxxxx XXD YER017C LLTKNLDKVD LVAKELLRKE AITREDMIRL LGPRPFKE-- --RNEAFEKY LDP YPR024W LLTKKNVELH RLAQGLIEYE TLDAHEIEQV CKGEKLDKLK TSTNTVVEGP DSD YMR089C LLKEKAEDVE KIAQVLLKKE VLTREDMIDL LGKRPFPE-- --RNDAFDKY LND bsubtilis-ftsh ILTENRDKLE LIAQTLLKVE TLDAEQIKHL IDHGTLPE-- --RNFSDDEK NDD paraplegin VLQDNLDKLQ ALANALLEKE VINYEDIEAL IGPPPHGP-- --KKMIAPQR WID paraplegin_ins VLQDNLDKLQ ALANALLEKE VIN XF0093 ILADNLDKLH AMSQLLLQYE TIDAPQIDAI MEGREPPPPV GWGKPSDNGS DDD Figure 11 Domain diagram and partial alignment for the mitochondrial AAA-proteases. Sequences are obtained from H. sapiens (paraplegin and paraplegin_ins containing the adenine insertion), B. subtilis (bsubtilis-ftsh), Xylella fastidiosa (XF0093) and S. cerevisiae (YER017C, YPR024W and YMR089C). Colors are as in Figure 1. =JKHA BJDA=II?E=JA@E AIIEI M MEJDFHA?EIE 6DEI D=I = >A=HE C KF?D E?A B JDAH=FO = MI = K?D HAAN=?JFH C IEIJD= =?D=H=?JAHE =JE IE F O=I I=O A 1 =@@EJE JDAE B H =JE BH IAGKA?A = EC A JID=IFHA@E?JELAF MAH KJ=JE I JOAJHA? H@A@ E JDA EJAH=JKHA ECDJJKH KF=J AOF IEJE IE I A BJDA FH JAE I M J >A =BBA?JA@ I?=HHOE C IK?D?D= CAI ECDJ >A = AHJA@ J JDA F IIE> A D=H BK? IAGKA?AI J= A MD=JALAH FHA?=K JE =HO A=IKHAIIAA =FFH FHE=JA JAJD=JIK>IJEJKJE I E JDA DK = IAGKA?A JD=J =J?D = E =?E@ HAIE@KAI B =J JDA? C?=JE I E J=N E?= JIAGKA?AI=HA AII E A OJ FH LAD=H BK JD=? F AJA O LA IK>IJEJKJE I 6DEI =FF E?=JE B E B H OCH ME E F HJ=?A=I=?GKEIEJE B=@@E JE = IE C A K? A JE@AF O HFDEI 5 2@=J=>A? AI E?HA=IE C O? AM F=H= CI HJD CI =HA =@@A@ J JDA E C JDA =JKHA B JDA =BBA?JA@ FH JAE JDA BHAGKA?O B??KH HA?A I EJ =O>AF IIE> AJ H=JJA FJI=JH=JE HCA AJDAH=FO 6DAM H HAF HJA@DAHAHAFHAIA JI=FHA E E =HO LAHLEAM B JDA -LA JK= O = AND=KIJELA IKHLAO ID >A? F AJA@? JE K KI O KF@=JA@ =@A FK> E? O =L=E => A 6D=J ME HAGKEHA FHA?EIA?D=H=?JAHE =JE B = O HA KJ=JE I=IMA =IANF= IE BJDA@=J=>=IA B FH JAE FH BE IJHK?JA@KIE C 5K?DABB Materials and methods Yeast mitochondrial protein database (YMPD) 9A?HA=JA@=@=J=>=IA B "!OA=IJ FH JAE I KIE C>E?DA E?= AOM H@IA=H?DAIB H M FH?AIIAI BH JDA 5=??D=H O?AI /A A,=J=>=IA " JDA K E?D1 B H =JE +A JAHB H2H JAE 5AGKA?AI " JDA;A=IJ2H JA A,=J=>=IA "! EJ*)5- "" >O EJ HE C JDA?KHHA J EJAH=JKHA -=?D A >AH B JDEI IAJ B FH JAE I EI?D=H=?JAHE A@ >O =J A=IJ A FHE H >=IA@ FH BE A JD=JHAFHAIA JIJDA IJ? IAHLA@HACE I )I AI J KIA =?= E?= F AN 1 MA D=LA IK>IJEJKJA@ JDA CA =IA FH JAE IK>K EJIBH 4 = AHE?= = J E EJE= E AJDAIAFH BE AI Developing prior-based profiles 2HE H >=IA@FH BE AI JDAFHE?EF= J IKIA@E JDEIM H HAFHAIA J AL KJE =HE O? IAHLA@ IAGKA?A >=IA@ BK? JE =E I?A?HA=JA@ A=?D FH BE A?= >A KIA@ J

15 IA=H?D = =L=E => E = =JJA FJ J?=JA = D C KIIAGKA?A =J?DAI MDE?DE E@A=?=IAI? HHA IE C AFH =E I BD C KIIAGKA?AIEIJDA K JEF O= EC A@KIE CJDAFH BE A=I = JA F =JA 6DA IAJ B K JEF O = EC A@ AI =E > = MI FKJ=JELA BK?JE = =IIEC A JI B H FHALE KI O K E@A JEBEA@ FH JAE I DECD ECDJI AO? IAHLA@ HAIE@KAI B A >AHI B = D C KI IAJ BFH JAE I )I AI >A? A =L=E => A KH IAJ B FH BE AI?= E@A JEBO JDA =@@E JE = D CIMEJDDECDIA The profile-defining set E C IAJ MEJD = ME@A J=N E? IFHA=@ ID >A FJE = B H?=JE C@EIJ= JD CIBH =I = OIFA?EAI =I F IIE> A 1@A= FH BE AI D=LA E C IAJ? F IA@ B A FH JAE A=?D BH = AK =HO JA = =H?D=A = /H= F IEJELA>=?JAHEK AC=JELA>=?JAHEK A OA=IJ FH JAE 6?HA=JA E C IAJ B H A=?D FH BE A MA AIJ=> EIDA@ = IKFAHIAJ B F JA JE= B= E O A >AHIKIE C* )56IA=H?DAI "# =C=E IJ KH*E A?K =H - CE AAHE C 4AIA=H?D +A JAH * -4+ = CA 5MEII 2H J "$ -=?D E@A JEBEA@ OA=IJ FH JAE IAHLAI=I=[IAA@\E EJE= E E CFH JAE B H= * )56 IA=H?D 6DA?KJ BB I? HAI =HA IAJ =J = ANFA?J=JE L= KA B- `$ 7BE JAHIB H M? F ANEJO HACE I "% H JDAIA * )56 DEJI MA IA A?JA@ JDA E E C IAJ B =NE K J=N E? IFHA=@ 1 I A?=IAI * )56 B=E I J?=JA IAGKA?A D CI JD=J CHA=J O BH JDA IAA@ FH JAE 9A JDA KIA@ = EJAH=JELA FH?A@KHA J CA AH=JA = FH BE A KIE = E? FH CH= E C J =NE E AJDAE B H =JE? JA J HIK?D?=IAI JDAE EJE= FH BE AEIHK =C=E IJJDA= CA = E?FH CH= E C 6DA JDA ANJDECDAIJI? HE C A >AHBH =@EBBAHA J E C@ EI=@@A@J JDA@ABE E C IAJ 9AEJAH=JA@JDEIFH?AIIK JE JDAE@A= J=N E?IFHA=@ M=I =?DEALA@ H JDA E B H =JE? JA J B JDA FH BE FFA@>A MJA = E =?E@AGKEL= A?EAI "& Expanding the set of profile homologs?a = FH BE A EI >KE J MA =JJA FJ J = IAGKA?AI ID=HE C JDEI =E 6DEI A >O DAKHEIJE? HAND=KIJELA=FFH =?DAI 1 JDADAKHEIJE?=FFH =?DJDA FH BE AIA=H?DAI* -4+\I= CA 2H J>OBE JAHE CJDA =HCAH@=J=>=IAIKIE C* )56MEJD= ANFA?J=JE L= KA?KJ BB B- ` B MA@>O=ID HJ E CFH BE A IA=H?D 1 JDAAND=KIJELA=FFH =?D JDAFH BE AIA=H?DAIJDA = CA H JDA?KHHA J LAHIE B 5MEII 2H J KIE CID HJ E C@O = E?FH CH= E C Multiple alignment sets -=?DFH BE K JEF A= EC A JB H= OIAJ BFH JAE IJD=J? J=E EJ 6DAFH BE AI O= EC JD IAIK>HACE I B=FH JAE JD=JJDAO =J?D 6DAIAHACE IE? HF H=JAJDA IJ? IAHLA@= E =?E@F IEJE I= CJDAIAGKA?AI JD=J = A KF JDA FH BE E C IAJ 9A D=LA?D E C IAJI JD=J? J=E JDA ID HJAIJ E B H =JELA FH JAE IAGKA?A E H@AH J =NE E A JDA?D=?A B C IE C =E FH BE A > A?JI ) CAH IAGKA?A E E CIAJ ECDJ = A=I ECDJ ODECDAH I? HE CFH BE A>O JDA =@@EJE B = BAM?=H> NO H = E JAH E = HAIE@KAI >KJ O =J JDA HEI B EIIE C I ECDJ O ID HJAH A >AHI B JDAIAJMDA JDAFH BE AEIKIA@J IA=H?DJDA@=J=>=IAI Homologous structures from the Protein Data Bank 9A H KJE A O IA=H?D JDA 4+5* 2H JAE,=J= *= "' B H F JA JE= IJHK?JKH= D CI 2H BE A =J?DAIMEJD I? HAI => LA=HAHAJ=E = EC JDAFH BE A =J?DA@ HACE J =E 6DAIAFH BE A JKH= = EC A JI?= >A LEIK= E A@ E 4=I # E =CAI>KE JKIE C I?HEFJ # # Additional data files 6DA B ME C =@@EJE BE AI =HA =L=E => A MEJD JDEI F=FAH E A? F AJA = EC A JI B H JDA FH BE A? LAHA@ HACE I B JDA IAGKA?AI ID M E ECKHA ECKHA ECKHA! ECKHA " ECKHA # ECKHA $ ECKHA % ECKHA & ECKHA ' ECKHA ECKHA Acknowledgements We thank Greg McAllister for helpful discussions of transmembrane protein structures. This work was partially supported by US Department of Energy Grant DE-FG02-98ER62558 and NSF Grant DBI References 1. Das S, Smith, TF: Identifying nature s protein Lego set. In Advances in Protein Chemistry. Edited by Richards FM, Eisenberg DS, Kim PS. San Diego: Academic Press; 2000: Lang BF, Burger G, O Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW: An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 1997, 387: Taanman JW: The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999, 1410: Leonard JV, Schapira AH: Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 2000, 355: Mitochondrial disorders [ 6. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca 2+ responses. Science 1998, 280: Skulachev VP: Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 2001, 26: Schapira AH: Mitochondrial disorders. Biochim Biophys Acta 1999, 1410: Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I: Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci USA 1991, 88: Chomyn A, Martinuzzi A, Yoneda M, Daga A, Hurko O, Johns D, Lai ST, Nonaka I, Angelini C, Attardi G: MELAS mutation in mtdna binding site for transcription termination factor causes defects in protein synthesis and in respiration but no comment reviews reports deposited research refereed research interactions information

16 16 Genome Biology Vol 2 No 6 2 =IJAHAHAJ= change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci USA 1992, 89: Riordan-Eva P, Harding AE: Leber s hereditary optic neuropathy: the clinical relevance of different mitochondrial DNA mutations. J Med Genet 1995, 32: Brown MD, Voljavec AS, Lott MT, MacDonald I, Wallace DC: Leber s hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB J 1992, 6: Zeviani M, Bertagnolio B, Uziel G: Neurological presentations of mitochondrial diseases. J Inherit Metab Dis 1996, 19: Trounce I, Neill S, Wallace DC: Cytoplasmic transfer of the mtdna nt 8993 T G (ATP6) point mutation associated with Leigh syndrome into mtdna-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc Natl Acad Sci USA 1994, 91: Santorelli FM, Shanske S, Macaya A, DeVivo DC, DiMauro S: The mutation at nt 8993 of mitochondrial DNA is a common cause of Leigh s syndrome. Annl Neurol 1993, 34: Marsac C, Benelli C, Desguerre I, Diry M, Fouque F, De Meirleir L, Ponsot G, Seneca S, Poggi F, Saudubray JM, et al.: Biochemical and genetic studies of four patients with pyruvate dehydrogenase E1 alpha deficiency. Hum Genet 1997, 99: Dahl H-HM: Getting to the nucleus of mitochondrial disorders: Identification of respiratory chain-enzyme genes causing Leigh syndrome. Am J Hum Genet 1998, 63: Tiranti V, Hoertnagel K, Carrozzo R, Galimberti C, Munaro M, Granatiero M, Zelante L, Gasparini P, Marzella R, Rocchi M, et al.: Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 1998, 63: Poyau A, Buchet K, Bouzidi MF, Zabot MT, Echenne B, Yao J, Shoubridge EA, Godinot C: Missense mutations in SURF1 associated with deficient cytochrome c oxidase assembly in Leigh syndrome patients. Hum Genet 2000, 106: Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E, Munnich A, Rotig A: Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995, 11: Parfait B, Chretien D, Rotig A, Marsac C, Munnich A, Rustin P: Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 2000, 106: Nishino I, Spinazzola A, Hirano M: Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999, 283: Miyadera K, Dohmae N, Takio K, Sumizawa T, Haraguchi M, Furukawa T, Yamada Y, Akiyama S: Structural characterization of thymidine phosphorylase from human placenta. Biochem Biophys Res Commun 1995, 212: Brown NS, Bicknell R: Thymidine phosphorylase, 2-deoxy-Dribose and angiogenesis. Biochem J 1998, 334: Jin H, May M, Tranebjaerg L, Kendall E, Fontan G, Jackson J, Subramony SH, Arena F, Lubs H, Smith S, et al.: A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 1996, 14: Koehler CM, Leuenberger D, Merchant S, Renold A, Junne T, Schatz G: Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci USA 1999, 96: Tranebjaerg L, Hamel BC, Gabreels FJ, Renier WO, Van Ghelue M: A de novo missense mutation in a critical domain of the X- linked DDP gene causes the typical deafness-dystonia-optic atrophy syndrome. Eur J Hum Genet 2000, 8: Koehler CM, Merchant S, Schatz, G: How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem Sci 1999, 24: Leuenberger D, Bally NA, Schatz G, Koehler CM: Different import pathways through the mitochondrial intermembrane space for inner membrane proteins. EMBO J 1999, 18: Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P: Aconitase and mitochondrial ironsulphur protein deficiency in Friedreich ataxia. Nat Genet 1997, 17: Delatycki MB, Williamson R, Forrest SM: Friedreich ataxia: an overview. J Med Genet 2000, 37: Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, Wells RD: Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y Triplex structures from Friedreich s ataxia. Mol Cell 1999, 3: Branda SS, Yang ZY, Chew A, Isaya G: Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet 1999, 8: Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM: Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 1999, 8: Stultz CM, White JV, Smith TF: Structural analysis based on state-space modeling. Prot Sci 1993, 2: White JV, Stultz CM, Smith TF: Protein classification by stochastic modeling and optimal filtering of amino acid sequences. Math Biosci 1994, 119: Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R, et al.: Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998, 93: Steglich G, Neupert W, Langer T: Prohibitins regulate membrane protein degradation by the m-aaa protease in mitochondria. Mol Cell Biol 1999, 19: Online Mendelian Inheritance in Man [ 40. Mitochondrial Project Chervitz SA, Hester ET, Ball CA, Dolinski K, Dwight SS, Harris MA, Juvik G, Malekian A, Roberts S, Roe T, et al.: Using the Saccharomyces Genome Database (SGD) for analysis of protein similarities and structure. Nucleic Acids Res 1999, 27: Mewes HW, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lemcke K, Mannhaupt G, Pfeiffer F, Schuller C, et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res 2000, 28: Hodges PE, McKee AH, Davis BP, Payne WE, Garrels JI: The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res 1999, 27: de Pinto B, Malladi SB, Altamura N: MitBASE pilot: a database on nuclear genes involved in mitochondrial biogenesis and its regulation in Saccharomyces cerevisiae. Nucleic Acids Res 1999, 27: Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215: Bairoch A, Apweiler R: The SWISS-PROT protein sequence data bank and its supplement TrEMBL in Nucleic Acids Res 1999, 27: Wootton JC, Federhen S: Analysis of compositionally biased regions in sequence databases. Methods Enzymol 1996, 266: Smith RF, Smith TF: Automatic generation of primary sequence patterns from sets of related protein sequences. Proc Natl Acad Sci USA 1990, 87: Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28: Sayle RA, Milner-White EJ: RASMOL: biomolecular graphics for all. Trends Biochem Sci 1995, 20: Kraulis PJ: MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 1991, 24: Merritt E, Bacon D: Raster3D: photorealistic molecular graphics. Methods Enzymol 1997, 277: Amino acid classes [

Survey of Human Mitochondrial Diseases Using New Genomic/Proteomic Tools

Survey of Human Mitochondrial Diseases Using New Genomic/Proteomic Tools Boston University OpenBU http://open.bu.edu Department of Pharmacology and Experimental TherapeuticsMED: Pharmacology and Experimental Therapeutics Papers 2001-06-01 Survey of Human Mitochondrial Diseases

More information

Rick Van Kooten, Indiana Univ., FNAL Users Meeting, HEPAP Session, June 27, 2000

Rick Van Kooten, Indiana Univ., FNAL Users Meeting, HEPAP Session, June 27, 2000 HEACC 2001 Eric Colby Stanford Linear Accelerator Center 2575 Sand Hill Road MS 07 Menlo Park, CA 94025 ecolby@slac.stanford.edu 9D=J FDOIE?I GKAIJE I JEL=JA JDA ANJ E A=H + E@AH Rick Van Kooten, Indiana

More information

råáp=== = = ======råáîéêëáíó=çñ=pìêêéó

råáp=== = = ======råáîéêëáíó=çñ=pìêêéó råáp=== = = ======råáîéêëáíó=çñ=pìêêéó Discussion Papers in Economics MIND THE GAP: A COMMENT ON AGGREGATE PRODUCTIVITY AND TECHNOLOGY By M. Ali Choudhary (University of Surrey) & Vasco J. Gabriel (University

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

2 Genome evolution: gene fusion versus gene fission

2 Genome evolution: gene fusion versus gene fission 2 Genome evolution: gene fusion versus gene fission Berend Snel, Peer Bork and Martijn A. Huynen Trends in Genetics 16 (2000) 9-11 13 Chapter 2 Introduction With the advent of complete genome sequencing,

More information

M i t o c h o n d r i a

M i t o c h o n d r i a M i t o c h o n d r i a Dr. Diala Abu-Hassan School of Medicine dr.abuhassand@gmail.com Mitochondria Function: generation of metabolic energy in eukaryotic cells Generation of ATP from the breakdown of

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Leber s Hereditary Optic Neuropathy

Leber s Hereditary Optic Neuropathy Leber s Hereditary Optic Neuropathy Dear Editor: It is well known that the majority of Leber s hereditary optic neuropathy (LHON) cases was caused by 3 mtdna primary mutations (m.3460g A, m.11778g A, and

More information

Research Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis

Research Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis http://genomebiology.com/2001/2/6/research/0019.1 Research Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis )C EAI =5A

More information

What are mitochondria?

What are mitochondria? What are mitochondria? What are mitochondria? An intracellular organelle. There are 100 to 1000s of mitochondria/cell. Most mitochondria come from the mother. Mitochondria have their own DNA Mitochondria

More information

Minireview Rhesus factors and ammonium: a function in efflux?

Minireview Rhesus factors and ammonium: a function in efflux? http://genomebiology.com/2001/2/3/reviews/1010.1 Minireview Rhesus factors and ammonium: a function in efflux? 7MA K@AMEC E? L 9EH, HEI4A JI?D= @9 B* H AH )@@HAII A JHK B H A K =H>E CEA@AH2B = A ->AHD=H@

More information

Research Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes

Research Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes http:genomebiology.com200128research0029.1 Research Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes @E =C E?D ) 5 K@AH V :E= K K= W ;K E C5DE

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Research The =/> fold uracil DNA glycosylases: a common origin with diverse fates

Research The =/> fold uracil DNA glycosylases: a common origin with diverse fates http://genomebiology.com/2000/1/4/research/0007.1 Research The =/> fold uracil DNA glycosylases: a common origin with diverse fates )H=LE @= @-KCA A8 E )@@HAII =JE = +A JAHB H*E JA?D CO1 B H =JE =JE =

More information

Chapter 30 Design and Analysis of

Chapter 30 Design and Analysis of Chapter 30 Design and Analysis of 2 k DOEs Introduction This chapter describes design alternatives and analysis techniques for conducting a DOE. Tables M1 to M5 in Appendix E can be used to create test

More information

Introduction to Bioinformatics Integrated Science, 11/9/05

Introduction to Bioinformatics Integrated Science, 11/9/05 1 Introduction to Bioinformatics Integrated Science, 11/9/05 Morris Levy Biological Sciences Research: Evolutionary Ecology, Plant- Fungal Pathogen Interactions Coordinator: BIOL 495S/CS490B/STAT490B Introduction

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

NVLAP Proficiency Test Round 14 Results. Rolf Bergman CORM 16 May 2016

NVLAP Proficiency Test Round 14 Results. Rolf Bergman CORM 16 May 2016 NVLAP Proficiency Test Round 14 Results Rolf Bergman CORM 16 May 2016 Outline PT 14 Structure Lamp Types Lab Participation Format for results PT 14 Analysis Average values of labs Average values of lamps

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Hereditary Hemochromatosis

Hereditary Hemochromatosis Hereditary Hemochromatosis The HFE gene Becky Reese What is hereditary hemochromatosis? Recessively inherited Iron overload disorder Inability to regulate iron absorption No cure http://www.consultant360.com/article/genetics-gastroenterology-what-you-need-know-part-1

More information

NACC Uniform Data Set (UDS) FTLD Module

NACC Uniform Data Set (UDS) FTLD Module NACC Uniform Data Set (UDS) FTLD Module Data Template For FOLLOW-UP Visit Packet Version 2.0, January 2012 Copyright 2013 University of Washington Created and published by the FTLD work group of the ADC

More information

Scale in the biological world

Scale in the biological world Scale in the biological world 2 A cell seen by TEM 3 4 From living cells to atoms 5 Compartmentalisation in the cell: internal membranes and the cytosol 6 The Origin of mitochondria: The endosymbion hypothesis

More information

In-Depth Assessment of Local Sequence Alignment

In-Depth Assessment of Local Sequence Alignment 2012 International Conference on Environment Science and Engieering IPCBEE vol.3 2(2012) (2012)IACSIT Press, Singapoore In-Depth Assessment of Local Sequence Alignment Atoosa Ghahremani and Mahmood A.

More information

# shared OGs (spa, spb) Size of the smallest genome. dist (spa, spb) = 1. Neighbor joining. OG1 OG2 OG3 OG4 sp sp sp

# shared OGs (spa, spb) Size of the smallest genome. dist (spa, spb) = 1. Neighbor joining. OG1 OG2 OG3 OG4 sp sp sp Bioinformatics and Evolutionary Genomics: Genome Evolution in terms of Gene Content 3/10/2014 1 Gene Content Evolution What about HGT / genome sizes? Genome trees based on gene content: shared genes Haemophilus

More information

The Mitochondrion. Renáta Schipp

The Mitochondrion. Renáta Schipp The Mitochondrion Renáta Schipp Origin Endosymbiothic theory the Mitochondria (and Chloroplastids) were originally free-living cells they lived in an endosymbiosis with a hostcell organellfree anaerobe

More information

NACC Uniform Data Set (UDS) FTLD Module

NACC Uniform Data Set (UDS) FTLD Module NACC Uniform Data Set (UDS) FTLD Module Data Template For Initial Visit Packet Version 2.0, January 2012 Copyright 2013 University of Washington Created and published by the FTLD work group of the ADC

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

7.06 Cell Biology EXAM #3 April 21, 2005

7.06 Cell Biology EXAM #3 April 21, 2005 7.06 Cell Biology EXAM #3 April 21, 2005 This is an open book exam, and you are allowed access to books, a calculator, and notes but not computers or any other types of electronic devices. Please write

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

The Minimal-Gene-Set -Kapil PHY498BIO, HW 3

The Minimal-Gene-Set -Kapil PHY498BIO, HW 3 The Minimal-Gene-Set -Kapil Rajaraman(rajaramn@uiuc.edu) PHY498BIO, HW 3 The number of genes in organisms varies from around 480 (for parasitic bacterium Mycoplasma genitalium) to the order of 100,000

More information

Subsystem: Succinate dehydrogenase

Subsystem: Succinate dehydrogenase Subsystem: Succinate dehydrogenase Olga Vassieva Fellowship for Interpretation of Genomes The super-macromolecular respiratory complex II (succinate:quinone oxidoreductase) couples the oxidation of succinate

More information

H STO RY OF TH E SA NT

H STO RY OF TH E SA NT O RY OF E N G L R R VER ritten for the entennial of th e Foundin g of t lair oun t y on ay 8 82 Y EEL N E JEN K RP O N! R ENJ F ] jun E 3 1 92! Ph in t ed b y h e t l a i r R ep u b l i c a n O 4 1922

More information

74 ).20;51 /;),20)4 )+ /; % #& %`! MMM FF H= M F * 5 1) ; ) 5 1) ; *; *)+6-42; ;5)++0)41,- 1,7+-,+; )

74 ).20;51 /;),20)4 )+ /; % #& %`! MMM FF H= M F * 5 1) ; ) 5 1) ; *; *)+6-42; ;5)++0)41,- 1,7+-,+; ) 74 ).20;51 /;),20)4 )+ /; % #& %`! MMM FF H= M F * 5 1) ; ) 5 1) ; 1 6-4.-4- +-*; -261 91600-1+ *)+6-42; 41 12 2 ;5)++0)41,- 1,7+-,+;6 5 1+ 20 520 12)5-) )+618)61 1 /)5641+ 7+ 5) +- 5 4AIA=H?D+A JAH7 ELAHIEJO

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

S E R U M O S M O L A L I T Y. Group B: hypothyroid animals. Group C: hyperthyroid animals

S E R U M O S M O L A L I T Y. Group B: hypothyroid animals. Group C: hyperthyroid animals 74 ).20;51 /;),20)4 )+ /; " ## "!`"" MMM FF H= M F +1 5-,4 * 1 8)5 24-551 ), :;6 +1 4- -)5- ),60-60;4 1,.7 +61,AF=HJ A J B2=JD FDOIE CO A@E?= 7 ELAHIEJO B @ 2 = @ 6DA=E BJDAFHAIA JE LAIJEC=JE IM=IJ AN=

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Lecture 15: Realities of Genome Assembly Protein Sequencing

Lecture 15: Realities of Genome Assembly Protein Sequencing Lecture 15: Realities of Genome Assembly Protein Sequencing Study Chapter 8.10-8.15 1 Euler s Theorems A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing

More information

Bioinformatics Practical for Biochemists

Bioinformatics Practical for Biochemists Bioinformatics Practical for Biochemists Andrei Lupas, Birte Höcker, Steffen Schmidt WS 2013/14 03. Sequence Features Targeting proteins signal peptide targets proteins to the secretory pathway N-terminal

More information

Midterm Review Guide. Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer.

Midterm Review Guide. Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer. Midterm Review Guide Name: Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer. 4. Fill in the Organic Compounds chart : Elements Monomer

More information

Mitochondrial DNA Medicine

Mitochondrial DNA Medicine DOI 10.1007/s10540-007-9032-5 ORIGINAL PAPER Mitochondrial DNA Medicine Salvatore DiMauro Ó The Biochemical Society 2007 Abstract The small, maternally inherited mitochondrial DNA (mtdna) has turned out

More information

råáp=== = = ======råáîéêëáíó=çñ=pìêêéó

råáp=== = = ======råáîéêëáíó=çñ=pìêêéó råáp=== = = ======råáîéêëáíó=çñ=pìêêéó Discussion Papers in Economics CONNECTING PEOPLE By M. Ali Choudhary (University of Surrey) DP 04/04 Department of Economics University of Surrey Guildford Surrey

More information

Pushbutton Units and Indicator Lights

Pushbutton Units and Indicator Lights Insert labels and insert caps Clear, illuminated and indicator lights can be fitted with insert labels and caps for identification purposes. These labels and caps are made of a semi-transparent molded

More information

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc.

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc. TCA Cycle Voet Biochemistry 3e Voet Biochemistry 3e The Electron Transport System (ETS) and Oxidative Phosphorylation (OxPhos) We have seen that glycolysis, the linking step, and TCA generate a large number

More information

L-NAME 10 mg/kg Control. N=5~6 * p<0.05. AG 10 mg/kg AG 5 mg/kg. * AG 20 mg/kg. Normal days

L-NAME 10 mg/kg Control. N=5~6 * p<0.05. AG 10 mg/kg AG 5 mg/kg. * AG 20 mg/kg. Normal days 74 ).20;51 /;),20)4 )+ /; " ## " &!`&!$ MMM FF H= M F / 47 1 )* 4 657* 7+01 ) 0 1501 ) 5 )6 ) / 51 * 6) -7+01 ),7) 4 -.-, /- 75 1641+ :1,-1,-8-2 - 6.,-:64) 57.)6-5,17 1,7+-,+ 16151 4)65 =,AF=HJ A J B2D=H

More information

1 64,7+61 5= E?O =JAE J IFA?EBE?= JECA E = AHCE?DOFAHIA IEJELEJOHA=?JE MDE?D?=??KHKF? J=?J B= HC= EI MEJDI= E?O EJ

1 64,7+61 5= E?O =JAE J  IFA?EBE?= JECA E = AHCE?DOFAHIA IEJELEJOHA=?JE MDE?D?=??KHKF? J=?J B= HC= EI MEJDI= E?O EJ 74 ).20;51 /;),20)4 )+ /; # #$ 5KFF # &'` MMM FF H= M F 4)160-0 9 *)- -4 ) )-/-. *7+09),! 0 9 5+07 615! * *)+ 0)75 5 1 2-0 +0 )+0 - / 0)0 2 + 674-51/ 1.1+) +-.5) 1+; )6-1 6-4) +-1,15-)5-5.60-9-4/)564 1

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

Genetic defects causing mitochondrial respiratory chain disorders and disease

Genetic defects causing mitochondrial respiratory chain disorders and disease Human Reproduction, Vol. 15, (Suppl. 2), pp. 28-43, 2000 Genetic defects causing mitochondrial respiratory chain disorders and disease John Christodoulou 1 Western Sydney Genetics Program, Royal Alexandra

More information

Mitochondria: Transducers or Time Bombs?

Mitochondria: Transducers or Time Bombs? Australian Biochemist Mitochondria: Transducers or Time Bombs? Hans-Henrik Dahl and David R. Thorburn The Murdoch Children s Research Institute, Royal Children s Hospital, Parvkille, Vic 3052 Mitochondria

More information

Colon. Duodenum 0,02 0,015 0,01 0,005. control PEMF exposure (wk) 0,02 0,015 0,01 0,005. control PEMF exposure (wk)

Colon. Duodenum 0,02 0,015 0,01 0,005. control PEMF exposure (wk) 0,02 0,015 0,01 0,005. control PEMF exposure (wk) 74 ).20;51 /;),20)4 )+ /; # #$! " `"! MMM FF H= M F )5 7*) 9 1 5 ) /1 ) 1 *-4 9 )4)5 ) 4 2)9 1+ 1! / 4 + ; ) )6; ) " 2 60 4 55.1 6-456161) +- 5.+) ) ).6-427 5)61 / - -+64 )/ -61+.1-,2-.1 /)564 1 6-561

More information

TRANSLATION: How to make proteins?

TRANSLATION: How to make proteins? TRANSLATION: How to make proteins? EUKARYOTIC mrna CBP80 NUCLEUS SPLICEOSOME 5 UTR INTRON 3 UTR m 7 GpppG AUG UAA 5 ss 3 ss CBP20 PABP2 AAAAAAAAAAAAA 50-200 nts CYTOPLASM eif3 EJC PABP1 5 UTR 3 UTR m 7

More information

The discovery of the important role of vagal nerves in control of gastric and pancreatic secretion by IP Pavlov in 1890

The discovery of the important role of vagal nerves in control of gastric and pancreatic secretion by IP Pavlov in 1890 74 ).20;51 /;),20)4 )+ /;! #" 5! &!`'& MMM FF H= M F 2 + 674-5 674-60-0156 4;./)564 1 6-561 ) 0 4-5 ),60-2 150+ 641*761 6-7+1,)61.60-14 *1 /;),4- )61 6-48 755;56-.EHIJ,AF=HJ A J B A@E?E A 7 ELAHIEJO-H

More information

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor Reading: Sec. 19.1 Electron-Transfer Reactions in Mitochondria (listed subsections only) 19.1.1 Electrons are Funneled to Universal Electron Acceptors p. 692/709 19.1.2 Electrons Pass through a Series

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers Quiz 1 Advanced Topics in RNA and DNA DNA Microarrays Aptamers 2 Quantifying mrna levels to asses protein expression 3 The DNA Microarray Experiment 4 Application of DNA Microarrays 5 Some applications

More information

Informatica e diritto, Vol. XIII, 2004, n. 1-2, pp

Informatica e diritto, Vol. XIII, 2004, n. 1-2, pp Informatica e diritto, Vol. XIII, 2004, n. 1-2, pp. 281-302 7 @AHIJ= @E CE B H =JE IAA E C>AD=LE H= @JDA AA@I B1J= E= AC= KIAHIE =??AIIE C AC= EJAH=JKHA /1-84) 2-47/1-1 57 )4; 6DA AC= EJAH=JKHA\IKIAHI?

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. 1 Influences of crystal lattice contacts on Pol η structures. a. The dominant lattice contact between two hpol η molecules (silver and gold) in the type 1 crystals. b. A close-up view of the hydrophobic

More information

GUIDE. mirfieldshow.com. Sponsored by. Orange Design Studio.

GUIDE. mirfieldshow.com. Sponsored by. Orange Design Studio. GUIDE mfhw.m Sp b O D S. Fh F m F C 1 3 5 7 9 b f M MIRFIELD COAT OF ARMS Th m w ff Fb 26, 1935. Th m f h mp f h w m h m. Th p S Jh H, wh pp h Pp h 13h h b f h ph hh. Hv W H Wh h? O, h wm mh, hp h f h.

More information

$ 2 =JA IK> L=I?K =HHEI B=?J H FH BE A MDE?D CAIE F =JA AJ=CCHAC=JE EJIA B LA F OFDA HE?DA

$ 2 =JA IK> L=I?K =HHEI B=?J H FH BE A MDE?D CAIE F =JA AJ=CCHAC=JE EJIA B LA F OFDA HE?DA 74 ).20;51 /;),20)4 )+ /; $ #% " $`$ $ MMM FF H= M F 4;5 )9) ) )9+ ; 5 ),4, 24; ) + -5 1 1-91+ /7 1 6 ),) - /7 1 )475-91+ " 4 476 6 /7 1! -..-+65. 8-2 ) 6) 61 :1,) 65 2 )6- -6572-4 :1,-24,7+61 ),)//4-/)61

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

wi& be demonstrated. Ilexbert Arkro,

wi& be demonstrated. Ilexbert Arkro, 8( P C B E L B A k> D A 10 O N O k jk \ CH 12 B R Z G kxj7~53> P C C 20 A A P O P 3 x G H kv 7 B5! &$ L N M k APO HM M B / Bk K j R 3(330 C BH& B k C j 2jB A D C & Dk M L 12 H R > APO k L E k M k APO M

More information

BIOINFORMATICS LAB AP BIOLOGY

BIOINFORMATICS LAB AP BIOLOGY BIOINFORMATICS LAB AP BIOLOGY Bioinformatics is the science of collecting and analyzing complex biological data. Bioinformatics combines computer science, statistics and biology to allow scientists to

More information

Objective: You will be able to justify the claim that organisms share many conserved core processes and features.

Objective: You will be able to justify the claim that organisms share many conserved core processes and features. Objective: You will be able to justify the claim that organisms share many conserved core processes and features. Do Now: Read Enduring Understanding B Essential knowledge: Organisms share many conserved

More information

$ 1 64,7+61?= M = JA?D CE?= M 9D=JEI?= M IHA O E B H =JE >AE BH ACA AH=JE J JDA ANJE A? K EJO HE =I = HACE.

$ 1 64,7+61?= M  = JA?D CE?= M 9D=JEI?= M  IHA O E B H =JE >AE BH ACA AH=JE J JDA ANJE A? K EJO HE =I = HACE. 74 ).20;51 /;),20)4 )+ /; # #$ 5KFF #` MMM FF H= M F 4ALEAM=HJE? A 0-1 41+0-61 5 -*- 9 2-5+0- +)., 764)+-761+) 5 ) -:) 2 -.) 7 61,15+12 1 )4;4-5-)4+024 -+6 +) 9 -,/- +A JHAB H2D=H =? C IO= @2DOJ JDAH=FO

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

SUPPLEMENTARY EXPERIMENTAL PROCEDURES

SUPPLEMENTARY EXPERIMENTAL PROCEDURES SUPPLEMENTARY EXPERIMENTAL PROCEDURES Yeast two-hybrid assay The yeast two hybrid assay was performed according to described in Assmann (2006) [01] and was performed with the baits SCOCO (2-82) and SCOCO

More information

Cell Organelles. a review of structure and function

Cell Organelles. a review of structure and function Cell Organelles a review of structure and function TEKS and Student Expectations (SE s) B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized

More information

Importance of Protein sorting. A clue from plastid development

Importance of Protein sorting. A clue from plastid development Importance of Protein sorting Cell organization depend on sorting proteins to their right destination. Cell functions depend on sorting proteins to their right destination. Examples: A. Energy production

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS MATHEMATICS OF COMPUTATION Volume 67, Number 223, July 1998, Pages 1207 1224 S 0025-5718(98)00961-2 THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS C. CHARNES AND U. DEMPWOLFF Abstract.

More information

! 1 64,7+61 E?E I =HAE F HJ= J? B=?J HIE HAJD= A O = O A O =JE?FH JAE I 1JEI M JD=J EIFHAIA JE JDA?A JH= AHL KI IOIJA MDAHAEJH=EIAIA A?JHE?= =?J

! 1 64,7+61 E?E I =HAE F HJ= J? B=?J HIE HAJD= A O = O A O =JE?FH JAE I 1JEI M JD=J EIFHAIA JE JDA?A JH= AHL KI IOIJA MDAHAEJH=EIAIA A?JHE?= =?J 74 ).20;51 /;),20)4 )+ /; $ #%!`"% MMM FF H= M F ) 6-155-;4-9 4 ; )5 1. 7- +-.-:64)+- 7 )4F0 60-,7 )6 4; -..-+6. 1 +1 5 L!2 6)5517 +0) - 5,AF=HJ A J B*E FDOIE?I 9H? =M A@E?= 7 ELAHIEJO 9H? =M 2 = @ )>>HALE=JE

More information

One of the great challenges in molecular biology is to understand the mechanisms by

One of the great challenges in molecular biology is to understand the mechanisms by Mitochondrial Myopathies Genetic Mechanisms Michael R. Rose, MD NEUROLOGICAL REVIEW One of the great challenges in molecular biology is to understand the mechanisms by which a particular genetic defect

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

2011 The Simple Homeschool Simple Days Unit Studies Cells

2011 The Simple Homeschool Simple Days Unit Studies Cells 1 We have a full line of high school biology units and courses at CurrClick and as online courses! Subscribe to our interactive unit study classroom and make science fun and exciting! 2 A cell is a small

More information

Graduate Funding Information Center

Graduate Funding Information Center Graduate Funding Information Center UNC-Chapel Hill, The Graduate School Graduate Student Proposal Sponsor: Program Title: NESCent Graduate Fellowship Department: Biology Funding Type: Fellowship Year:

More information

GO ID GO term Number of members GO: translation 225 GO: nucleosome 50 GO: calcium ion binding 76 GO: structural

GO ID GO term Number of members GO: translation 225 GO: nucleosome 50 GO: calcium ion binding 76 GO: structural GO ID GO term Number of members GO:0006412 translation 225 GO:0000786 nucleosome 50 GO:0005509 calcium ion binding 76 GO:0003735 structural constituent of ribosome 170 GO:0019861 flagellum 23 GO:0005840

More information

E *71,1 / 7 61, )6,1/16) 1*4) / ),* >O E?D=A A I * 5 =O'' 8EHCE E=2 OJA?D E?1 ELAHIEJO )6DAIEI5K>

E *71,1 / 7 61, )6,1/16) 1*4) / ),* >O E?D=A A I * 5 =O'' 8EHCE E=2 OJA?D E?1 ELAHIEJO )6DAIEI5K> )5)6A?D E?= A H= @K &%$ *KE @E C K JE,EI?EF E A K JE. H =J,ECEJ= E>H=HEAI7IE C + KIJAHI= @*K? AJI E?D=A A I = C AO4AIA=H?D+A JAH 0= FJ 8EHCE E= )KCKIJ''% =JE = )AH =KJE?I= @ 5F=?A)@ E EIJH=JE = C AO4AIA=H?D+A

More information

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods Cell communication channel Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu SEQUENCE STRUCTURE DNA Sequence Protein Sequence Protein Structure Protein structure ATGAAATTTGGAAACTTCCTTCTCACTTATCAGCCACCT...

More information

Reconstructing Mitochondrial Evolution?? Morphological Diversity. Mitochondrial Diversity??? What is your definition of a mitochondrion??

Reconstructing Mitochondrial Evolution?? Morphological Diversity. Mitochondrial Diversity??? What is your definition of a mitochondrion?? Reconstructing Mitochondrial Evolution?? What is your definition of a mitochondrion?? Morphological Diversity Mitochondria as we all know them: Suprarenal gland Liver cell Plasma cell Adrenal cortex Mitochondrial

More information

Comparing whole genomes

Comparing whole genomes BioNumerics Tutorial: Comparing whole genomes 1 Aim The Chromosome Comparison window in BioNumerics has been designed for large-scale comparison of sequences of unlimited length. In this tutorial you will

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Glycogen. Glucose-6-Phosphate. Pyruvate. Acetyl-CoA

Glycogen. Glucose-6-Phosphate. Pyruvate. Acetyl-CoA 74 ).20;51 /;),20)4 )+ /; " ##! #'`#!$ MMM FF H= M F HECE = =HJE? AI - 5) - - +)*4-4) 2 +0), -4 6 ) +-.4-50 0 07) / 2 56-4 9 + 56) -; 56-2),4) 21,7+61. ; +)4,1) 15+0-1) + 2)415.1 818 ),1 51 1+ 4-57 65,AF=HJ

More information

Regulatory Sequence Analysis. Sequence models (Bernoulli and Markov models)

Regulatory Sequence Analysis. Sequence models (Bernoulli and Markov models) Regulatory Sequence Analysis Sequence models (Bernoulli and Markov models) 1 Why do we need random models? Any pattern discovery relies on an underlying model to estimate the random expectation. This model

More information

Lecture 7 Cell Biolog y ٢٢٢ ١

Lecture 7 Cell Biolog y ٢٢٢ ١ Lecture 7 ١ Mitochondria ٢ Mitochondria Mitochondria are the energy factories of the cells. The energy currency for the work that animals must do is the energy-rich molecule adenosine triphosphate (ATP).

More information

Evolutionary Use of Domain Recombination: A Distinction. Between Membrane and Soluble Proteins

Evolutionary Use of Domain Recombination: A Distinction. Between Membrane and Soluble Proteins 1 Evolutionary Use of Domain Recombination: A Distinction Between Membrane and Soluble Proteins Yang Liu, Mark Gerstein, Donald M. Engelman Department of Molecular Biophysics and Biochemistry, Yale University,

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 13 Moving Proteins into Membranes and Organelles Copyright 2013 by W. H. Freeman and Company

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Protein structure forces, and folding

Protein structure forces, and folding Harvard-MIT Division of Health Sciences and Technology HST.508: Quantitative Genomics, Fall 2005 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane Protein structure forces, and folding

More information

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t I n t e r n a t i o n a l E l e c t r o n i c J o ue rlne am l e not fa r y E d u c a t i o n, 2 0 1 4, 1 37-2 ( 16 ). H o w R e a d i n g V o l u m e A f f e c t s b o t h R e a d i n g F l u e n c y

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2013 Week3: Blast Algorithm, theory and practice Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and Systems Biology

More information

Extranuclear Inheritance. Dr.Shivani Gupta, PGGCG-11, Chandigarh

Extranuclear Inheritance. Dr.Shivani Gupta, PGGCG-11, Chandigarh Extranuclear Inheritance Dr.Shivani Gupta, PGGCG-11, Chandigarh Commonly defined as transmission through the cytoplasm (or things in the cytoplasm, including organelles) rather than the nucleus Generally

More information

Early History up to Schedule. Proteins DNA & RNA Schwann and Schleiden Cell Theory Charles Darwin publishes Origin of Species

Early History up to Schedule. Proteins DNA & RNA Schwann and Schleiden Cell Theory Charles Darwin publishes Origin of Species Schedule Bioinformatics and Computational Biology: History and Biological Background (JH) 0.0 he Parsimony criterion GKN.0 Stochastic Models of Sequence Evolution GKN 7.0 he Likelihood criterion GKN 0.0

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

PROTEIN EVOLUTION AND PROTEIN FOLDING: NON-FUNCTIONAL CONSERVED RESIDUES AND THEIR PROBABLE ROLE

PROTEIN EVOLUTION AND PROTEIN FOLDING: NON-FUNCTIONAL CONSERVED RESIDUES AND THEIR PROBABLE ROLE PROTEIN EVOLUTION AND PROTEIN FOLDING: NON-FUNCTIONAL CONSERVED RESIDUES AND THEIR PROBABLE ROLE O.B. PTITSYN National Cancer Institute, NIH, Laboratory of Experimental & Computational Biology, Molecular

More information

Comparative genomics: Overview & Tools + MUMmer algorithm

Comparative genomics: Overview & Tools + MUMmer algorithm Comparative genomics: Overview & Tools + MUMmer algorithm Urmila Kulkarni-Kale Bioinformatics Centre University of Pune, Pune 411 007. urmila@bioinfo.ernet.in Genome sequence: Fact file 1995: The first

More information