Chaotifying 2-D piecewise linear maps via a piecewise linear controller function

Size: px
Start display at page:

Download "Chaotifying 2-D piecewise linear maps via a piecewise linear controller function"

Transcription

1 Chaotifying 2-D piecewise linear maps via a piecewise linear controller function Zeraoulia Elhadj 1,J.C.Sprott 2 1 Department of Mathematics, University of Tébéssa, (12000), Algeria. zeraoulia@mail.univ-tebessa.dz and zelhadj12@yahoo.fr. 2 Department of Physics, University of Wisconsin, Madison, WI 53706, USA. sprott@physics.wisc.edu. April 13, 2009 Abstract A simple method for chaotifying piecewise linear maps of the plane using a piecewise linear controller function is given. A domain of chaos in the resulting controlled map was determined exactly and rigorously. Keywords: Chaotification, piecewise linear map, piecewise linear controller, Lyapunov exponents. 1 Introduction A large number of physical and engineering systems have been found to be governed by a class of continuous or discontinuous maps [ ] where the discrete-time state space is divided into two or more compartments with different functional forms of the map separated by borderlines [ ]. The theory of discontinuous maps is in its infancy, with some progress reported for 1-D and n-d discontinuous maps in [ ], but these results are restrictive and cannot be obtained in the general n- dimensional context [12]. On the other hand, there are many works that focus on the chaotic behavior of discrete mappings. For example, they have 1

2 been studied as control and anti-control (chaotification) schemes using Lyapunov exponents [ ] to prove the existence of chaos in n-dimensional discrete dynamical systems with the goal of making in some way an originally non-chaotic dynamical system chaotic or enhancing the chaos already existing in such a system. The goal of this work is to present a simple method for chaotifying an arbitrary 2-D piecewise linear map (continuous or not) using a simple piecewise linear controller function, which allows one to determine exactly and rigorously which portion of the bifurcation parameter space is characterized by the occurrence of chaos in the resulting controlled map using the standard definition of the Lyapunov exponents as the test for chaos. Consider an arbitrary piecewise-linear map f : D D, where D = D 1 D 2 R 2, defined by: AX k + b if X k D 1 X k+1 = f (X k )= (1) BX k + c if X k D 2, µ b11 b 12 b 21 b 22 µ a11 a where A = 12 and B = are 2 2 real matrices, and µ a 21 a 22 µ µ b1 c1 xk b = and c = are 2 1 real vectors, and X b 2 c k = R 2 y 2 k is the state variable. The Lyapunov exponents of a 2-D dynamical system are defined as follow: Let us consider the system X k+1 = f(x k ),X k R 2,k =0, 1, 2,... (2) where the function f : R 2 R 2 is the vector field associated with system (2). Let J (X k ) be its Jacobian evaluated at X k R 2, k =0, 1, 2,..., and define the matrix: T n (X 0 )=J(X n 1 ) J (X n 2 )...J (X 1 ) J (X 0 ). (3) Moreover, let J i (X 0,n) be the modulus of the i th eigenvalue of the n th matrix T n (X 0 ), where i =1, 2 and n =0, 1, 2,... Now, the Lyapunov exponents for a two-dimensional discrete-time system are defined by: ³ l i (X 0 ) = lim ln J i (X 0,n) 1 n,i=1, 2. (4) n + 2

3 Roughly speaking, chaotic behavior implies sensitive dependence on initial conditions, with at least one positive Lyapunov exponent. Based on this definition, we give in the next section a rigorous proof of chaos in the resulting controlled map (7) obtained below via a simple piecewise linear controller function applied to the map (1). While many algorithms for calculating the Lyapunov exponents would give spurious results for piecewise-linear discontinuous maps, the algorithm used here and given in [21] works for such cases. It essentially takes a numerical derivative and gives the correct result provided that is taken to ensure that the perturbed and unperturbed orbits lie on the same side of the discontinuity. This may require an occasional small perturbation into a region that is not strictly accessible to the orbit. 2 The chaotification method using a piecewise linear controller function The main idea of the chaotification method presented in this work is to introduce a piecewise linear controller function in such a way, such that the two (in both partitions) system matrices of the resulting controlled piecewise linear system have the same trace and determinant (invariants) and hence the same eigenvalues. Indeed, the controlled map is given by: AX k + b if X k D 1 g (X k )= + U (X k ), (5) BX k + c if X k D 2 where the controller function U (X k ) is defined by: U (X k )= Ã (b 11 + b 22 a 11 a 22 ) x k ³ a12 a 21 +b 11 a 22 b 11 b 22 +b 12 b 21 +a 22 b 22 a 2 22 a 12 x k µ 0 0 The controlled system (5) is now given by: if X k D 2.! if X k D 1 (6) 3

4 QX k + b if X k D 1 g (X k )= (7) BX k + c if X k D 2, where the matrix Q is given by: Ã! b 11 + b 22 a 22 a 12 Q = b 11 a 22 b 11 b 22 +b 12 b 21 +a 22 b 22 a 2. (8) 22 a 12 a 22 The Jacobian matrix of the controlled map (7) is given by: Q if X k D 1 J (X k )= (9) B if X k D 2. It is shown in [22] that if we consider a system x k+1 = f (x k ),x k Ω R n, such that: kf 0 (x)k = p λ max (f(x) T f(x)) N<+, (10) with a smallest eigenvalue of f(x) T f(x) that satisfies: λ min f 0 (x) T f 0 (x) θ>0, (11) where N 2 θ, then, for any x 0 Ω, all the Lyapunov exponents at x 0 are located inside ln θ, ln N,thatis, 2 ln θ 2 l i (x 0 ) ln N,i =1, 2,..., n, (12) where l i (x 0 ) are the Lyapunov exponents for the map f and k.k is the Euclidian norm in R n. We remark that J (X k ) given in (9) is not welldefined due to the discontinuity, but, since B and Q havethesameeigenvalues, then one has that kqk = kbk = p µ λ max (B T B). Because B T B = b b 2 21 b 11 b 12 + b 21 b 22 b 11 b 12 + b 21 b 22 b b 2 is at least a positive semi-definite matrix, 22 then all its eigenvalues are real and positive, i.e. λ max B T B λ min B T B 0. Hence the eigenvalues of B T B are given by: ½ λmax B T B = 1 2 b b b b d λ min B T B = 1 2 b b b b (13) 2 d, 4

5 where d = (b 11 + b 22 ) 2 +(b 12 b 21 ) 2 (b 12 + b 21 ) 2 +(b 11 b 22 ) 2 > 0 (14) pfor all b 11,b 12,b 21, and b 22. Condition (10) gives kf 0 (x)k = kbk = kqk = λmax (B T B)=N < +, because B and Q have the same eigenvalues. Condition (11) gives the inequality: θ 2 b b b b22 2 θ +(b11 b 22 b 12 b 21 ) 2 0, (15) with the condition θ< b b b b (16) 2 Since the discriminant of (15) is equal to d>0, then (11) holds when: θ λ max B T B, or θ λ min B T B. (17) The condition θ λ max B T B is impossible because of condition (16), so that θ must satisfy the condition: Now, if θ<λ min B T B = b b b b 2 22 d. (18) 2 ½ 2 <b b b b 2 22 < (b 11 b 22 b 12 b 21 ) 2 +1 (19) b 11 b 22 b 12 b 21 > 1, then λ min B T B > 1, i.e. θ =1, and one has: 0 <l i (x 0 ) ln N,i =1, 2, (20) i.e. the controlled map (7) converges to a hyperchaotic attractor for all parameters b 11,b 12,b 21, and b 22 satisfying (19). Finally, the following theorem is proved: Theorem 1 The piecewise linear controller function (6) makes the map (1) chaotic in the following case: ½ 2 <b b b b 2 22 < (b 11 b 22 b 12 b 21 ) 2 +1 (21) b 11 b 22 b 12 b 21 > 1. Finally, we note that Theorem 1 does not garanty the boundness of the resulting controlled map (7). This problem is still open for general piecewiselinear map and flows. 5

6 3 Example In this section, we make chaotic the following piecewise linear map using the above method: µ xk αy k +1 if y γx k 0 k f (x k,y k )= µ (22) xk + αy k +1 if y βx k < 0, k where α, β, and γ are bifurcation parameters. The map (22) is a special case AX k + b, if y k 0 ofthemap(1)sinceonecanrewriteitasf (X k )=, µ µ BX µ k + c, if y k < 0 1 α 1 α 1 where A =,B =, and b = c =, and the two γ 0 β 0 0 sub regions are: D 1 = {(x k,y k ) R 2 /y k 0} and D 2 = {(x k,y k ) R 2 /y k < 0}. Thus, the resulting controlled map is given by: µ µ µ 1 α xk 1 + if y β 0 y k 0 k 0 µ 1 α yk + x g (x k,y k )= µ µ µ = k βx 1 α xk 1 k sgn(y k ) + if y β 0 y k 0 k < 0, (23) which is the so called discrete butterfly presentedin[19],wheresgn(.) is the standard signum function that gives ±1 depending on the sign of its argument. For the controlled map (23), condition (21) becomes: Ã! β α > max p β 2 1, 1, β > 1. (24) β For illustration, assume that β < 1. Then we remark that β β 2 1 < 1 = 1 β β, and thus conditions (24) become β β 2 1 α > 1,β < 1. (25) β 6 =,

7 Figure 1: Regions of dynamical behaviors in the αβ-plane for the controlled map (23) with 2 β< 1 and <α< β β Using the obtained analytical results, Figure 1 shows that for 2 β< 1, and <α< +0.4, the controlled map (23) converges to bounded β β hyperchaotic attractors or unbounded orbits for α > 1. In this figure, β white indicates unbounded solutions, blue indicates periodic solutions, and red indicates chaotic solutions in the αβ-plane for the controlled map (23), where we use 5000 different initial conditions and 10 6 iterations for each point. A chaotic attractor for the case with α =0.6 and β = 2 is shown in Fig 2. On the other hand, it is necessary to verify the hyperchaoticity of the attractors by calculating both Lyapunov exponents using the formula: l 1 (x 0 )+ l 2 (x 0 )=ln det(j) =ln αβ averaged along the orbit where det(j) is the determinant of the Jacobian matrix. The result is shown in Fig. 3 for 0.4 α 0.9, with β = 2. 7

8 Figure 2: The new piecewise linear chaotic attractor obtained from the controlled map (23) with its basin of attraction in white for α =0.6, β= 2, and the initial condition x 0 = y 0 =

9 Figure 3: Variation of the Lyapunov exponents of the controlled map (23) versus the parameter 0.4 α 0.9, with β = 2, where the two vertical lines indicate the border between the montiened dynamical behaviors. 9

10 4 Conclusion A new simple chaotification method for piecewise linear maps of the plane via a piecewise linear controller function was presented. A rigorous proof of chaos in the resulting controlled map using the standard definition of the largest Lyapunov exponent was also given. References [1] A. N. Sharkovsky, L. O. Chua, Chaos in some 1 D discontinuous maps that appear in the analysis of electrical circuits, IEEE Trans. Circuits & Systems I, 1993, 40, [2] C. Li, On super-chaotifying discrete dynamical systems, Chaos, Solitons and Fractals, 2004, 21, [3] G. Chen, D. Lai, Making a discrete dynamical system chaotic: feedback control of lyapunouv exponents for discrete-time dynamical system, IEEE Trans. Circ. Syst.-I, 1997, 44, [4] G. H.Yuan, S. Banerjee, E. Ott, J. A.Yorke, Border collision bifurcations in the buck converter, IEEE Trans. Circuits & Systems I 45,1998, [5] G. M. Maggio, M.di Bernardo, M. P. Kennedy, Nonsmooth Bifurcations in a Piecewise-Linear Model of the Colpitts Oscillator, IEEE Trans. Circuits & Systems I, 2000, 8, [6] L. E. Kollar, G. Stepan, J. Turi, Dynamics of piecewise linear discontinuous maps, Int. J. Bifurcation and Chaos, 2004,14, [7] L. O. Chua, T. Lin, Chaos in digital filters, IEEE Trans. Circuits Syst.,1988, 35, [8] M. J. Ogorzalek, Complex behavior in digital filters, Int. J. Bifurcation and Chaos, 1992, 2(1), [9] O. Feely, L. O. Chua, Nonlinear dynamics of a class of analog-to-digital converters, Inter. J. Bifur.Chaos, 1992, 22,

11 [10] O. Feely, L. O. Chua, The effect of integrator leak in modulation, IEEE Trans. Circuits Syst-I, 1991, 38, [11] P. Jain, S. Banerjee, Border collision bifurcations in one-dimensional discontinuousmaps, Inter. J. Bifur.Chaos, 2003, 13, [12] P. S. Dutta, B. Routroy, S. Banerjee, S. S. Alam, Border Collision Bifurcations in n-dimensional Piecewise Linear Discontinuous Maps. To appear in Chaos, [13] R. Rajaraman, I. Dobson, S. Jalali, Nonlinear Dynamics and Switching Time Bifurcations of a Thyristor Controlled Reactor Circuit, IEEE Trans. Circuits & Systems I, 1996, 43, [14] S. Banerjee, G. C.Verghese (ed), Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control (IEEE Press, New York, USA) (2001). [15] S.Banerjee,E.Ott,J.A.Yorke,G.H.Yuan,Anomalousbifurcationsin dc-dc converters: borderline collisions in piecewise smooth maps, IEEE Power Electronics Specialists Conference, 1997, [16] S. Banerjee, S. Parui, A. Gupta, Dynamical Effects of Missed Switching in Current-Mode Controlled dc-dc Converters, IEEE Trans. Circuits & Systems II, 2004, 51, [17] T. K.Tse, Complex Behavior of Switching Power Converters (CRC Press, Boca Raton, USA) (2003). [18] X. F. Wang, G. Chen, On feedback anticontrol of discrete chaos. Int.J. Bifur. Chaos, 1999, 9: [19] Z. Elhadj, The discrete Butterfly, Chaos, Solitons & Fractals, to appear, [20] Z.Li,J.B.Park,Y.H.Joo,Y.H.Choi,G.Chen,Anticontrolofchaos for discrete TS fuzzy systems. IEEE Trans. Circ. Syst.-I, 2002, 49, [21] J. C. Sprott (2003), Chaos and Time-Series Analysis, Oxford University Press, Oxford. 11

12 [22] C. Li, G. Chen, Estimating the Lyapunov exponents of discrete systems, Chaos, 14 (2),

On the Dynamics of a n-d Piecewise Linear Map

On the Dynamics of a n-d Piecewise Linear Map EJTP 4, No. 14 2007 1 8 Electronic Journal of Theoretical Physics On the Dynamics of a n-d Piecewise Linear Map Zeraoulia Elhadj Department of Mathematics, University of Tébéssa, 12000, Algeria. Received

More information

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings Some explicit formulas of Lyapunov exponents for 3D quadratic mappings Zeraoulia Elhadj 1,J.C.Sprott 2 1 Department of Mathematics, University of Tébessa, (12002), Algeria. E-mail: zeraoulia@mail.univ-tebessa.dz

More information

A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors

A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors EJTP 5, No. 17 (2008) 111 124 Electronic Journal of Theoretical Physics A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors Zeraoulia Elhadj a, J. C. Sprott b a Department of Mathematics,

More information

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1567 1577 c World Scientific Publishing Company A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ Department

More information

On a conjecture about monomial Hénon mappings

On a conjecture about monomial Hénon mappings Int. J. Open Problems Compt. Math., Vol. 6, No. 3, September, 2013 ISSN 1998-6262; Copyright c ICSRS Publication, 2013 www.i-csrs.orgr On a conjecture about monomial Hénon mappings Zeraoulia Elhadj, J.

More information

A PROOF THAT S-UNIMODAL MAPS ARE COLLET-ECKMANN MAPS IN A SPECIFIC RANGE OF THEIR BIFURCATION PARAMETERS. Zeraoulia Elhadj and J. C.

A PROOF THAT S-UNIMODAL MAPS ARE COLLET-ECKMANN MAPS IN A SPECIFIC RANGE OF THEIR BIFURCATION PARAMETERS. Zeraoulia Elhadj and J. C. Acta Universitatis Apulensis ISSN: 1582-5329 No. 34/2013 pp. 51-55 A PROOF THAT S-UNIMODAL MAPS ARE COLLET-ECKMANN MAPS IN A SPECIFIC RANGE OF THEIR BIFURCATION PARAMETERS Zeraoulia Elhadj and J. C. Sprott

More information

ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL SYSTEMS

ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL SYSTEMS International Journal of Bifurcation and Chaos, Vol. 23, No. 12 (2013) 1350197 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413501976 ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL

More information

A Trivial Dynamics in 2-D Square Root Discrete Mapping

A Trivial Dynamics in 2-D Square Root Discrete Mapping Applied Mathematical Sciences, Vol. 12, 2018, no. 8, 363-368 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8121 A Trivial Dynamics in 2-D Square Root Discrete Mapping M. Mammeri Department

More information

Constructing Chaotic Systems with Total Amplitude Control

Constructing Chaotic Systems with Total Amplitude Control International Journal of Bifurcation and Chaos, Vol. 25, No. 10 (2015) 1530025 (14 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127415300256 Constructing Chaotic Systems with Total Amplitude

More information

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM International Journal of Bifurcation and Chaos, Vol. 23, No. 11 (2013) 1350188 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413501885 SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

More information

Boundedness of the Lorenz Stenflo system

Boundedness of the Lorenz Stenflo system Manuscript Click here to download Manuscript: Boundedness of the Lorenz-Stenflo system.tex Boundedness of the Lorenz Stenflo system Zeraoulia Elhadj 1, J. C. Sprott 1 Department of Mathematics, University

More information

Nonsmooth systems: synchronization, sliding and other open problems

Nonsmooth systems: synchronization, sliding and other open problems John Hogan Bristol Centre for Applied Nonlinear Mathematics, University of Bristol, England Nonsmooth systems: synchronization, sliding and other open problems 2 Nonsmooth Systems 3 What is a nonsmooth

More information

MULTISTABILITY IN A BUTTERFLY FLOW

MULTISTABILITY IN A BUTTERFLY FLOW International Journal of Bifurcation and Chaos, Vol. 23, No. 12 (2013) 1350199 (10 pages) c World Scientific Publishing Company DOI: 10.1142/S021812741350199X MULTISTABILITY IN A BUTTERFLY FLOW CHUNBIAO

More information

Multistability in symmetric chaotic systems

Multistability in symmetric chaotic systems Eur. Phys. J. Special Topics 224, 1493 1506 (2015) EDP Sciences, Springer-Verlag 2015 DOI: 10.1140/epjst/e2015-02475-x THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Multistability in symmetric

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

Chaotic behavior analysis based on corner bifurcations

Chaotic behavior analysis based on corner bifurcations Author manuscript, published in "Nonlinear Analysis: Hybrid Systems 3 (29) 543-55" Chaotic behavior analysis based on corner bifurcations D. Benmerzouk a,, J.P. Barbot b, a University of Tlemcen,Department

More information

Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system

Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system Nonlinear Dyn (2012) 69:1383 1391 DOI 10.1007/s11071-012-0354-x ORIGINAL PAPER Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system Keihui Sun Xuan Liu Congxu Zhu J.C.

More information

Study on Proportional Synchronization of Hyperchaotic Circuit System

Study on Proportional Synchronization of Hyperchaotic Circuit System Commun. Theor. Phys. (Beijing, China) 43 (25) pp. 671 676 c International Academic Publishers Vol. 43, No. 4, April 15, 25 Study on Proportional Synchronization of Hyperchaotic Circuit System JIANG De-Ping,

More information

Controlling Chaos in a State-Dependent Nonlinear System

Controlling Chaos in a State-Dependent Nonlinear System Electronic version of an article published as International Journal of Bifurcation and Chaos Vol. 12, No. 5, 2002, 1111-1119, DOI: 10.1142/S0218127402004942 World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijbc

More information

Recent new examples of hidden attractors

Recent new examples of hidden attractors Eur. Phys. J. Special Topics 224, 1469 1476 (2015) EDP Sciences, Springer-Verlag 2015 DOI: 10.1140/epjst/e2015-02472-1 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Review Recent new examples of hidden

More information

A Novel Hyperchaotic System and Its Control

A Novel Hyperchaotic System and Its Control 1371371371371378 Journal of Uncertain Systems Vol.3, No., pp.137-144, 009 Online at: www.jus.org.uk A Novel Hyperchaotic System and Its Control Jiang Xu, Gouliang Cai, Song Zheng School of Mathematics

More information

AN ELECTRIC circuit containing a switch controlled by

AN ELECTRIC circuit containing a switch controlled by 878 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1999 Bifurcation of Switched Nonlinear Dynamical Systems Takuji Kousaka, Member, IEEE, Tetsushi

More information

CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES

CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES International Journal of Modern Physics B Vol. 17, Nos. 22, 23 & 24 (2003) 4272 4277 c World Scientific Publishing Company CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES XIAO-SHU LUO Department

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

Bifurcation control and chaos in a linear impulsive system

Bifurcation control and chaos in a linear impulsive system Vol 8 No 2, December 2009 c 2009 Chin. Phys. Soc. 674-056/2009/82)/5235-07 Chinese Physics B and IOP Publishing Ltd Bifurcation control and chaos in a linear impulsive system Jiang Gui-Rong 蒋贵荣 ) a)b),

More information

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model Iranian Journal of Mathematical Chemistry, Vol. 6, No. 1, March 2015, pp. 81 92 IJMC Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model HOSSEIN KHEIRI 1 AND BASHIR NADERI 2 1 Faculty

More information

Rigorous prediction of quadratic hyperchaotic attractors of the plane

Rigorous prediction of quadratic hyperchaotic attractors of the plane Rigorous predition of quadrati hyperhaoti attrators of the plane Zeraoulia Elhadj 1, J. C. Sprott 2 1 Department of Mathematis, University of Tébéssa, 12000), Algeria. E-mail: zeraoulia@mail.univ-tebessa.dz

More information

Controlling a Novel Chaotic Attractor using Linear Feedback

Controlling a Novel Chaotic Attractor using Linear Feedback ISSN 746-7659, England, UK Journal of Information and Computing Science Vol 5, No,, pp 7-4 Controlling a Novel Chaotic Attractor using Linear Feedback Lin Pan,, Daoyun Xu 3, and Wuneng Zhou College of

More information

CHAOTIFYING FUZZY HYPERBOLIC MODEL USING ADAPTIVE INVERSE OPTIMAL CONTROL APPROACH *

CHAOTIFYING FUZZY HYPERBOLIC MODEL USING ADAPTIVE INVERSE OPTIMAL CONTROL APPROACH * International Journal of Bifurcation and Chaos, Vol. 14, No. 1 (24) 355 3517 c World Scientific Publishing Company CHAOTIFYING FUZZY HYPERBOLIC MODEL USING ADAPTIVE INVERSE OPTIMAL CONTROL APPROACH * HUAGUANG

More information

Crisis in Amplitude Control Hides in Multistability

Crisis in Amplitude Control Hides in Multistability International Journal of Bifurcation and Chaos, Vol. 26, No. 14 (2016) 1650233 (11 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127416502333 Crisis in Amplitude Control Hides in Multistability

More information

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters Vol 16 No 5, May 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(05)/1246-06 Chinese Physics and IOP Publishing Ltd Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with

More information

CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA S CIRCUIT

CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA S CIRCUIT Letters International Journal of Bifurcation and Chaos, Vol. 9, No. 7 (1999) 1425 1434 c World Scientific Publishing Company CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE

More information

Generalized-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal

Generalized-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal Commun. Theor. Phys. (Beijing, China) 44 (25) pp. 72 78 c International Acaemic Publishers Vol. 44, No. 1, July 15, 25 Generalize-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal

More information

Multistability in the Lorenz System: A Broken Butterfly

Multistability in the Lorenz System: A Broken Butterfly International Journal of Bifurcation and Chaos, Vol. 24, No. 10 (2014) 1450131 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127414501314 Multistability in the Lorenz System: A Broken

More information

Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Ćuk Switching Regulator

Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Ćuk Switching Regulator 448 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 4, APRIL 2000 Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Ćuk Switching Regulator

More information

Generating Chaotic Attractors With Multiple Merged Basins of Attraction: A Switching Piecewise-Linear Control Approach

Generating Chaotic Attractors With Multiple Merged Basins of Attraction: A Switching Piecewise-Linear Control Approach 198 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS VOL 50 NO 2 FEBRUARY 2003 Generating Chaotic Attractors With Multiple Merged Basins of Attraction: A Switching Piecewise-Linear

More information

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters Computers and Mathematics with Applications 59 (21) 3234 3244 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Adaptive

More information

Strange dynamics of bilinear oscillator close to grazing

Strange dynamics of bilinear oscillator close to grazing Strange dynamics of bilinear oscillator close to grazing Ekaterina Pavlovskaia, James Ing, Soumitro Banerjee and Marian Wiercigroch Centre for Applied Dynamics Research, School of Engineering, King s College,

More information

Stabilizing and Destabilizing Control for a Piecewise-Linear Circuit

Stabilizing and Destabilizing Control for a Piecewise-Linear Circuit 172 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 2, FEBRUARY 1998 Stabilizing and Destabilizing Control for a Piecewise-Linear Circuit Tadashi Tsubone

More information

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY Abstract:

More information

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA Experimental Characterization of Chua s Circuit Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated:

More information

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.3, pp , 2015

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.3, pp , 2015 International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304 Vol.8, No.3, pp 377-382, 2015 Adaptive Control of a Chemical Chaotic Reactor Sundarapandian Vaidyanathan* R & D Centre,Vel

More information

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY giuseppe.grassi}@unile.it

More information

Function Projective Synchronization of Discrete-Time Chaotic and Hyperchaotic Systems Using Backstepping Method

Function Projective Synchronization of Discrete-Time Chaotic and Hyperchaotic Systems Using Backstepping Method Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 111 116 c Chinese Physical Society Vol. 50, No. 1, July 15, 2008 Function Projective Synchronization of Discrete-Time Chaotic and Hyperchaotic Systems

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Is the Hénon map chaotic

Is the Hénon map chaotic Is the Hénon map chaotic Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology, Poland, galias@agh.edu.pl International Workshop on Complex Networks and Applications

More information

Applying Snapback Repellers in Ecology

Applying Snapback Repellers in Ecology Applying Snapback Repellers in Ecology Shu-Ming Chang 張書銘 Department of Applied Mathematics National Chiao Tung University December 11, 2010 Outline Model Generalized Resource Budget Model A Satake and

More information

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory INA TARALOVA-ROUX AND ORLA FEELY Department of Electronic and Electrical Engineering University

More information

Z. Elhadj. J. C. Sprott UDC

Z. Elhadj. J. C. Sprott UDC UDC 517. 9 ABOUT THE BOUNDEDNESS OF 3D CONTINUOUS-TIME QUADRATIC SYSTEMS ПРО ОБМЕЖЕНIСТЬ 3D КВАДРАТИЧНИХ СИСТЕМ З НЕПЕРЕРВНИМ ЧАСОМ Z. Elhaj Univ. f Tébessa 100), Algeria e-mail: zeraoulia@mail.univ-tebessa.z

More information

Dynamics of a System Associated with a Piecewise Quadratic Family

Dynamics of a System Associated with a Piecewise Quadratic Family Ciencia en Desarrollo, Vol. 7 No. ISSN 011-7488 Julio-Diciembre de 016, pp. 15-13 Dynamics of a System Associated with a Piecewise Quadratic Family Dinámica de un sistema asociado a una familia cuadrática

More information

Coexisting Hidden Attractors in a 4-D Simplified Lorenz System

Coexisting Hidden Attractors in a 4-D Simplified Lorenz System International Journal of Bifurcation and Chaos, Vol. 24, No. 3 (2014) 1450034 (12 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127414500345 Coexisting Hidden Attractors in a 4-D Simplified

More information

Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Bifurcations in Switching Converters: From Theory to Design

Bifurcations in Switching Converters: From Theory to Design Presented at Tokushima University, August 2008 Bifurcations in Switching Converters: From Theory to Design C. K. Michael Tse Department of Electronic and Information Engineering The Hong H Kong Polytechnic

More information

Anti-synchronization Between Coupled Networks with Two Active Forms

Anti-synchronization Between Coupled Networks with Two Active Forms Commun. Theor. Phys. 55 (211) 835 84 Vol. 55, No. 5, May 15, 211 Anti-synchronization Between Coupled Networks with Two Active Forms WU Yong-Qing ( ï), 1 SUN Wei-Gang (êå ), 2, and LI Shan-Shan (Ó ) 3

More information

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication 976 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 10, OCTOBER 1997 Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and

More information

Effect of various periodic forces on Duffing oscillator

Effect of various periodic forces on Duffing oscillator PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 351 356 Effect of various periodic forces on Duffing oscillator V RAVICHANDRAN 1, V CHINNATHAMBI 1, and S RAJASEKAR

More information

REVIEW ARTICLE. ZeraouliaELHADJ,J.C.SPROTT

REVIEW ARTICLE. ZeraouliaELHADJ,J.C.SPROTT Front. Phs. China, 2009, 4(1: 111 121 DOI 10.1007/s11467-009-0005- REVIEW ARTICLE ZeraouliaELHADJ,J.C.SPROTT Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian c Higher

More information

INTRICATE ASSET PRICE

INTRICATE ASSET PRICE Chapter 1 INTRICATE ASSET PRICE DYNAMICS AND ONE-DIMENSIONAL DISCONTINUOUS MAPS F. Tramontana, L. Gardini and F. Westerhoff * Department of Economics and Quantitative Methods, University of Urbino, Via

More information

USING DYNAMIC NEURAL NETWORKS TO GENERATE CHAOS: AN INVERSE OPTIMAL CONTROL APPROACH

USING DYNAMIC NEURAL NETWORKS TO GENERATE CHAOS: AN INVERSE OPTIMAL CONTROL APPROACH International Journal of Bifurcation and Chaos, Vol. 11, No. 3 (2001) 857 863 c World Scientific Publishing Company USING DYNAMIC NEURAL NETWORKS TO GENERATE CHAOS: AN INVERSE OPTIMAL CONTROL APPROACH

More information

Research Article Adaptive Control of Chaos in Chua s Circuit

Research Article Adaptive Control of Chaos in Chua s Circuit Mathematical Problems in Engineering Volume 2011, Article ID 620946, 14 pages doi:10.1155/2011/620946 Research Article Adaptive Control of Chaos in Chua s Circuit Weiping Guo and Diantong Liu Institute

More information

Ieee Transactions On Circuits And Systems I: Fundamental Theory And Applications, 2003, v. 50 n. 5, p

Ieee Transactions On Circuits And Systems I: Fundamental Theory And Applications, 2003, v. 50 n. 5, p Title Modeling, analysis, and experimentation of chaos in a switched reluctance drive system Author(s) Chau, KT; Chen, JH Citation Ieee Transactions On Circuits And Systems I: Fundamental Theory And Applications,

More information

SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS

SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS International Journal of Bifurcation and Chaos, Vol. 12, No. 1 (2002) 187 192 c World Scientific Publishing Company SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS XIAO FAN WANG Department of Automation,

More information

Limit Cycles in High-Resolution Quantized Feedback Systems

Limit Cycles in High-Resolution Quantized Feedback Systems Limit Cycles in High-Resolution Quantized Feedback Systems Li Hong Idris Lim School of Engineering University of Glasgow Glasgow, United Kingdom LiHonIdris.Lim@glasgow.ac.uk Ai Poh Loh Department of Electrical

More information

Adaptive synchronization of uncertain chaotic systems via switching mechanism

Adaptive synchronization of uncertain chaotic systems via switching mechanism Chin Phys B Vol 19, No 12 (2010) 120504 Adaptive synchronization of uncertain chaotic systems via switching mechanism Feng Yi-Fu( ) a) and Zhang Qing-Ling( ) b) a) School of Mathematics, Jilin Normal University,

More information

Handling of Chaos in Two Dimensional Discrete Maps

Handling of Chaos in Two Dimensional Discrete Maps Handling of Chaos in Two Dimensional Discrete Maps Anil Kumar Jain Assistant Professor, Department of Mathematics Barama College, Barama, Assam, Pincode-781346, India (Email: jainanil965@gmail.com) Abstract:

More information

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol 10, No 2, 2015, pp 148-153 Chaos control of hyper chaotic delay Lorenz system via back stepping method Hanping Chen 1 Xuerong

More information

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN Journal of Circuits, Systems, and Computers, Vol. 11, No. 1 (22) 1 16 c World Scientific Publishing Company A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN GIUSEPPE GRASSI Dipartimento

More information

INVESTIGATION OF NONLINEAR DYNAMICS IN THE BOOST CONVERTER: EFFECT OF CAPACITANCE VARIATIONS

INVESTIGATION OF NONLINEAR DYNAMICS IN THE BOOST CONVERTER: EFFECT OF CAPACITANCE VARIATIONS INVESTIGATION OF NONLINEAR DYNAMICS IN THE BOOST CONVERTER: EFFECT OF CAPACITANCE VARIATIONS T. D. Dongale Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology,

More information

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Chaos Suppression in Forced Van Der Pol Oscillator

Chaos Suppression in Forced Van Der Pol Oscillator International Journal of Computer Applications (975 8887) Volume 68 No., April Chaos Suppression in Forced Van Der Pol Oscillator Mchiri Mohamed Syscom laboratory, National School of Engineering of unis

More information

Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO

Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO What are DC-DC Converters?? A DC-to-DC converter is an electronic circuit which converts a source

More information

Szalai, R., & Osinga, H. M. (2007). Unstable manifolds of a limit cycle near grazing.

Szalai, R., & Osinga, H. M. (2007). Unstable manifolds of a limit cycle near grazing. Szalai, R., & Osinga, H. M. (2007). Unstable manifolds of a limit cycle near grazing. Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-document University

More information

Bidirectional Partial Generalized Synchronization in Chaotic and Hyperchaotic Systems via a New Scheme

Bidirectional Partial Generalized Synchronization in Chaotic and Hyperchaotic Systems via a New Scheme Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 1049 1056 c International Academic Publishers Vol. 45, No. 6, June 15, 2006 Bidirectional Partial Generalized Synchronization in Chaotic and Hyperchaotic

More information

FUZZY CONTROL OF CHAOS

FUZZY CONTROL OF CHAOS International Journal of Bifurcation and Chaos, Vol. 8, No. 8 (1998) 1743 1747 c World Scientific Publishing Company FUZZY CONTROL OF CHAOS OSCAR CALVO CICpBA, L.E.I.C.I., Departamento de Electrotecnia,

More information

Controlling chaos in Colpitts oscillator

Controlling chaos in Colpitts oscillator Chaos, Solitons and Fractals 33 (2007) 582 587 www.elsevier.com/locate/chaos Controlling chaos in Colpitts oscillator Guo Hui Li a, *, Shi Ping Zhou b, Kui Yang b a Department of Communication Engineering,

More information

ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS

ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS Letters International Journal of Bifurcation and Chaos, Vol. 12, No. 7 (2002) 1579 1597 c World Scientific Publishing Company ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS A. S. HEGAZI,H.N.AGIZA

More information

ARTICLE IN PRESS. JID:PLA AID:17118 /SCO Doctopic: Nonlinear science [m5+; v 1.73; Prn:2/08/2007; 12:08] P.1 (1-7)

ARTICLE IN PRESS. JID:PLA AID:17118 /SCO Doctopic: Nonlinear science [m5+; v 1.73; Prn:2/08/2007; 12:08] P.1 (1-7) JID:PLA AID:17118 /SCO Doctopic: Nonlinear science [m5+; v 1.73; Prn:2/08/2007; 12:08] P.1 (1-7) 3 Physics Letters A ( ) 60 4 www.elsevier.com/locate/pla 61 A three-scroll chaotic attractor Dequan Li 12

More information

Complex Behavior in Switching Power Converters

Complex Behavior in Switching Power Converters Complex Behavior in Switching Power Converters CHI K. TSE, SENIOR MEMBER, IEEE, AND MARIO DI BERNARDO, MEMBER, IEEE Invited Paper Power electronics circuits are rich in nonlinear dynamics. Their operation

More information

ON STABILIZING N-DIMENSIONAL CHAOTIC SYSTEMS

ON STABILIZING N-DIMENSIONAL CHAOTIC SYSTEMS International Journal of Bifurcation and Chaos, Vol. 3, No. 2 (23) 473 48 c World Scientific Publishing Company ON STABILIZING N-DIMENSIONAL CHAOTIC SYSTEMS LAURENT LAVAL and NACER K. M SIRDI Laboratoire

More information

Simple Chaotic Flows with a Curve of Equilibria

Simple Chaotic Flows with a Curve of Equilibria International Journal of Bifurcation and Chaos, Vol. 26, No. 12 (2016) 1630034 (6 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127416300342 Simple Chaotic Flows with a Curve of Equilibria

More information

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS International Journal of Bifurcation and Chaos, Vol 9, No 11 (1999) 19 4 c World Scientific Publishing Company STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS ZBIGNIEW

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

A MODIFIED CHUA S CIRCUIT WITH AN ATTRACTION-REPULSION FUNCTION *

A MODIFIED CHUA S CIRCUIT WITH AN ATTRACTION-REPULSION FUNCTION * Papers International Journal of Bifurcation and Chaos, Vol. 8, No. 7 (8) 86 888 c World Scientific Publishing Company A MODIFIED CHUA S CIRCUIT WITH AN ATTRACTION-REPULSION FUNCTION * RONG LI, ZHISHENG

More information

Bifurcations of Fractional-order Diffusionless Lorenz System

Bifurcations of Fractional-order Diffusionless Lorenz System EJTP 6, No. 22 (2009) 123 134 Electronic Journal of Theoretical Physics Bifurcations of Fractional-order Diffusionless Lorenz System Kehui Sun 1,2 and J. C. Sprott 2 1 School of Physics Science and Technology,

More information

Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity

Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity IOANNIS Μ. KYPRIANIDIS & MARIA Ε. FOTIADOU Physics Department Aristotle University of Thessaloniki Thessaloniki, 54124 GREECE Abstract:

More information

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping Commun. Theor. Phys. 55 (2011) 617 621 Vol. 55, No. 4, April 15, 2011 Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping WANG Xing-Yuan ( ), LIU

More information

Controlling the Period-Doubling Bifurcation of Logistic Model

Controlling the Period-Doubling Bifurcation of Logistic Model ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.20(2015) No.3,pp.174-178 Controlling the Period-Doubling Bifurcation of Logistic Model Zhiqian Wang 1, Jiashi Tang

More information

Symbolic Dynamics of Digital Signal Processing Systems

Symbolic Dynamics of Digital Signal Processing Systems Symbolic Dynamics of Digital Signal Processing Systems Dr. Bingo Wing-Kuen Ling School of Engineering, University of Lincoln. Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, United Kingdom. Email: wling@lincoln.ac.uk

More information

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit Experimental Characterization of Nonlinear Dynamics from Chua s Circuit John Parker*, 1 Majid Sodagar, 1 Patrick Chang, 1 and Edward Coyle 1 School of Physics, Georgia Institute of Technology, Atlanta,

More information

A Search for the Simplest Chaotic Partial Differential Equation

A Search for the Simplest Chaotic Partial Differential Equation A Search for the Simplest Chaotic Partial Differential Equation C. Brummitt University of Wisconsin-Madison, Department of Physics cbrummitt@wisc.edu J. C. Sprott University of Wisconsin-Madison, Department

More information

Generating Chaos in Chua s Circuit via Time-Delay Feedback

Generating Chaos in Chua s Circuit via Time-Delay Feedback IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 9, SEPTEMBER 1 1151 model for out-of-sample drive signals and express this error in terms of signal-to-noise

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

SWITCHED dynamical systems are useful in a variety of engineering

SWITCHED dynamical systems are useful in a variety of engineering 1184 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004 Bifurcation Analysis of Switched Dynamical Systems With Periodically Moving Borders Yue Ma, Hiroshi Kawakami,

More information

Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm

Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm Gwo-Ruey Yu Department of Electrical Engineering I-Shou University aohsiung County 840, Taiwan gwoyu@isu.edu.tw

More information

THE single-stage isolated power-factor-correction (PFC)

THE single-stage isolated power-factor-correction (PFC) 204 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 53, NO. 1, JANUARY 2006 Fast-Scale Instability of Single-Stage Power-Factor-Correction Power Supplies Xiaoqun Wu, Chi K. Tse, Fellow,

More information

Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different 4D Nonlinear Dynamical Systems

Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different 4D Nonlinear Dynamical Systems Mathematics Letters 2016; 2(5): 36-41 http://www.sciencepublishinggroup.com/j/ml doi: 10.11648/j.ml.20160205.12 Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different

More information

Amplitude-phase control of a novel chaotic attractor

Amplitude-phase control of a novel chaotic attractor Turkish Journal of Electrical Engineering & Computer Sciences http:// journals. tubitak. gov. tr/ elektrik/ Research Article Turk J Elec Eng & Comp Sci (216) 24: 1 11 c TÜBİTAK doi:1.396/elk-131-55 Amplitude-phase

More information

An explicit dynamic model of segregation

An explicit dynamic model of segregation An explicit dynamic model of segregation Gian-Italo Bischi Dipartimento di Economia e Metodi Quantitativi Universita di Urbino "Carlo Bo" e-mail:gian.bischi@uniurb.it Ugo Merlone Dip. di Statistica e Matematica

More information