Problem List MATH 5173 Spring, 2014

Size: px
Start display at page:

Download "Problem List MATH 5173 Spring, 2014"

Transcription

1 Problem List MATH 5173 Spring, 2014 The notation p/n means the problem with number n on page p of Perko. 1. 5/3 [Due Wednesday, January 15] 2. 6/5 and describe the relationship of the phase portraits [Due Wednesday, January 15] 3. 6/6 [Due Wednesday, January 15] 4. 9/1 5. 9/3a 6. 10/5 7. Suppose ẋ = λx and ẏ = µy for λµ 0. Obtain a formula of the form x = h(y), y = h(x), or h(x, y) = 0 for the solution curve through (x 0, y 0 ) (0, 0), for all such pairs (x 0, y 0 ). Draw all qualitatively distinct phase portraits (there are three of them) /6 Hint. 1. Without loss of generality you may assume that the invariant subspace is E = {x 1,..., x p, 0,..., 0}. Invariance of E shows up in A as a block of zeros. 2. If matrices are partitioned into blocks then the matrices can be multiplied as if the blocks were numbers, as long as each product of the relevant blocks is compatible: ( ) ( ) ( ) A B R S AR + BT AS + BU = C D T U CR + DT CS + DU ( ) ( ) λ 1 e λt te 9. For J = show that exp(tj) = λt 0 λ 0 e λt by writing ( ) ( ) ( ) λt t λt 0 0 t = + := S + N 0 λt 0 λt 0 0 and computing exp(n) directly from the definition. 10. For x(t) = x 0 e λt + y 0 te λt and y(t) = y 0 e λt, the solution to the linear system of the previous problem, prove that if λy 0 0 then x = x0 y 0 y + 1 λ log y y 0 y. 1

2 2 11. Show that in polar coordinates the system ẋ = P (x, y), ẏ = Q(x, y) (for any functions P and Q, not necessarily linear) becomes r 2 θ = [xq(x, y) yp (x, y)] (x=r cos θ,y=r sin θ) rṙ = [xp (x, y) + yq(x, y)] (x=r cos θ,y=r sin θ). Hint. Exercise 27/9 of Perko. ( ) a b 12. For the system ẋ = Jx, J =, b 0, change to polar coordinates to b a obtain an uncoupled system θ = f(θ), ṙ = g(r). Solve the system explicitly (find θ(t) and r(t)) and use the solution to rigorously derive the phase portraits possible (with attention to the signs of a and b 0) :1 Note that you are not to solve the system :5 15. Show that if η(t) solves ẋ = f(x), x(t 0 ) = x 0, then there exists a constant c such that µ(t) := η(t + c) solves ẋ = f(x), x(0) = x 0. Find c explicitly. 16. Suppose f : I E R R n R n is continuous and consider the initial value problem and the integral equation ẏ = f(t, y), y(t 0 ) = y 0 (1) η(t) = y 0 + t t 0 f(s, η(s)) ds. (2) a. Show that if η : J I E is continuous and satisfies (2) then η is differentiable and satisfies (1). b. Show that if η : J I E is differentiable and satisfies (1) then the integral in (2) exists and η satisfies (2). 17. In the proof of Lemma 1 in Section 2.4, we assumed in a proof by contradiction that an endpoint t 0 of I lay in the interval I. Prove that if this is so then there exists a neighborhood N of t 0 in I on which both u 1 and u 2 are defined and continuous, that both lim t t0 u 1 (t) and lim t t0 u 1 (t) exist and have a common value u 0, and that u 0 E : :4

3 3 20. Suppose f : E R n R n is at least C 1 and that ϕ : (α, β) R n is a solution of the initial value problem ẋ = f(x), x(0) = x 0 E. Let g(x) = kf(x), k R\{0}. Express the solution η(t) of the initial value problem ẋ = g(x), x(0) = x 0, in terms of ϕ(t), being careful about its domain. Discuss the relationship of the phase portraits of the two differential equations on E. (Compare with Problem 2 on this list.) 21. Same problem as Problem 24 but for g(x) = k(x)f(x), where k : R n R \ {0} is at least C Prove that if f : R n R n, f is at least C 1, and there exists M R such that f(x) M for all x R n, then for any x 0 R n the unique solution to the initial value problem ẋ = f(x), x(0) = x 0, exists for all t R. 23. Prove that if f : R n R n and is at least C 1, and if we are studying geometric properties of the phase portrait of the system ẋ = f(x) of ordinary differential equations on R n, then we may assume without loss of generality that solutions exist on all of R. Hint. You may use the results of the previous two problems :2 [Due Wednesday, March 19] :7 [Due Wednesday, March 19] 26. Duffing s equation is ẍ x + x 3 = 0 a. Write an equivalent system of first order equations (*) ẋ = P (x, y), ẏ = Q(x, y). b. Show that H : R 2 R : (x, y) 1 4 x4 1 2 x y2 is constant on trajectories, so that every level curve of H is an invariant set for (*). c. Using a symbolic manipulator like Maple or Mathematica, or by hand, find H 1 (h) for any value of h for which it contains an equilibrium of (*), and for nearby h. Using (*), decompose these level curves into trajectories and add arrows. [Due Wednesday, March 19] 27. Rework 2.5:7 with ẋ = x 2 on R \ {0} replaced by ẋ = 1 + x 2 on R. Hint. Review a calculus text if need be to integrate (1 + x 2 ) 1 and to recall the properties of the function arctan : R ( π/2, π/2) and its graph. It is always true (i.e., is true for all x R) that arctan(tan x) is defined and is x but the opposite order is tricky because we have selected a branch of the tangent function in order to define an inverse for it. [Due Wednesday, March 26] 28. Rework Problem 26 with the second order differential equation there replaced by ẍ + x x 2 = 0 and H replaced by H(x, y) = 3x 2 + 3y 2 2x 3. [Due Wednesday, March 26]

4 4 29. In the proof of the Flowbox Theorem, f(0) = (k, 0,..., 0) T and g was defined by g : [ α, α] N R R n 1 R n R n : (t, (x 2,..., x n )) η(t, (0, x 2,..., x n )). a. Compute dg(0, 0). The answer is an n n matrix of specific constants. Hint. The first column is η. For the remaining columns you may set t = 0 before computing the first partial derivatives. b. Apply the Inverse Function Theorem to conclude that there exists a neighborhood V of (0, 0) in [ α, α] N and a C r mapping h : W := g(v ) V such that (i) g h = id W and (ii) h g = id V. [Due Wednesday, March 26] 30. Prove the Integral Equation Lemma: If u(t) is differentiable and solves the initial value problem ẋ = A x + f(x), x(0) = x 0 (3) on an interval I then u(t) solves the integral equation x(t) = exp(ta) x 0 + t 0 exp((t s)a) f(x(s)) ds (4) on I. Conversely, if u(t) is continuous and solves the integral equation (4) on I then it is differentiable and solves the initial value problem (3) on I. Hint. For one direction use the calculus fact d dt [ ] b(t) f(t, s) ds = f(t, b(t))b (t) f(t, a(t))a (t) + a(t) b(t) a(t) f (t, s) ds. t For the other direction define a new variable z by z = exp( ta) x. Equate two expressions for ẋ to obtain an ordinary differential equation that z solves. Integrate it from 0 to t and revert to the original variable x. [Due Wednesday, April 2] 31. Let L be a linear mapping on R n and let λ(x) be a C 1 mapping on R n that is bounded by some constant ν > 0 (i.e., λ(x) ν for all x R n ). Show that if ν is sufficiently small then for every x 0 R n the unique solution η(t, x 0 ) to ẋ = L x + λ(x), x(0) = x 0, exists for all t 0. At the end address the question of whether or not ν really needs to be small, or if it can be any positive real number. Hint. For any t > 0 for which η(t, x)) exists bound η(t, x) x 0 independently of t using the triangle inequality involving x, η(t, x), and ϕ(t, x) = exp(tl)x, the global flow of ẋ = L x, using the fact that η(t, x) satisfies η(t, x 0 ) = exp(ta) x 0 + [Due Wednesday, April 2] t 0 exp((t s)a) λ(η(s, x)) ds 32. Use the Hartman-Grobman Theorem to classify the singularity specified, or state why the theorem does not apply. a. ẋ = x(x y), ẏ = y(2x y) at (0, 0). b. ẋ = x x 3, ẏ = 2y + y 2 at (0, 0). c. ẋ = x y, ẏ = 1 e x at (0, 0).

5 5 d. ẋ = x + e y, ẏ = y at ( 1, 0). e. ẋ = y + x x 3, ẏ = y at each singularity. [Due Wednesday, April 2] 33. Classify the singularity at the origin of the system ẋ = 2x 2 y 2, ẏ = 3xy as either stable, asymptotically stable, or unstable. (The x-axis is invariant and each of the half-planes it determines is a global elliptic sector.) 34. Any two parts of 2.9:2 35. Any two parts of 2.9: :7 and 2.9:8. Hint. Recall Example 4 at the end of the section and ignore the author s hint. 37. For the planar phase portrait shown in Figure 2 of Section 3.3 describe the alpha and omega limit sets of every point in the plane. To most easily present your answer divide the plane into points, curves, and open regions on which every point has the same limit sets, which you can describe using a drawing. For example, one region could be the set of points to the right of the curve y 2 x x3 = 0 (the fish ), and you could say that for x in this region, α(x) = ω(x) =. (Incidentally, the system of differential equations is given in Example 3 of that section, but that is not important.) [Due Wednesday, April 16] 38. The same problem as Problem 37 for the phase portrait of the system in Problem 33. [Due Wednesday, April 16] 39. Retry just 2.9:7 (the first part of Problem 36 above) with the following hints: (a) (Not really a hint, just a comment: the problem as stated is missing the hypotheses that f be continuous and g be differentiable. Assume this.) (b) Instead of the usual auxiliary variable y = ẋ that we have used before introduce y = ẋ + F (x). This will get you the system described. (c) Argue (geometrically if you have to) that the fact that G(0) = 0 (explain why) and the hypothesis G(x) > 0 if 0 < x < ɛ (some positive ɛ) force g (0) 0 and that g changes sign from negative to positive at zero. (d) Now the hypothesis that g(x)f (x) > 0 if 0 < x < ɛ implies that f(0) 0. (e) Assume the inequalities in hints (c) and (d) are strict in order to finish. [Due Wednesday, April 16] 40. Prove as a corollary to the Poincaré-Bendixson Theorem the Poincaré Annular Region Theorem: Suppose A is the diffeomorphic image of an annulus (loosely, it is a ring-shaped region with smooth inner and outer boundary; a typical example is the closed region between two concentric circles). Suppose f is a smooth vector field (i.e., at least C 1 ) defined on a neighborhood of A with the following properties: (a) f points into A (respectively, out of A ) at every point of the topological boundary A of A ; (b) f has no critical point in A A.

6 6 Then f has a cycle that lies wholly within A. (In fact the cycle has to enclose the hole in A in its interior.) 41. Prove Dulac s Criterion: Suppose E R 2 is a simply connected open set, f : E R 2 and B : E R are C r, r 1, and div(bf) is not identically zero on E and is of one sign on E. Then no closed orbit of the system ẋ = f(x) lies wholly within E. (The function B is termed a Dulac function. ) Hint. Resist the urge to apply the Product Rule. 42. Show that the planar system ẋ = 2xy ẏ = 2xy x 2 + y has no closed orbits. Hint. Figure out why no closed orbit can intersect the y-axis. Show that a Dulac function is B(x, y) = 2/x Show that the planar system ẋ = x(1 + x 2 2y 2 ) ẏ = y(1 4x 2 + 3y 2 has no closed orbits by showing that there exist positive constants r and s such that B(x, y) = x r y s is a Dulac function. 44. It can be shown (by constructing a suitable Poincaré Annular Region) that the van der Pol oscillator ẋ = y ẏ = x + λ(1 x 2 )y (studied by Balthasar van der Pol in the 1920 s) has at least one limit cycle for all λ > 0. Use the Dulac function B(x, y) = (x 2 + y 2 1) 1 2 (discovered by Leonid Cherkas in the late 20th century) to show that the cycle is unique. Hint. The function B fails to exist on the unit circle.

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D. 4 Periodic Solutions We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phase-space. Autonomous two-dimensional systems with phase-space R

More information

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers 2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Practice Problems for Final Exam

Practice Problems for Final Exam Math 1280 Spring 2016 Practice Problems for Final Exam Part 2 (Sections 6.6, 6.7, 6.8, and chapter 7) S o l u t i o n s 1. Show that the given system has a nonlinear center at the origin. ẋ = 9y 5y 5,

More information

Half of Final Exam Name: Practice Problems October 28, 2014

Half of Final Exam Name: Practice Problems October 28, 2014 Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

More information

Part II. Dynamical Systems. Year

Part II. Dynamical Systems. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 34 Paper 1, Section II 30A Consider the dynamical system where β > 1 is a constant. ẋ = x + x 3 + βxy 2, ẏ = y + βx 2

More information

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits. 2. Equilibria. 3. Periodic orbits and limit cycles. 4. Homoclinic orbits.

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

Lectures on Periodic Orbits

Lectures on Periodic Orbits Lectures on Periodic Orbits 11 February 2009 Most of the contents of these notes can found in any typical text on dynamical systems, most notably Strogatz [1994], Perko [2001] and Verhulst [1996]. Complete

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

MA5510 Ordinary Differential Equation, Fall, 2014

MA5510 Ordinary Differential Equation, Fall, 2014 MA551 Ordinary Differential Equation, Fall, 214 9/3/214 Linear systems of ordinary differential equations: Consider the first order linear equation for some constant a. The solution is given by such that

More information

Problem Set Number 5, j/2.036j MIT (Fall 2014)

Problem Set Number 5, j/2.036j MIT (Fall 2014) Problem Set Number 5, 18.385j/2.036j MIT (Fall 2014) Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139) Due Fri., October 24, 2014. October 17, 2014 1 Large µ limit for Liénard system #03 Statement:

More information

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively); STABILITY OF EQUILIBRIA AND LIAPUNOV FUNCTIONS. By topological properties in general we mean qualitative geometric properties (of subsets of R n or of functions in R n ), that is, those that don t depend

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

Math 273 (51) - Final

Math 273 (51) - Final Name: Id #: Math 273 (5) - Final Autumn Quarter 26 Thursday, December 8, 26-6: to 8: Instructions: Prob. Points Score possible 25 2 25 3 25 TOTAL 75 Read each problem carefully. Write legibly. Show all

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling 1 Introduction Many natural processes can be viewed as dynamical systems, where the system is represented by a set of state variables and its evolution governed by a set of differential equations. Examples

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Non-Linear Dynamics Homework Solutions Week 6

Non-Linear Dynamics Homework Solutions Week 6 Non-Linear Dynamics Homework Solutions Week 6 Chris Small March 6, 2007 Please email me at smachr09@evergreen.edu with any questions or concerns reguarding these solutions. 6.8.3 Locate annd find the index

More information

Department of Mathematics IIT Guwahati

Department of Mathematics IIT Guwahati Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

Stability Implications of Bendixson s Criterion

Stability Implications of Bendixson s Criterion Wilfrid Laurier University Scholars Commons @ Laurier Mathematics Faculty Publications Mathematics 1998 Stability Implications of Bendixson s Criterion C. Connell McCluskey Wilfrid Laurier University,

More information

Implicit Functions, Curves and Surfaces

Implicit Functions, Curves and Surfaces Chapter 11 Implicit Functions, Curves and Surfaces 11.1 Implicit Function Theorem Motivation. In many problems, objects or quantities of interest can only be described indirectly or implicitly. It is then

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

Now I switch to nonlinear systems. In this chapter the main object of study will be

Now I switch to nonlinear systems. In this chapter the main object of study will be Chapter 4 Stability 4.1 Autonomous systems Now I switch to nonlinear systems. In this chapter the main object of study will be ẋ = f(x), x(t) X R k, f : X R k, (4.1) where f is supposed to be locally Lipschitz

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

E209A: Analysis and Control of Nonlinear Systems Problem Set 3 Solutions

E209A: Analysis and Control of Nonlinear Systems Problem Set 3 Solutions E09A: Analysis and Control of Nonlinear Systems Problem Set 3 Solutions Michael Vitus Stanford University Winter 007 Problem : Planar phase portraits. Part a Figure : Problem a This phase portrait is correct.

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

Solutions of Math 53 Midterm Exam I

Solutions of Math 53 Midterm Exam I Solutions of Math 53 Midterm Exam I Problem 1: (1) [8 points] Draw a direction field for the given differential equation y 0 = t + y. (2) [8 points] Based on the direction field, determine the behavior

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 7. Feedback Linearization IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs1/ 1 1 Feedback Linearization Given a nonlinear

More information

A note on linear differential equations with periodic coefficients.

A note on linear differential equations with periodic coefficients. A note on linear differential equations with periodic coefficients. Maite Grau (1) and Daniel Peralta-Salas (2) (1) Departament de Matemàtica. Universitat de Lleida. Avda. Jaume II, 69. 251 Lleida, Spain.

More information

Math 426H (Differential Geometry) Final Exam April 24, 2006.

Math 426H (Differential Geometry) Final Exam April 24, 2006. Math 426H Differential Geometry Final Exam April 24, 6. 8 8 8 6 1. Let M be a surface and let : [0, 1] M be a smooth loop. Let φ be a 1-form on M. a Suppose φ is exact i.e. φ = df for some f : M R. Show

More information

14 Periodic phenomena in nature and limit cycles

14 Periodic phenomena in nature and limit cycles 14 Periodic phenomena in nature and limit cycles 14.1 Periodic phenomena in nature As it was discussed while I talked about the Lotka Volterra model, a great deal of natural phenomena show periodic behavior.

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Nonlinear Systems Theory

Nonlinear Systems Theory Nonlinear Systems Theory Matthew M. Peet Arizona State University Lecture 2: Nonlinear Systems Theory Overview Our next goal is to extend LMI s and optimization to nonlinear systems analysis. Today we

More information

An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems

An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems Scott Zimmerman MATH181HM: Dynamical Systems Spring 2008 1 Introduction The Hartman-Grobman and Poincaré-Bendixon Theorems

More information

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below. 54 Chapter 9 Hints, Answers, and Solutions 9. The Phase Plane 9.. 4. The particular trajectories are highlighted in the phase portraits below... 3. 4. 9..5. Shown below is one possibility with x(t) and

More information

Nonlinear Autonomous Systems of Differential

Nonlinear Autonomous Systems of Differential Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

More information

Nonlinear Control Lecture 2:Phase Plane Analysis

Nonlinear Control Lecture 2:Phase Plane Analysis Nonlinear Control Lecture 2:Phase Plane Analysis Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 r. Farzaneh Abdollahi Nonlinear Control Lecture 2 1/53

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 198-8 Construction of generalized pendulum equations with prescribed maximum

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Errata. G. Teschl, Please send comments and corrections to Updated as of November 26, 2017

Errata. G. Teschl, Please send comments and corrections to Updated as of November 26, 2017 Errata G. Teschl, Ordinary Differential Equations and Dynamical Systems Graduate Studies in Mathematics, Vol. 140 American Mathematical Society, Providence, Rhode Island, 2012 The official web page of

More information

NORTHEASTERN UNIVERSITY Department of Mathematics

NORTHEASTERN UNIVERSITY Department of Mathematics NORTHEASTERN UNIVERSITY Department of Mathematics MATH 1342 (Calculus 2 for Engineering and Science) Final Exam Spring 2010 Do not write in these boxes: pg1 pg2 pg3 pg4 pg5 pg6 pg7 pg8 Total (100 points)

More information

Lecture 5. Outline: Limit Cycles. Definition and examples How to rule out limit cycles. Poincare-Bendixson theorem Hopf bifurcations Poincare maps

Lecture 5. Outline: Limit Cycles. Definition and examples How to rule out limit cycles. Poincare-Bendixson theorem Hopf bifurcations Poincare maps Lecture 5 Outline: Limit Cycles Definition and examples How to rule out limit cycles Gradient systems Liapunov functions Dulacs criterion Poincare-Bendixson theorem Hopf bifurcations Poincare maps Limit

More information

MATH 44041/64041 Applied Dynamical Systems, 2018

MATH 44041/64041 Applied Dynamical Systems, 2018 MATH 4441/6441 Applied Dynamical Systems, 218 Answers to Assessed Coursework 1 1 Method based on series expansion of the matrix exponential Let the coefficient matrix of α the linear system be A, then

More information

APPPHYS217 Tuesday 25 May 2010

APPPHYS217 Tuesday 25 May 2010 APPPHYS7 Tuesday 5 May Our aim today is to take a brief tour of some topics in nonlinear dynamics. Some good references include: [Perko] Lawrence Perko Differential Equations and Dynamical Systems (Springer-Verlag

More information

8.1 Bifurcations of Equilibria

8.1 Bifurcations of Equilibria 1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

More information

First Order Differential Equations

First Order Differential Equations First Order Differential Equations 1 Finding Solutions 1.1 Linear Equations + p(t)y = g(t), y() = y. First Step: Compute the Integrating Factor. We want the integrating factor to satisfy µ (t) = p(t)µ(t).

More information

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

More information

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES J. WONG (FALL 2017) What did we cover this week? Basic definitions: DEs, linear operators, homogeneous (linear) ODEs. Solution techniques for some classes

More information

Stability of Dynamical systems

Stability of Dynamical systems Stability of Dynamical systems Stability Isolated equilibria Classification of Isolated Equilibria Attractor and Repeller Almost linear systems Jacobian Matrix Stability Consider an autonomous system u

More information

VANDERBILT UNIVERSITY. MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions

VANDERBILT UNIVERSITY. MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions VANDERBILT UNIVERSITY MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions Directions. This practice test should be used as a study guide, illustrating the concepts that will be emphasized in the

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

1 Gradient and Hamiltonian systems

1 Gradient and Hamiltonian systems 1 Gradient and Hamiltonian systems 1.1 Gradient systems These are quite special systems of ODEs, Hamiltonian ones arising in conservative classical mechanics, and gradient systems, in some ways related

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

A BENDIXSON DULAC THEOREM FOR SOME PIECEWISE SYSTEMS

A BENDIXSON DULAC THEOREM FOR SOME PIECEWISE SYSTEMS A BENDIXSON DULAC THEOREM FOR SOME PIECEWISE SYSTEMS LEONARDO P. C. DA CRUZ AND JOAN TORREGROSA Abstract. The Bendixson Dulac Theorem provides a criterion to find upper bounds for the number of limit cycles

More information

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations ENGI 940 Lecture Notes 4 - Stability Analysis Page 4.01 4. Stability Analysis for Non-linear Ordinary Differential Equations A pair of simultaneous first order homogeneous linear ordinary differential

More information

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) 8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) So far we have seen some different possibilities of what can happen in two-dimensional systems (local and global attractors and bifurcations)

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

Worksheet 1.8: Geometry of Vector Derivatives

Worksheet 1.8: Geometry of Vector Derivatives Boise State Math 275 (Ultman) Worksheet 1.8: Geometry of Vector Derivatives From the Toolbox (what you need from previous classes): Calc I: Computing derivatives of single-variable functions y = f (t).

More information

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class ODE Homework Due Wed. 9 August 2009; At the beginning of the class. (a) Solve Lẏ + Ry = E sin(ωt) with y(0) = k () L, R, E, ω are positive constants. (b) What is the limit of the solution as ω 0? (c) Is

More information

Theorem 1. ẋ = Ax is globally exponentially stable (GES) iff A is Hurwitz (i.e., max(re(σ(a))) < 0).

Theorem 1. ẋ = Ax is globally exponentially stable (GES) iff A is Hurwitz (i.e., max(re(σ(a))) < 0). Linear Systems Notes Lecture Proposition. A M n (R) is positive definite iff all nested minors are greater than or equal to zero. n Proof. ( ): Positive definite iff λ i >. Let det(a) = λj and H = {x D

More information

Nonlinear Control Lecture 2:Phase Plane Analysis

Nonlinear Control Lecture 2:Phase Plane Analysis Nonlinear Control Lecture 2:Phase Plane Analysis Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2009 Farzaneh Abdollahi Nonlinear Control Lecture 2 1/68

More information

Linear Differential Equations. Problems

Linear Differential Equations. Problems Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information

Review for the First Midterm Exam

Review for the First Midterm Exam Review for the First Midterm Exam Thomas Morrell 5 pm, Sunday, 4 April 9 B9 Van Vleck Hall For the purpose of creating questions for this review session, I did not make an effort to make any of the numbers

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986)

The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986) The Big Picture Discuss Examples of unpredictability Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986) Lecture 2: Natural Computation & Self-Organization, Physics 256A (Winter

More information

6 Linear Equation. 6.1 Equation with constant coefficients

6 Linear Equation. 6.1 Equation with constant coefficients 6 Linear Equation 6.1 Equation with constant coefficients Consider the equation ẋ = Ax, x R n. This equating has n independent solutions. If the eigenvalues are distinct then the solutions are c k e λ

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

Nonlinear Autonomous Dynamical systems of two dimensions. Part A

Nonlinear Autonomous Dynamical systems of two dimensions. Part A Nonlinear Autonomous Dynamical systems of two dimensions Part A Nonlinear Autonomous Dynamical systems of two dimensions x f ( x, y), x(0) x vector field y g( xy, ), y(0) y F ( f, g) 0 0 f, g are continuous

More information

PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS. First Order Equations. p(x)dx)) = q(x) exp(

PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS. First Order Equations. p(x)dx)) = q(x) exp( PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS First Order Equations 1. Linear y + p(x)y = q(x) Muliply through by the integrating factor exp( p(x)) to obtain (y exp( p(x))) = q(x) exp( p(x)). 2. Separation of

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Good Problems. Math 641

Good Problems. Math 641 Math 641 Good Problems Questions get two ratings: A number which is relevance to the course material, a measure of how much I expect you to be prepared to do such a problem on the exam. 3 means of course

More information

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait Prof. Krstic Nonlinear Systems MAE28A Homework set Linearization & phase portrait. For each of the following systems, find all equilibrium points and determine the type of each isolated equilibrium. Use

More information

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015. APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.

More information

COEXISTENCE OF ALGEBRAIC AND NON-ALGEBRAIC LIMIT CYCLES FOR QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS

COEXISTENCE OF ALGEBRAIC AND NON-ALGEBRAIC LIMIT CYCLES FOR QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS Electronic Journal of Differential Equations, Vol. 217 (217), No. 71, pp. 1 7. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu COEXISTENCE OF ALGEBRAIC AND NON-ALGEBRAIC LIMIT

More information

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 71 2009 2744 2752 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A nonlinear inequality and applications N.S. Hoang A.G. Ramm

More information

Dulac-Cherkas function and its application to estimation of limit cycles number for some classes of planar autonomous systems

Dulac-Cherkas function and its application to estimation of limit cycles number for some classes of planar autonomous systems Dulac-Cherkas function and its application to estimation of limit cycles number for some classes of planar autonomous systems Castro Urdiales / September 12-16, 2011 Alexander Grin Yanka Kupala State University

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

Final Exam Solutions

Final Exam Solutions Final Exam Solutions Laurence Field Math, Section March, Name: Solutions Instructions: This exam has 8 questions for a total of points. The value of each part of each question is stated. The time allowed

More information

Algebraic Topology I Homework Spring 2014

Algebraic Topology I Homework Spring 2014 Algebraic Topology I Homework Spring 2014 Homework solutions will be available http://faculty.tcu.edu/gfriedman/algtop/algtop-hw-solns.pdf Due 5/1 A Do Hatcher 2.2.4 B Do Hatcher 2.2.9b (Find a cell structure)

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

7. Let X be a (general, abstract) metric space which is sequentially compact. Prove X must be complete.

7. Let X be a (general, abstract) metric space which is sequentially compact. Prove X must be complete. Math 411 problems The following are some practice problems for Math 411. Many are meant to challenge rather that be solved right away. Some could be discussed in class, and some are similar to hard exam

More information

Supplementary Trig Material

Supplementary Trig Material Supplementary Trig Material Math U See Table of Contents Lesson A: Solving Equations with Radicals and Absolute Value Lesson Practice Worksheet A - 1 Lesson Practice Worksheet A - 2 Lesson B: Solving Inequalities

More information

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum Reconsider the following example from last week: dx dt = x y dy dt = x2 y. We were able to determine many qualitative features

More information

1 The relation between a second order linear ode and a system of two rst order linear odes

1 The relation between a second order linear ode and a system of two rst order linear odes Math 1280 Spring, 2010 1 The relation between a second order linear ode and a system of two rst order linear odes In Chapter 3 of the text you learn to solve some second order linear ode's, such as x 00

More information