UNEXPECTED TWISTING CURVATURE GENERATION OF BISTABLE CFRP LAMINATE DUE TO THE UNCERTAINTY OF LAY-UP SEQUENCE AND NEGATIVE INITIAL CURVATURE

Size: px
Start display at page:

Download "UNEXPECTED TWISTING CURVATURE GENERATION OF BISTABLE CFRP LAMINATE DUE TO THE UNCERTAINTY OF LAY-UP SEQUENCE AND NEGATIVE INITIAL CURVATURE"

Transcription

1 THE 9 TH INTERNATIONA CONFERENCE ON COMPOSITE MATERIAS UNEXPECTED TWISTING CURVATURE GENERATION OF BISTABE CFRP AMINATE DUE TO THE UNCERTAINTY OF AY-UP SEQUENCE AND NEGATIVE INITIA CURVATURE J. Ryu, J-G. ee, S-W. Kim, J-W. ee, K-J. Cho, M. Cho * Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea, * Corresponding author (mhcho@snu.ac.kr) Keywords: bistable CFRP laminate, Tilting behavior, Initial curvature effect Introduction Inducing curvature to the CFRP bi-stable structure for curvature tailoring has been studied []. Final curvature of the one of the stable state can be easily tailored by curing it on the cylinder shape tool plate. The schematic of the inducing curvature is illustrated in Fig. ; concave cylinder shape tool plate is defined as negative curvature. Remarkable advantage of the methodology is that the final curvature of mode, stable state whose non-zero curvature direction is parallel to tool plate curvature direction, can be controlled in linear manner. Typical results of the curvature for cross-ply CFRP laminate, whose layup sequence of [0 n /90 n ], are illustrated in Fig.. Final curvature of the mode is the sum of the tool plate curvature and the final curvature without curvature. Meanwhile, final curvature of the mode is not changed regardless of curvature value. A simple relationship between tool-plate curvature and final curvature of the bi-stable CFRP laminate can be easily applied to the applications of bi-stable structures, such as flytrap robot []. Fig. curvature effect of CFRP bi-stable laminate Fig. curvature for curvature tailoring However, certain layup sequence, such as [0/90] n with negative curvature, unexpected twisting curvature of CFRP bi-stable laminate cab be generated. It can show bi-stabilities and deformation behaviour of it is illustrated in Fig. 3, Principal

2 curvature directions of the laminates are ±45 and signs of the curvature are same. the deformation. The generation of the unexpected twisting curvature are properly simulated by including the global force/moment equilibriums as constraints to the strain energy function. In addition, we propose a simplified optimization method to find the final curvatures of CFRP bi-stable laminate by limit analysis, assuming the side length of laminates are infinite. Theoretical Backgrounds Our claims for the reason of the phenomenon, the generation of the unexpected twisting curvature, can be easily verified through FEM simulation with ABAQUS. ay-up sequence with imperfection, [0./90/0./90] T, shows twisting curvature while perfect lay-up sequence, [0/90/0/90], shows conventional principal curvature direction; negative radius of curvature, -50mm, is applied to both laminates. Fig. 3 CFRP bi-stable laminates with unexpected twisting curvature The reasons of this phenomenon can be divided into two parts. One is based on the imperfection of the lay-up angle, such as [0./90/0./90] T. The imperfection induces constant shear strain in the overall domain of the laminate. As a result, the constant shear strain causes global moment unbalance which results in the unexpected twisting curvature. The other is negative curvature. Negative curvature induces the decrease of the in-plane constant normal strain of mode and the stability of the bi-stable structure. These claims are discussed in more detail manner in chapter. In this study, we use and expand the classical methods for bi-stable laminates [3-9], which are based on CT (Classical aminate Theory) and Rayleigh-Ritz method to describe the two unexpected twisting curvatures equilibrium state. Classical strain energy function, however, cannot describe correctly this phenomenon because it does not consider the global force/moment balance after Fig. 4 Verification with ABAQUS

3 PAPER TITE Tilting phenomena occurs depending on the curvature values. It means that for parametric study of tilting behaviour requires repeated FE meshes for various curvature configurations. Therefore, it is desirable to develop analytical simple model which is pertinent to the deformation behaviour including tilting action. In this sense, the Rayleigh-Ritz method is an efficient method to investigate the threshold range of imperfection lay-up angles and negative curvature. First of all, the computing time to calculate the final shape of the CFRP laminate is much smaller than conventional FEM with non-linear shell element. Second, applying the curvature effect in the Rayleigh-Ritz approximation method is much simpler than doing it in FEM because the curvature effect can be applied by changing one parameter while overall model should be reconstructed in FEM. Strain field for Rayleigh-Ritz method to describe curvature effect is proposed in our previous study []. Strain field of previous studies [3-9] can be easily extended to handle curvature effect by introducing reference state, which is illustrated in Fig. 5. The strain field between reference state and state is defined as strain field and the strain fields between reference state and final state is defined as final strain field. Those strain fields can be directly derived from the previous studies [3-9] because the reference state is flat. The strain field with curvature, which is described in Eq. (), is the difference between final strain field and strain field because the assumed strain field is not the strain with von-karman non-linearity but Green- agrangian strain. E y yy x 0 xy init init z T yy init 0 xy () The above strain field should be extended further to describe the twisting curvature because the equation does not include the twisting curvature as a variable. It should be noted that the final shape of the CFRP laminate is a cylinder if the side lengths of the laminates are sufficiently long because nondevelopable surface, such as saddle shape, requires too much shear strain and strain energy based on Gauss Theorema egregium. In general, however, principal curvature direction may not be aligned with the original coordinate system, such as angleply. Therefore, introducing principal curvature direction as a new variable is essential for the generalization of Eq. () to simulate the generation of the twisting curvature. This approach is based on the previous study of the Jun and Hong [6]. Detail formulation for the strain field is described in Eq. (). The variables m and n, in Eq. (), means cos θ and sin θ where θ indicates the angle difference between coordinate system and principal curvature direction of CFRP laminate after the curing. Fig. 5 Definition of reference state for strain field 3

4 m n mn y' E yy n m mn x' z T yy z xy mn mn m n x ' y ' 0 xy 0 () To calculate second P-K stress, linear elastic constitutive equation is used because the order of the Green-agrangian strain field is same with thermal strain; i.e. infinitesimal. C E T (3) ˆij ijkl kl kl Strain energy function with the generalized Green- agrangian strain field, Eq. (), is defined as follows. U Cijkl Eij ijtekl kltdv (4) V The above strain energy function can handle almost the whole general deformed behaviour of CFRP laminate. It can handle the curvature effect not only cross-ply but also angle-ply CFRP laminate. Verification with ABAQUS is illustrated in Fig. 6. Red meshes are the result of the ABAQUS and blue circle is the result of the minimization of the strain energy in Eq. (4) However, it cannot handle the generation of the unexpected twisting curvature because the strain energy function does not include the global force/moment balance. The unbalance of the global force/moment is closely related with the magnitude of the constant shear strain, zero value in the case of the perfect lay-up sequence. Fig. 7 illustrated the moment unbalance which is induced by the constant shear strain. Resultant moment by integrating shear stress along the curved edge is smaller than that of the straight edge because the stress distribution along curved edge is not aligned. Fig. 6 verification with ABAQUS Fig. 7 global moment unbalance due to constant shear strain by imperfection of lay-up sequence imperfection It should be noted that the global force/moment balance satisfies automatically in the case of the

5 PAPER TITE cross-ply laminate with perfect lay-up sequence; global moment balance satisfied for each edges. Fig. 8 illustrates the moment balance for each edge. As a result, minimization of the strain energy function without the global force/moment balance as constraints has showed a satisfactory result. global moment imbalance which is induced by imperfect laminate sequence becomes dominant. Fig. 8 global moment balance due to other shear strains The other reason for the unexpected twisting curvature is negative curvature. Initial curvature is related with the in-plane strain along x edge of mode, zero curvature direction []. In the case of negative curvature, strain energy of mode and intermediate saddle mode, local maximum point is decreased because of the change of the in-plane strain along x-direction. Moreover, negative curvature decreases the final curvature of mode while the positive curvature increases the final curvature of mode. As a result, conventional shape of mode, cylinder shape with positive normal curvature along x-direction, lost its stability and Fig. 9 the change of the strain energy level by curvature effect To simulate the twisting curvature generation by imperfect lay-up angles and negative curvature, global force/moment balance should be introduced to the strain energy function for Rayleigh-Ritz method as constraints. Considering the force/moment balance along the z-direction is enough because the strain field in Eq. () is x- symmetric and y-symmetric; force/moment balance along the x-direction and y-direction satisfies automatically. Global force/moment balance along the z-direction is described in Eq. (5). Introducing those balance equations in Eq. (4), are introduced to strain energy function as equality constraints because free boundary condition should be applied. As a result, the twisting curvature generation by the imperfect lay-up sequence and negative curvature can be simulated by minimizing the modified energy function, which is described in Eq. (6), 5

6 int x' y' y' x' Fz x' x' sin x' y' sin dx dz y' y' sin x' y' sin dy dz x y int x' y' y' x' Mz x' x' sin x' y' sin dx zdz y' y' sin x' y' sin dy zdz (5) x y ' ' ' ' y x x y x' yy ' ' cos xy ' ' cos dy dz y ' ' ' cos xy ' ' cos dx dz y x where, x and y represent principal curvature direction of laminate. U,,,, U F M (6) * int int ij ij ij z z It should be noted that we assume the constant curvature in overall domain of laminate. Moreover, we neglect the deformation of the edges by in-plane strain because those strains are all infinitesimal. In the experimental points of view, directions of the principal curvature are ±45º if the twisting curvature is generated by the imperfect laminate sequence and negative curvature. This is a quite intuitive result because only two set of principal curvature, 0º ~ 90º and -45º ~ 45º, satisfies the x-symmetric and y-symmetric is the side lengths of the laminates are equal. In these cases, only one of the force balance and moment balance satisfies automatically. Proposing the simpler formulation to expect final curvatures of the CFRP laminates is possible based on this phenomenon. In the case of principal curvature direction is ±45º, only global force balance should be satisfied; global moment balance satisfies automatically although there is non-zero constant shear strain. Two constraints are derived from the global force balance. Those equilibriums are illustrated in Fig. 0. First, x-direction and y-direction normal stresses should be same to satisfy horizontal force equilibrium. Second those normal stresses should be same magnitude with shear stress. Those constraints are described in Eq. (7) yy xy (7) Fig. 0 force equilibrium for deformed state when unexpected twisting curvature is generated The constraints can be transformed to simpler form through the coordinate transform to the principal coordinate system. x' x' xy yy ' ' 0 (8) 0 xy ' '

7 PAPER TITE init init yy yy T init init z E' yy z 0 yy init init yy 0 yy On the other hand, strain field in Eq. () can be simplified by assuming the side lengths of the laminate is infinite and neglect the ξ xy because it is much smaller than ξ or ξ yy ; only 3 unknowns, ξ, ξ yy and κ, are remained. The simplified strain fields are described in Eq. (9) Applying zero equality constraints in Eq. (8), two global linear force equilibrium equations in classical plate theory can be identified. yy T A'' A'6' yy A'' A '6' Thermal A'6' A 6'6' N yy '' 0 Thermal B'' B '6' N'' 0 (0) B'' B '6' B '6' B 3' 6' As a result, strain energy function in Eq. (4) become a function with only one variable; simple line search can find the curvature value that minimizes the strain energy function. The comparison with ABAQUS is illustrated in Fig.. Table shows the detail material properties of the CFRP laminates which are used in the simulations. Table material properties of CFRP laminate Quantity Unit Value E GPa 60 E GPa G GPa 8 thickness mm α C α C ΔT C 45 (9) Table shows the numerical comparison between the results of the ABAQUS, full strain energy minimization of Eq. (6) and simplified strain energy minimization; lay-up sequence of the simulation is [90/0./90/0.] and negative curvature is 50 (/mm). Table final curvature comparison between methodologies Quantity Value ABAQUS Full energy minimization Simplified energy minimization Fig. the comparison of the result between FEM (ABAQUS) and proposed method Fig. and Table show that the proposed method shows accurate results in engineering sense. Error is smaller than 5% and computing cost is much smaller than that of non-linear FEM simulation. Moreover, parametric study of the present simplified approach is quite easy because only change of curvature is enough to generate final curvature. 7

8 3 Conclusions In this study, the reasons of the tilting behavior of bistable CFRP cross-ply laminate are presented. We modified the strain energy function for Rayleigh- Ritz method by introducing the additional constraint, global force and moment balance equation. The result by minimizing the modified strain energy is compared with that of FEM and it shows that the modified energy equation can simulate the tilting behaviour of bistable CFRP cross-ply laminate. [0] Dano M, Hyer MW. Thermally-induced deformation behavior of unsymmetric laminates. Int J Solids Struct. 998;35(7):0-0. Acknowledgement This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(mest)(no. 0K00368) References [] Ryu J, Kong JP, Kim SW, Koh JS, Cho KJ, Cho M, Curvature tailoring of unsymmetric laminates with an curvature. J Compos Mater, accepted [] Seung-Won Kim, Je-Sung Koh, Maenghyo Cho and Kyu-Jin Cho, Design & analysis a flytrap robot using bi-stable composite, IEEE International Conference on Robotics and Automation, pp. 5-0, 0. [3] Hyer MW. Calculations of the Room-Temperature Shapes of Unsymmetric aminates. J Compos Mater. 98;5(Jul): [4] Hyer MW. The room-temperature shapes of fourlayer unsymmetric cross-ply laminates. J Compos Mater. 98;6(4):38. [5] Jun WJ, Hong CS. Effect of Residual Shear Strain on the Cured Shape of Unsymmetric Cross-Ply Thin aminates. Compos Sci Technol. 990;38(): [6] Jun WJ, Hong CS. Cured Shape of Unsymmetric aminates with Arbitrary ay-up Angles. J Reinf Plast Comp. 99;(): [7] Cho M, Kim MH, Choi HS, Chung CH, Ahn KJ, Eom YS. A study on the room-temperature curvature shapes of unsymmetric laminates including slippage effects. J Compos Mater. 998;3(5): [8] Cho M, Roh HY. Non-linear analysis of the curved shapes of unsymmetric laminates accounting for slippage effects. Compos Sci Technol. 003;63(5): [9] Ren, Parvizi-Majidi A, i Z. Cured shape of crossply composite thin shells. J Compos Mater. 003;37(0):80.

EVALUATION OF THE COEFFICIENTS OF MOISTURE EXPANSION USING TRANSIENT SIMULATED LAMINATES METHODOLOGY (TSL)

EVALUATION OF THE COEFFICIENTS OF MOISTURE EXPANSION USING TRANSIENT SIMULATED LAMINATES METHODOLOGY (TSL) EVALUATION OF THE COEFFICIENTS OF MOISTURE EXPANSION USING TRANSIENT SIMULATED LAMINATES METHODOLOGY (TSL) Takeshi Takatoya, Kimo Chung, Yi-Jui Wu, and James C. Seferis Polymeric Composites Laboratory,

More information

A Novel Bistable Hybrid Composite Laminate

A Novel Bistable Hybrid Composite Laminate A Novel Bistable Hybrid Composite Laminate Dai Fuhong*, Zhang Boming, Du Shanyi Center for Composite Materials, Harbin Institute of Technology, China.150001 daifh@hit.edu.cn SUMMARY A bistable unsymmetric

More information

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information

EXPLICIT DYNAMIC SIMULATION OF DROP-WEIGHT LOW VELOCITY IMPACT ON CARBON FIBROUS COMPOSITE PANELS

EXPLICIT DYNAMIC SIMULATION OF DROP-WEIGHT LOW VELOCITY IMPACT ON CARBON FIBROUS COMPOSITE PANELS EXPLICIT DYNAMIC SIMULATION OF DROP-WEIGHT LOW VELOCITY IMPACT ON CARBON FIBROUS COMPOSITE PANELS Umar Farooq and Karl Gregory School of Built Environment and Department of Engineering, University of Bolton,

More information

Analytical models for bistable cylindrical shells

Analytical models for bistable cylindrical shells Proc. R. Soc. A (006) 46, 839 854 doi:10.1098/rspa.005.1598 Published online 10 January 006 Analytical models for bistable cylindrical shells BY S. D. GUEST* AND S. PELLEGRINO Department of Engineering,

More information

Modeling and optimization of bistable composite laminates for piezoelectric actuation

Modeling and optimization of bistable composite laminates for piezoelectric actuation Article Modeling and optimization of bistable composite laminates for piezoelectric actuation Journal of Intelligent Material Systems and Structures 22(18) 2181 2191 Ó The Author(s) 2011 Reprints and permissions:

More information

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load Arun Mukherjee 1, Dr. Sreyashi Das (nee Pal) 2 and Dr. A. Guha Niyogi 3 1 PG student, 2 Asst. Professor,

More information

Buckling Analysis of Ring-Stiffened Laminated Composite Cylindrical Shells by Fourier-Expansion Based Differential Quadrature Method

Buckling Analysis of Ring-Stiffened Laminated Composite Cylindrical Shells by Fourier-Expansion Based Differential Quadrature Method Applied Mechanics and Materials Vol. 225 (2012) pp 207-212 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.225.207 Buckling Analysis of Ring-Stiffened Laminated Composite

More information

BI-STABLE COMPOSITE SHELLS

BI-STABLE COMPOSITE SHELLS AIAA 2-1385 BI-STABLE COMPOSITE SHELLS K. Iqbal and S. Pellegrino Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, U.K. Abstract This paper is concerned with

More information

Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling

Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling R. Haynes epartment of erospace Engineering, Georgia Institute of Technology 27 Ferst rive W, tlanta, G 3332-5, US robert.haynes@gatech.edu

More information

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic

More information

GEOMETRIC NONLINEAR ANALYSIS

GEOMETRIC NONLINEAR ANALYSIS GEOMETRIC NONLINEAR ANALYSIS The approach for solving problems with geometric nonlinearity is presented. The ESAComp solution relies on Elmer open-source computational tool [1] for multiphysics problems.

More information

Module-6: Laminated Composites-II. Learning Unit-1: M6.1. M 6.1 Structural Mechanics of Laminates

Module-6: Laminated Composites-II. Learning Unit-1: M6.1. M 6.1 Structural Mechanics of Laminates Module-6: Laminated Composites-II Learning Unit-1: M6.1 M 6.1 Structural Mechanics of Laminates Classical Lamination Theory: Laminate Stiffness Matrix To this point in the development of classical lamination

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

HIGHER-ORDER THEORIES

HIGHER-ORDER THEORIES HIGHER-ORDER THEORIES THIRD-ORDER SHEAR DEFORMATION PLATE THEORY LAYERWISE LAMINATE THEORY J.N. Reddy 1 Third-Order Shear Deformation Plate Theory Assumed Displacement Field µ u(x y z t) u 0 (x y t) +

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Kirchhoff Plates: Field Equations

Kirchhoff Plates: Field Equations 20 Kirchhoff Plates: Field Equations AFEM Ch 20 Slide 1 Plate Structures A plate is a three dimensional bod characterized b Thinness: one of the plate dimensions, the thickness, is much smaller than the

More information

Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis. Stress Strain Relationship Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

More information

Geometry-dependent MITC method for a 2-node iso-beam element

Geometry-dependent MITC method for a 2-node iso-beam element Structural Engineering and Mechanics, Vol. 9, No. (8) 3-3 Geometry-dependent MITC method for a -node iso-beam element Phill-Seung Lee Samsung Heavy Industries, Seocho, Seoul 37-857, Korea Hyu-Chun Noh

More information

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES A. Carrella 1, F. Mattioni 1, A.A. Diaz 1, M.I. Friswell 1, D.J. Wagg 1 and P.M. Weaver 1 1 Department of Aerospace

More information

Two-step multiscale homogenization of polymer nanocomposites for large size RVEs embodying many nanoparticles

Two-step multiscale homogenization of polymer nanocomposites for large size RVEs embodying many nanoparticles Two-step multiscale homogenization of polymer nanocomposites for large size RVEs embodying many nanoparticles *Kyungmin Baek 1), Hyunseong Shin 2), Jin-Gyu Han 3) and Maenghyo Cho 4) 1), 2), 3), 4) Department

More information

THERMALLY-DRIVEN SNAP-THROUGH AND MULTISTABILITY USING LAMINATED FIBRE-METAL SHELLS

THERMALLY-DRIVEN SNAP-THROUGH AND MULTISTABILITY USING LAMINATED FIBRE-METAL SHELLS THERMALLY-DRIVEN SNAP-THROUGH AND MULTISTABILITY USING LAMINATED FIBRE-METAL SHELLS E. Eckstein, E. Lamacchia, A. Pirrera, P. M. Weaver Advanced Composites Centre for Innovation and Science, University

More information

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

More information

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites Copyright c 2007 ICCES ICCES, vol.1, no.2, pp.61-67, 2007 Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites K. Gordnian 1, H. Hadavinia 1, G. Simpson 1 and A.

More information

COMPOSITE PLATE THEORIES

COMPOSITE PLATE THEORIES CHAPTER2 COMPOSITE PLATE THEORIES 2.1 GENERAL Analysis of composite plates is usually done based on one of the following the ries. 1. Equivalent single-layer theories a. Classical laminate theory b. Shear

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS FONDATĂ 1976 THE ANNALS OF DUNAREA DE JOS UNIVERSITY OF GALATI. FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N 0. 007, ISSN 15 08X PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

A short review of continuum mechanics

A short review of continuum mechanics A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

More information

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

NONLINEAR CONTINUUM FORMULATIONS CONTENTS NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

CRITERIA FOR SELECTION OF FEM MODELS.

CRITERIA FOR SELECTION OF FEM MODELS. CRITERIA FOR SELECTION OF FEM MODELS. Prof. P. C.Vasani,Applied Mechanics Department, L. D. College of Engineering,Ahmedabad- 380015 Ph.(079) 7486320 [R] E-mail:pcv-im@eth.net 1. Criteria for Convergence.

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites.

A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites. A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites. P.F.Giddings, C.R.Bowen, H.A.Kim University of Bath, UK Dept. Mech. ng, University

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup, Introduction to Finite Element Analysis Using MATLAB and Abaqus Amar Khennane Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

HIGHER-ORDER THEORIES

HIGHER-ORDER THEORIES HIGHER-ORDER THEORIES Third-order Shear Deformation Plate Theory Displacement and strain fields Equations of motion Navier s solution for bending Layerwise Laminate Theory Interlaminar stress and strain

More information

Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates

Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates (3) 78 795 Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates Abstract In this paper, free vibration characteristics of laminated composite plates are

More information

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Exercise: concepts from chapter 5

Exercise: concepts from chapter 5 Reading: Fundamentals of Structural Geology, Ch 5 1) Study the oöids depicted in Figure 1a and 1b. Figure 1a Figure 1b Figure 1. Nearly undeformed (1a) and significantly deformed (1b) oöids with spherulitic

More information

Design and optimization of a variable stiffness composite laminate

Design and optimization of a variable stiffness composite laminate th World Congress on Structural and Multidisciplinary Optimisation 07 th - th, June 05, Sydney Australia Design and optimization of a variable stiffness composite laminate Yan Zhang, Fenfen Xiong Qian

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information

Post-Buckling Behavior of Laminated Composite Cylindrical Shells Subjected to Axial, Bending and Torsion Loads

Post-Buckling Behavior of Laminated Composite Cylindrical Shells Subjected to Axial, Bending and Torsion Loads World Journal of Engineering and Technology, 25, 3, 85-94 Published Online November 25 in SciRes. http://www.scirp.org/journal/wjet http://dx.doi.org/.4236/wjet.25.349 Post-Buckling Behavior of Laminated

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference April 2005 Austin, Texas

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference April 2005 Austin, Texas th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference - April, Austin, Texas AIAA - AIAA - Bi-stable Cylindrical Space Frames H Ye and S Pellegrino University of Cambridge, Cambridge,

More information

ANALYSIS OF BI-STABILITY AND RESIDUAL STRESS RELAXATION IN HYBRID UNSYMMETRIC LAMINATES

ANALYSIS OF BI-STABILITY AND RESIDUAL STRESS RELAXATION IN HYBRID UNSYMMETRIC LAMINATES ANALYSIS OF BI-STABILITY AND RESIDUAL STRESS RELAXATION IN HYBRID UNSYMMETRIC LAMINATES Fuhong Dai*, Hao Li, Shani Du Center for Composite Material and Structure, Harbin Institute of Technolog, China,5

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

Prediction of The Ultimate Strength of Composite Laminates Under In-Plane Loading Using A Probabilistic Approach

Prediction of The Ultimate Strength of Composite Laminates Under In-Plane Loading Using A Probabilistic Approach Prediction of the Ultimate Strength of Composite Laminates Under In-Plane Loading Prediction of The Ultimate Strength of Composite Laminates Under In-Plane Loading Using A Probabilistic Approach Tae Jin

More information

FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR DEFORMABLE PLATE THEORY

FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR DEFORMABLE PLATE THEORY Asia-Pacific Conference on FRP in Structures (APFIS 2007) S.T. Smith (ed) 2007 International Institute for FRP in Construction FLEXURAL RESPONSE OF FIBER RENFORCED PLASTIC DECKS USING HIGHER-ORDER SHEAR

More information

Free-edge stresses in general cross-ply laminates

Free-edge stresses in general cross-ply laminates Scientia Iranica B (204) 2(2), 387{402 Sharif University of Technology Scientia Iranica Transactions B: Mechanical Engineering www.scientiairanica.com Free-edge stresses in general cross-ply laminates

More information

Advanced Analysis of Steel Structures

Advanced Analysis of Steel Structures Advanced Analysis of Steel Structures Master Thesis Written by: Maria Gulbrandsen & Rasmus Petersen Appendix Report Group B-204d M.Sc.Structural and Civil Engineering Aalborg University 4 th Semester Spring

More information

16.3 Conservative Vector Fields

16.3 Conservative Vector Fields 16.3 Conservative Vector Fields Lukas Geyer Montana State University M273, Fall 2011 Lukas Geyer (MSU) 16.3 Conservative Vector Fields M273, Fall 2011 1 / 23 Fundamental Theorem for Conservative Vector

More information

Accepted Manuscript. R.C. Batra, J. Xiao S (12) Reference: COST Composite Structures. To appear in:

Accepted Manuscript. R.C. Batra, J. Xiao S (12) Reference: COST Composite Structures. To appear in: Accepted Manuscript Finite deformations of curved laminated St. Venant-Kirchhoff beam using layerwise third order shear and normal deformable beam theory (TSNDT) R.C. Batra, J. Xiao PII: S0263-8223(12)00486-2

More information

17th European Conference on Fracture 2-5 September,2008, Brno, Czech Republic. Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects

17th European Conference on Fracture 2-5 September,2008, Brno, Czech Republic. Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects -5 September,8, Brno, Czech Republic Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects Vera Petrova, a, Siegfried Schmauder,b Voronezh State University, University Sq., Voronezh 3946, Russia

More information

ISSN: X (p); (e)

ISSN: X (p); (e) TORSIONA SURFACE WAVE IN SEF-REINFORCED AYER SANDWICHED BETWEEN TWO VISCO-EASIC HAF-SPACES UNDER THE INITIA STRESS Nidhi Dewangan, Sanjeev A. Sahu and Soniya Chaudhary S.G.G. Govt P.G. College, Kurud,

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Composite Plate Documentation. John Robinson

Composite Plate Documentation. John Robinson Composite Plate Documentation Release v ersion John Robinson February 18, 2016 Contents 1 Indices and tables 3 2 How to Use Composite Plate 5 3 Modules 7 Python Module Index 15 i ii Contents: Contents

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

Classical Lamination Theory: The Kirchhoff Hypothesis

Classical Lamination Theory: The Kirchhoff Hypothesis 212 Chapter 6 Classical Lamination Theory: The Kirchhoff Hypothesis In the preceding chapters we developed the tools needed to understand the elastic response of a small volume of fiber-reinforced material

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD ECCM6-6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, -6 June 4 DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD K. V. Nagendra Gopal a*,

More information

2D damping predictions of fiber composite plates: Layup effects

2D damping predictions of fiber composite plates: Layup effects Available online at www.sciencedirect.com Composites Science and Technology 68 (2008) 727 733 COMPOSITES SCIENCE AND TECHNOLOGY www.elsevier.com/locate/compscitech 2D damping predictions of fiber composite

More information

Part D: Frames and Plates

Part D: Frames and Plates Part D: Frames and Plates Plane Frames and Thin Plates A Beam with General Boundary Conditions The Stiffness Method Thin Plates Initial Imperfections The Ritz and Finite Element Approaches A Beam with

More information

Elimination of self-straining in isogeometric formulations of curved Timoshenko beams in curvilinear coordinates

Elimination of self-straining in isogeometric formulations of curved Timoshenko beams in curvilinear coordinates Available online at www.sciencedirect.com ScienceDirect Comput. Methods Appl. Mech. Engrg. 309 (2016) 680 692 www.elsevier.com/locate/cma Elimination of self-straining in isogeometric formulations of curved

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

STABILITY AND MORPHING CHARACTERISTICS OF BISTABLE COMPOSITE LAMINATES

STABILITY AND MORPHING CHARACTERISTICS OF BISTABLE COMPOSITE LAMINATES STABILITY AND MORPHING CHARACTERISTICS OF BISTABLE COMPOSITE LAMINATES A Dissertation Presented to The Academic Faculty by Samer A. Tawfik In Partial Fulfillment of the Requirements for the Degree Doctor

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

More information

Material Characterization of Carbon Fiber Reinforced Polymer Laminate Using Virtual Fields Method

Material Characterization of Carbon Fiber Reinforced Polymer Laminate Using Virtual Fields Method Proceedings of ICTACEM 014 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 9-31, 014, IIT Kharagpur, India ICTACEM-014/39 Material Characterization of

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

NONLINEAR DYNAMIC ANALYSIS OF AN ORTHOTROPIC COMPOSITE ROTOR BLADE

NONLINEAR DYNAMIC ANALYSIS OF AN ORTHOTROPIC COMPOSITE ROTOR BLADE Journal of Marine Science and Technology, Vol., o. 4, pp. 47-55 (4) 47 OIEAR DYAMIC AAYSIS OF A ORTHOTROPIC COMPOSITE ROTOR BADE Ming-Hung Hsu Key words: orthotropic composite rotor blade, differential

More information

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 3398-3411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS DILEEP

More information

URL: < >

URL:   < > Citation: Vo, Thuc, Thai, Huu-Tai and Inam, Fawad (213) Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory. Archive of Applied Mechanics, 83 (4).

More information

Analysis of Non-Rectangular Laminated Anisotropic Plates by Chebyshev Collocation Method

Analysis of Non-Rectangular Laminated Anisotropic Plates by Chebyshev Collocation Method 146 Analysis of Non-Rectangular Laminated Anisotropic Plates by Chebyshev Collocation Method Chih-Hsun LIN and Ming-Hwa R. JEN The purpose of this work is to solve the governing differential equations

More information

Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition

Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition Fluid Structure Interaction and Moving Boundary Problems IV 63 Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition K.-H. Jeong, G.-M. Lee, T.-W. Kim & J.-I.

More information

The Characterisation and Assessment of Curvature in Asymmetric Carbon Fibre Composite Laminates

The Characterisation and Assessment of Curvature in Asymmetric Carbon Fibre Composite Laminates The Characterisation and Assessment of Curvature in Asymmetric Carbon Fibre Composite Laminates By: Amelia Davis A Thesis Submitted to The Faculty of Engineering, The University of Birmingham for the Degree

More information

Aircraft Structures Kirchhoff-Love Plates

Aircraft Structures Kirchhoff-Love Plates University of Liège erospace & Mechanical Engineering ircraft Structures Kirchhoff-Love Plates Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/ Chemin

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter Governing Equations Abstract In this chapter fundamental governing equations for propagation of a harmonic disturbance on the surface of an elastic half-space is presented. The elastic media is

More information

Modeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of One-Dimensional of Laminated Theory

Modeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of One-Dimensional of Laminated Theory . Flores-Domínguez Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS odeling of the Bending Stiffness of a Bimaterial Beam by the Approimation of One-Dimensional of Laminated

More information

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost 1 Mihir A. Mehta, 2 Satyen D. Ramani 1 PG Student, Department

More information

Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature

Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature Steel and Composite Structures, Vol. 12, No. 2 (2012) 129-147 129 hermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature S. Moradi 1 and Mohammad Hassan Mansouri

More information

Nonlinear Thermo- Mechanics of Plates and Shallow Shells

Nonlinear Thermo- Mechanics of Plates and Shallow Shells Nonlinear Thermo- Mechanics of Plates and Shallow Shells Payam Khazaeinejad 1, Asif S. Usmani 1, Omar Laghrouche 1 IIE, School of Engineering, The University of Edinburgh IIE, School of the Built Environment,

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS

FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS Journal of Thermal Stresses, 33: 79 96, 2010 Copyright Taylor & Francis Group, LLC ISSN: 0149-5739 print/1521-074x online DOI: 10.1080/01495730903409235 FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel

Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel G. Vargas 1 & A. Miravete 2 1 Universidad Pontificia Bolivariana, Facultad de Ingeniería Mecánica,

More information

Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip

Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 1 1 JULY 2003 Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip Dejun Ma Department

More information

Effect of Thermal Stresses on the Failure Criteria of Fiber Composites

Effect of Thermal Stresses on the Failure Criteria of Fiber Composites Effect of Thermal Stresses on the Failure Criteria of Fiber Composites Martin Leong * Institute of Mechanical Engineering Aalborg University, Aalborg, Denmark Bhavani V. Sankar Department of Mechanical

More information

PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE 7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France More Info at Open Access Database www.ndt.net/?id=17206 PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

More information

Modeling and Simulations of Aircraft Structures Stiffness, Damage, and Failure Prediction for Laminated Composites

Modeling and Simulations of Aircraft Structures Stiffness, Damage, and Failure Prediction for Laminated Composites Modeling and Simulations of Aircraft Structures Stiffness, Damage, and Failure Prediction for Laminated Composites H.E.Pettermann 1, C.Schuecker 1, D.H.Pahr 2, F.G.Rammerstorfer 2 1 Austrian Aeronautics

More information

A novel tetrahedal element for static and dynamic analysis of laminated composites

A novel tetrahedal element for static and dynamic analysis of laminated composites Journal of Physics: Conference Series A novel tetrahedal element for static and dynamic analysis of laminated composites To cite this article: I A Jones et al 009 J. Phys.: Conf. Ser. 181 0104 View the

More information

Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method

Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method The Open echanics Journal, 007, 1, 9-37 9 Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod C.C. Hong * Department of echanical Engineering, Hsiuping Institute of Technology,

More information

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. I (May. - June. 2017), PP 108-123 www.iosrjournals.org Dynamic Response Of Laminated

More information

STRUCTURAL EFFICIENCY VIA MINIMISATION OF ELASTIC ENERGY IN DAMAGE TOLERANT LAMINATES

STRUCTURAL EFFICIENCY VIA MINIMISATION OF ELASTIC ENERGY IN DAMAGE TOLERANT LAMINATES ECCM16-16 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 214 STRUCTURAL EFFICIENCY VIA MINIMISATION OF ELASTIC ENERGY IN DAMAGE TOLERANT LAMINATES M. Nielsen a, A. T. Rhead a,

More information

INVERSE METHOD FOR FLOW STRESS PARAMETERS IDENTIFICATION OF TUBE BULGE HYDROFORMING CONSIDERING ANISOTROPY

INVERSE METHOD FOR FLOW STRESS PARAMETERS IDENTIFICATION OF TUBE BULGE HYDROFORMING CONSIDERING ANISOTROPY 7 th EUROMECH Solid Mechanics Conference J. Ambrósio et.al. (eds.) Lisbon, Portugal, September 7-11, 2009 INVERSE METHOD FOR FLOW STRESS PARAMETERS IDENTIFICATION OF TUBE BULGE HYDROFORMING CONSIDERING

More information

Buckling Stability of Thin Walled Cylindrical Shells Under Axial Compression

Buckling Stability of Thin Walled Cylindrical Shells Under Axial Compression Failure of Engineering Materials & Structures Code 48 UET TAXILA MECHNICAL ENGINEERING DEPARTMENT Buckling Stability of Thin Walled Cylindrical Shells Under Aial Compression Himayat Ullah 1 and Sagheer

More information