Limits of Computation

Size: px
Start display at page:

Download "Limits of Computation"

Transcription

1 The real danger is not that computers will begin to think like men, but that men will begin to think like computers Limits of Computation - Sydney J. Harris What makes you believe now that I am just talking nonsense? - Eliza

2 2-Flavors of Processing Elements Combinational Logic: Table look-up Recall that there are precisely 2 2 i, i-input digital combinational functions. Finite State Machines: Tables with State i i Addr Data o o Is there any more to a computer than tables and state? Thus far, we know of nothing more powerful than an FSM s Addr Data

3 FSMs as Programmable Machines What is an FSM s table s size? Given i, s, and o, we need a table organized as: 2 i+s rows x (o+s) bits So how many possible i-input, o-output, FSMs with s-state bits exist? Recall how we were able to enumerate or name every 2-input gate? Can we do the same for FSMs? s The number of bits in the Table i 2 i+s An FSM s behavior is completely determined by the contents of its lookup table. i inputs s N outputs s N+1 o All possible settings of the table to: 1 or 0 2 (o+s)2i+s (some may be equivalent) o

4 GOAL: List all possible FSMs in some canonical order. INFINITE list, but Every FSM has an entry in and an associated index. FSM Enumeration These FSMs have 2 inputs and 2 outputs, or 8-bits in their ROM. 2 8 FSMs i inputs s N o outputs s N+1 18,446,744,073,709,551, x Every possible FSM can be associated with a unique number. This requires a few wasteful simplifications. First, given an i-input, s-state-bit, and o-output FSM, we ll replace it with its equivalent n-input, n-state-bit and n-output FSM, where n is the greatest of i, s, and o. We can always ignore the extra input-bits, and set the extra output bits to 0. This allows us to discuss the i th FSM

5 FSM 837 FSM 1077 FSM 1537 FSM Some Perennial Favorites... modulo 3 counter 4-bit counter Combination lock Cheap digital watch FSM Intel Pentium CPU rev 1 FSM Intel Pentium CPU rev 2 FSM Intel Pentium II CPU

6 Are FSMs the Ultimate Digital Device? Nope! There exist many simple problems that cannot be computed by FSMs. For instance: Checking for balanced parenthesis (()(()())) - Okay (()())) - No good! PROBLEM: Requires ARBITRARILY many states, depending on input. Must "COUNT" unmatched LEFT parens. But, an FSM can only keep track of a finite number of objects. Is there a machine that can solve this problem?

7 Unbounded-Space Computation S 1 0,(1,R) 1,(1,L) 0,(1,L) 1,Halt S 2 DURING 1920s & 1930s, much of the science part of computer science was being developed (long before actual electronic computers existed). Many different Models of Computation were proposed, and the classes of functions that each could compute were analyzed. One of these models was the TURING MACHINE, named after Alan Turing. A Turing Machine is just an FSM which receives its inputs and writes outputs onto an infinite tape... Alan Turing This simple addition solves "FINITE" problem of FSMs.

8 A Turing Machine Example Turing Machine Specification Doubly-infinite tape Discrete symbol positions Finite alphabet say {0, 1} Control FSM INPUTS: Current symbol OUTPUTS: write 0/1 move Left/Right Initial Starting State {S0} Halt State {Halt} A Turing machine, like an FSM, can be specified with a truth table. The following Turing Machine implements a unary (base 1) incrementer

9 Turing Machine Tapes as Integers Canonical names for bounded tape configurations: b 8 b 6 b 4 b 2 b 0 b 1 b 3 b 5 b FSM i Look, it s just FSM i operating on tape j

10 TMs as Discrete Functions Turing Machine T i operating on Tape x, where x = b 8 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 y = T [x] i x: input tape configuration y: output tape when TM halts I wonder if a TM can compute EVERY integer function...

11 Alternative Models of Computation Turing Machines [Turing] Hardware head Recursive Functions [Kleene] Theory head FSM i (define (fact n) (... (fact (- n 1))...) Kleene Turing Lambda calculus [Church, Curry, Rosser...] Math head λx.λy.xxy Production Systems [Post, Markov] α β Language head IF pulse=0 THEN patient=dead (lambda(x)(lambda(y)(x (x y)))) Post Church

12 The 1 st Computer Industry Shakeout Here s a TM that computes SQUARE ROOT! FSM

13 And the Battles Raged Here s a Lambda Expression that does the same thing... (λ(x)...)... and here s one that computes the n th root for ANY n! (λ(x n)...)

14 Fundamental Result: Each model is capable of computing exactly the same set of integer functions! Proof Technique: BIG IDEA: Constructions that translate between models Computability, independent of computation scheme chosen Does,this mean that we know of no computer that is more powerful than a Turing machine? Church's Thesis: Every discrete function computable by ANY realizable machine is computable by some Turing machine.

15 Computable Functions f(x) computable <=> for some k, all x: f(x) = T K [x] f K (x) Representation tricks: to compute f k (x,y) <x,y> integer whose even bits come from x, and whose odd bits come from y; whence f K (x, y) T K [<x, y>] f (x,y) = x * y f (x) = 1 iff x is prime, else 0

16 Enumeration of Computable functions Conceptual table of TM behaviors... VERTICAL AXIS: Enumeration of TMs. HORIZONTAL AXIS: Enumeration of input tapes. (j, k) entry = result of TM k [j] -- integer, or * if never halts. f i f 1 f k f i (0) f i (1) f i (2) f i (j) fx X 1 23 X0 X 1 62X0 * * f k (j) Is every Integer Function that I can precisely specify computable? The Halting Problem: Given j, k: Does TM k Halt with input j?

17 The Halting Function: T H [k, j] = 1 iff TM k [j] halts, else 0 The Halting Problem Can a Turing machine compute this function? Replace the Halt state of TH with this. Suppose, for a moment, T H exists: 1 iff Tx[y] HALTS 0 otherwise Then we can build a T Nasty : T H x y If T H is computable then so is T Nasty 1,(1,L) -,(0,R) N 2 N 1 0,(0,L) LOOP HALT 1 0? T H k N H T Nasty [k] LOOP if T k [k] = 1 (halts) HALT if T k [k] = 0 (loops)

18 What does T Nasty [Nasty] do? Answer: T Nasty [Nasty] loops if T Nasty [Nasty] halts T Nasty [Nasty] halts if T Nasty [Nasty] loops That s a contradiction. Thus, T H is uncomputable by a Turing Machine! Net Result: There are some questions that Turing Machines simply cannot answer. Since, we know of no better model of computation than a Turing machine, this implies that there are some questions that defy computation.

19 Reality: Limits of Turing Machines A Turing machine is formal abstraction that addresses Fundamental Limits of Computability What is means to compute. The existence of uncomputable functions. We know of no machine more powerful than a Turing machine in terms of the *functions* that it can compute.

20 Do Computers Think? What does it mean to think as people think? Is thought mechanistic? A combination of memory and strategies? Computers are invaluable tools for simulating complex systems. Is thought in the brain merely a by-product of electrical impulses and biochemistry? If so, might we simulate these processes using a computer program? The Turing Test Described by Alan Turing in a 1950 paper "Computing machinery and intelligence" A judge engages in conversations with a human and a machine, each of which tries to appear human; if the judge cannot reliably distinguish which is which, then the machine is said to pass the test. Eliza ( In 1966, Joseph Weizenbaum, an MIT researcher with combined interests in artificial intelligence and natural language processing, wrote Eliza, to parody a computer therapist. A surprising number of people have been momentarily fooled by it.

21 Are Computer s Intelligent? Intelligence is a trait the we attribute- Its definition has changed over time. In the Middle Ages, Reading and Reckoning were the hallmarks of intelligence. Today intelligence is is defined in terms of an ability to reason, plan, and think abstractly. It might include charateristics such as creativity, personality, character, and wisdom. Artificial Intelligence- A branch of computer science focused on developing algorithms for reasoning, planning, learning, and acquiring knowledge. Computer Chess In 1997, a computer program running on a supercomputer beat the reigning world chess champion, Gary Kasparov. For the first time ever, a non-human was the best chess player in the world.

22 Brute Force vs. Finesse In 1950, Claude Shannon, published one of the first papers on how a computer might play chess. He hypothesized two possible strategies. The first, was a brute force approach involving enumerating all possible moves in a given position, and all possible replies to that move, for as many plies as time and memory would allow. Then every final position would be evaluated an this tree, and a search would select the best MinMax solution (Find the path that would maximize your position, while minimizing your opponents while assuming both of you make the best choice). He argued that such an approach would be impractical. His second strategy was to analyze the current position first, and then to consider only a small number of moves on each ply. He predicted this would be the most fruitful approach. In the end, computers succeeded using brute force.

23 Summary A simple state machine that can write on an infinite tape is the most powerful model of computing currently known. Powerful in the sense of the functions it is able to compute (not how fast or efficiently that it computes them) We know of functions that no known computer is able to compute. In asking the questions of does a computer think, we need to develop a definition of what thought is, and how we do it. If it is merely an algorithm operating on stored memories, or the by product of a physical process then it is possible that machines might someday think, via either simulation or computation.

State Machines. Example FSM: Roboant

State Machines. Example FSM: Roboant page 1 State Machines 1) State Machine Design 2) How can we improve on FSMs? 3) Turing Machines 4) Computability Oh genie, will you now tell me what it means to compute? Doctor, I think you ve built a

More information

Synchronous Logic. These must be the slings and arrows of outrageous fortune. Comp 411 Fall /18/06. L14 Synchronous Logic 1

Synchronous Logic. These must be the slings and arrows of outrageous fortune. Comp 411 Fall /18/06. L14 Synchronous Logic 1 Synchronous Logic 1) Sequential Logic 2) Synchronous Design 3) Synchronous Timing Analysis 4) Single Clock Design 5) Finite State Machines 6) Turing Machines 7) What it means to be Computable These must

More information

Synchronous Logic. These must be the slings and arrows of outrageous fortune. Comp 411 Spring /12/12. L13 Synchronous Logic 1

Synchronous Logic. These must be the slings and arrows of outrageous fortune. Comp 411 Spring /12/12. L13 Synchronous Logic 1 Synchronous Logic 1) Sequential Logic 2) Synchronous Design 3) Synchronous Timing Analysis 4) Single Clock Design 5) Finite State Machines 6) Turing Machines 7) What it means to be Computable These must

More information

Synchronous Logic. These must be the slings and arrows of outrageous fortune. Comp 411 Fall /20/15. L15 Synchronous Logic 1

Synchronous Logic. These must be the slings and arrows of outrageous fortune. Comp 411 Fall /20/15. L15 Synchronous Logic 1 Synchronous Logic 1) Sequential Logic 2) Synchronous Design 3) Synchronous Timing Analysis 4) Single Clock Design 5) Finite State Machines 6) Turing Machines 7) What it means to be Computable These must

More information

Introduction to Turing Machines

Introduction to Turing Machines Introduction to Turing Machines Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 12 November 2015 Outline 1 Turing Machines 2 Formal definitions 3 Computability

More information

MACHINE COMPUTING. the limitations

MACHINE COMPUTING. the limitations MACHINE COMPUTING the limitations human computing stealing brain cycles of the masses word recognition: to digitize all printed writing language education: to translate web content games with a purpose

More information

Most General computer?

Most General computer? Turing Machines Most General computer? DFAs are simple model of computation. Accept only the regular languages. Is there a kind of computer that can accept any language, or compute any function? Recall

More information

Models. Models of Computation, Turing Machines, and the Limits of Turing Computation. Effective Calculability. Motivation for Models of Computation

Models. Models of Computation, Turing Machines, and the Limits of Turing Computation. Effective Calculability. Motivation for Models of Computation Turing Computation /0/ Models of Computation, Turing Machines, and the Limits of Turing Computation Bruce MacLennan Models A model is a tool intended to address a class of questions about some domain of

More information

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harry Lewis October 22, 2013 Reading: Sipser, 3.2, 3.3. The Basic Turing Machine The Basic Turing Machine a a b a

More information

Turing Machines, diagonalization, the halting problem, reducibility

Turing Machines, diagonalization, the halting problem, reducibility Notes on Computer Theory Last updated: September, 015 Turing Machines, diagonalization, the halting problem, reducibility 1 Turing Machines A Turing machine is a state machine, similar to the ones we have

More information

Introduction: Computer Science is a cluster of related scientific and engineering disciplines concerned with the study and application of computations. These disciplines range from the pure and basic scientific

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 15 Ana Bove May 17th 2018 Recap: Context-free Languages Chomsky hierarchy: Regular languages are also context-free; Pumping lemma

More information

Large Numbers, Busy Beavers, Noncomputability and Incompleteness

Large Numbers, Busy Beavers, Noncomputability and Incompleteness Large Numbers, Busy Beavers, Noncomputability and Incompleteness Food For Thought November 1, 2007 Sam Buss Department of Mathematics U.C. San Diego PART I Large Numbers, Busy Beavers, and Undecidability

More information

Decidability: Church-Turing Thesis

Decidability: Church-Turing Thesis Decidability: Church-Turing Thesis While there are a countably infinite number of languages that are described by TMs over some alphabet Σ, there are an uncountably infinite number that are not Are there

More information

More About Turing Machines. Programming Tricks Restrictions Extensions Closure Properties

More About Turing Machines. Programming Tricks Restrictions Extensions Closure Properties More About Turing Machines Programming Tricks Restrictions Extensions Closure Properties 1 Overview At first, the TM doesn t look very powerful. Can it really do anything a computer can? We ll discuss

More information

CS 361 Meeting 26 11/10/17

CS 361 Meeting 26 11/10/17 CS 361 Meeting 26 11/10/17 1. Homework 8 due Announcements A Recognizable, but Undecidable Language 1. Last class, I presented a brief, somewhat inscrutable proof that the language A BT M = { M w M is

More information

TURING MAHINES

TURING MAHINES 15-453 TURING MAHINES TURING MACHINE FINITE STATE q 10 CONTROL AI N P U T INFINITE TAPE read write move 0 0, R, R q accept, R q reject 0 0, R 0 0, R, L read write move 0 0, R, R q accept, R 0 0, R 0 0,

More information

Announcements. Problem Set 6 due next Monday, February 25, at 12:50PM. Midterm graded, will be returned at end of lecture.

Announcements. Problem Set 6 due next Monday, February 25, at 12:50PM. Midterm graded, will be returned at end of lecture. Turing Machines Hello Hello Condensed Slide Slide Readers! Readers! This This lecture lecture is is almost almost entirely entirely animations that that show show how how each each Turing Turing machine

More information

(a) Definition of TMs. First Problem of URMs

(a) Definition of TMs. First Problem of URMs Sec. 4: Turing Machines First Problem of URMs (a) Definition of the Turing Machine. (b) URM computable functions are Turing computable. (c) Undecidability of the Turing Halting Problem That incrementing

More information

The Turing Machine. Computability. The Church-Turing Thesis (1936) Theory Hall of Fame. Theory Hall of Fame. Undecidability

The Turing Machine. Computability. The Church-Turing Thesis (1936) Theory Hall of Fame. Theory Hall of Fame. Undecidability The Turing Machine Computability Motivating idea Build a theoretical a human computer Likened to a human with a paper and pencil that can solve problems in an algorithmic way The theoretical provides a

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Church s thesis The computable functions are the same as the partial recursive

More information

The Church-Turing Thesis

The Church-Turing Thesis The Church-Turing Thesis Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Church-Turing Thesis The definition of the algorithm came in the 1936 papers of Alonzo Church h and Alan

More information

Turing Machines. Lecture 8

Turing Machines. Lecture 8 Turing Machines Lecture 8 1 Course Trajectory We will see algorithms, what can be done. But what cannot be done? 2 Computation Problem: To compute a function F that maps each input (a string) to an output

More information

Part I: Definitions and Properties

Part I: Definitions and Properties Turing Machines Part I: Definitions and Properties Finite State Automata Deterministic Automata (DFSA) M = {Q, Σ, δ, q 0, F} -- Σ = Symbols -- Q = States -- q 0 = Initial State -- F = Accepting States

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

1 Definition of a Turing machine

1 Definition of a Turing machine Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2017 April 10 24, 2017 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,

More information

CS4026 Formal Models of Computation

CS4026 Formal Models of Computation CS4026 Formal Models of Computation Turing Machines Turing Machines Abstract but accurate model of computers Proposed by Alan Turing in 1936 There weren t computers back then! Turing s motivation: find

More information

CS187 - Science Gateway Seminar for CS and Math

CS187 - Science Gateway Seminar for CS and Math CS187 - Science Gateway Seminar for CS and Math Fall 2013 Class 3 Sep. 10, 2013 What is (not) Computer Science? Network and system administration? Playing video games? Learning to use software packages?

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM)? Proposed by Alan Turing in 936 finite-state control + infinitely long tape A

More information

Computability Theory. CS215, Lecture 6,

Computability Theory. CS215, Lecture 6, Computability Theory CS215, Lecture 6, 2000 1 The Birth of Turing Machines At the end of the 19th century, Gottlob Frege conjectured that mathematics could be built from fundamental logic In 1900 David

More information

Turing Machines and the Church-Turing Thesis

Turing Machines and the Church-Turing Thesis CSE2001, Fall 2006 1 Turing Machines and the Church-Turing Thesis Today our goal is to show that Turing Machines are powerful enough to model digital computers, and to see discuss some evidence for the

More information

1 Showing Recognizability

1 Showing Recognizability CSCC63 Worksheet Recognizability and Decidability 1 1 Showing Recognizability 1.1 An Example - take 1 Let Σ be an alphabet. L = { M M is a T M and L(M) }, i.e., that M accepts some string from Σ. Prove

More information

Theory of Computation Lecture Notes. Problems and Algorithms. Class Information

Theory of Computation Lecture Notes. Problems and Algorithms. Class Information Theory of Computation Lecture Notes Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University Problems and Algorithms c 2004 Prof. Yuh-Dauh

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

CSE 200 Lecture Notes Turing machine vs. RAM machine vs. circuits

CSE 200 Lecture Notes Turing machine vs. RAM machine vs. circuits CSE 200 Lecture Notes Turing machine vs. RAM machine vs. circuits Chris Calabro January 13, 2016 1 RAM model There are many possible, roughly equivalent RAM models. Below we will define one in the fashion

More information

Fundamentals of Computer Science

Fundamentals of Computer Science Fundamentals of Computer Science Chapter 8: Turing machines Henrik Björklund Umeå University February 17, 2014 The power of automata Finite automata have only finite memory. They recognize the regular

More information

ECS 120 Lesson 18 Decidable Problems, the Halting Problem

ECS 120 Lesson 18 Decidable Problems, the Halting Problem ECS 120 Lesson 18 Decidable Problems, the Halting Problem Oliver Kreylos Friday, May 11th, 2001 In the last lecture, we had a look at a problem that we claimed was not solvable by an algorithm the problem

More information

1 Acceptance, Rejection, and I/O for Turing Machines

1 Acceptance, Rejection, and I/O for Turing Machines 1 Acceptance, Rejection, and I/O for Turing Machines Definition 1.1 (Initial Configuration) If M = (K,Σ,δ,s,H) is a Turing machine and w (Σ {, }) then the initial configuration of M on input w is (s, w).

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM) Proposed by Alan Turing in 936 finite-state control + infinitely long tape A stronger

More information

Turing Machine Variants

Turing Machine Variants CS311 Computational Structures Turing Machine Variants Lecture 12 Andrew Black Andrew Tolmach 1 The Church-Turing Thesis The problems that can be decided by an algorithm are exactly those that can be decided

More information

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question Before We Start s Any questions? Languages The $64,000 Question What is a language? What is a class of languages? Now our picture looks like Context Free Languages Deterministic Context Free Languages

More information

Lecture 12: Mapping Reductions

Lecture 12: Mapping Reductions Lecture 12: Mapping Reductions October 18, 2016 CS 1010 Theory of Computation Topics Covered 1. The Language EQ T M 2. Mapping Reducibility 3. The Post Correspondence Problem 1 The Language EQ T M The

More information

Turing Machines. 22c:135 Theory of Computation. Tape of a Turing Machine (TM) TM versus FA, PDA

Turing Machines. 22c:135 Theory of Computation. Tape of a Turing Machine (TM) TM versus FA, PDA Turing Machines A Turing machine is similar to a finite automaton with supply of unlimited memory. A Turing machine can do everything that any computing device can do. There exist problems that even a

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27 CS 70 Discrete Mathematics for CS Spring 007 Luca Trevisan Lecture 7 Infinity and Countability Consider a function f that maps elements of a set A (called the domain of f ) to elements of set B (called

More information

Universal Turing Machine. Lecture 20

Universal Turing Machine. Lecture 20 Universal Turing Machine Lecture 20 1 Turing Machine move the head left or right by one cell read write sequentially accessed infinite memory finite memory (state) next-action look-up table Variants don

More information

Turing Machines (TM) The Turing machine is the ultimate model of computation.

Turing Machines (TM) The Turing machine is the ultimate model of computation. TURING MACHINES Turing Machines (TM) The Turing machine is the ultimate model of computation. Alan Turing (92 954), British mathematician/engineer and one of the most influential scientists of the last

More information

Turing Machine Recap

Turing Machine Recap Turing Machine Recap DFA with (infinite) tape. One move: read, write, move, change state. High-level Points Church-Turing thesis: TMs are the most general computing devices. So far no counter example Every

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Handicapped machines DFA limitations Tape head moves only one direction 2-way DFA

More information

Theory of Computation Lecture Notes

Theory of Computation Lecture Notes Theory of Computation Lecture Notes Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan

More information

Introduction to Turing Machines. Reading: Chapters 8 & 9

Introduction to Turing Machines. Reading: Chapters 8 & 9 Introduction to Turing Machines Reading: Chapters 8 & 9 1 Turing Machines (TM) Generalize the class of CFLs: Recursively Enumerable Languages Recursive Languages Context-Free Languages Regular Languages

More information

Lecture 14: Recursive Languages

Lecture 14: Recursive Languages Lecture 14: Recursive Languages Instructor: Ketan Mulmuley Scriber: Yuan Li February 24, 2015 1 Recursive Languages Definition 1.1. A language L Σ is called recursively enumerable (r. e.) or computably

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Outline for Today Recap from Last Time Reviewing Verifiers Nondeterministic Turing Machines What does nondeterminism mean in the context of TMs? And just how powerful are NTMs?

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #6 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 39 Lecture 6: Overview Prove the equivalence of enumerators and TMs. Dovetailing

More information

Decidability: Reduction Proofs

Decidability: Reduction Proofs Decidability: Reduction Proofs Basic technique for proving a language is (semi)decidable is reduction Based on the following principle: Have problem A that needs to be solved If there exists a problem

More information

The Turing machine model of computation

The Turing machine model of computation The Turing machine model of computation For most of the remainder of the course we will study the Turing machine model of computation, named after Alan Turing (1912 1954) who proposed the model in 1936.

More information

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY RYAN DOUGHERTY If we want to talk about a program running on a real computer, consider the following: when a program reads an instruction,

More information

Lecture 3: Reductions and Completeness

Lecture 3: Reductions and Completeness CS 710: Complexity Theory 9/13/2011 Lecture 3: Reductions and Completeness Instructor: Dieter van Melkebeek Scribe: Brian Nixon Last lecture we introduced the notion of a universal Turing machine for deterministic

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.3, 4.1 State and use the Church-Turing thesis. Give examples of decidable problems.

More information

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 Computational complexity studies the amount of resources necessary to perform given computations.

More information

Lecture 19: Universality and Computability

Lecture 19: Universality and Computability Fundamental Questions Lecture 19: Universality and Computability Universality What is a general purpose computer? Computability Are there problems that no machine can solve? Church-Turing thesis Are there

More information

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata.

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata. Finite Automata Automata (singular: automation) are a particularly simple, but useful, model of computation. They were initially proposed as a simple model for the behavior of neurons. The concept of a

More information

Boolean circuits. Lecture Definitions

Boolean circuits. Lecture Definitions Lecture 20 Boolean circuits In this lecture we will discuss the Boolean circuit model of computation and its connection to the Turing machine model. Although the Boolean circuit model is fundamentally

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

The Unsolvability of the Halting Problem. Chapter 19

The Unsolvability of the Halting Problem. Chapter 19 The Unsolvability of the Halting Problem Chapter 19 Languages and Machines SD D Context-Free Languages Regular Languages reg exps FSMs cfgs PDAs unrestricted grammars Turing Machines D and SD A TM M with

More information

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65 Undecidable Problems Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, 2018 1/ 65 Algorithmically Solvable Problems Let us assume we have a problem P. If there is an algorithm solving

More information

Space Complexity. The space complexity of a program is how much memory it uses.

Space Complexity. The space complexity of a program is how much memory it uses. Space Complexity The space complexity of a program is how much memory it uses. Measuring Space When we compute the space used by a TM, we do not count the input (think of input as readonly). We say that

More information

Turing Machines Part III

Turing Machines Part III Turing Machines Part III Announcements Problem Set 6 due now. Problem Set 7 out, due Monday, March 4. Play around with Turing machines, their powers, and their limits. Some problems require Wednesday's

More information

Computability Theory

Computability Theory Computability Theory Cristian S. Calude and Nicholas J. Hay May June 2009 Computability Theory 1 / 155 1 Register machines 2 Church-Turing thesis 3 Decidability 4 Reducibility 5 A definition of information

More information

Notes for Comp 497 (Comp 454) Week 12 4/19/05. Today we look at some variations on machines we have already seen. Chapter 21

Notes for Comp 497 (Comp 454) Week 12 4/19/05. Today we look at some variations on machines we have already seen. Chapter 21 Notes for Comp 497 (Comp 454) Week 12 4/19/05 Today we look at some variations on machines we have already seen. Errata (Chapter 21): None known Chapter 21 So far we have seen the equivalence of Post Machines

More information

FINAL EXAM CHEAT SHEET/STUDY GUIDE. You can use this as a study guide. You will also be able to use it on the Final Exam on

FINAL EXAM CHEAT SHEET/STUDY GUIDE. You can use this as a study guide. You will also be able to use it on the Final Exam on FINAL EXAM CHEAT SHEET/STUDY GUIDE You can use this as a study guide. You will also be able to use it on the Final Exam on Tuesday. If there s anything else you feel should be on this, please send me email

More information

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Turing Machines Review An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Varieties of TMs Multi-Tape TMs Nondeterministic TMs String Enumerators

More information

highlights proof by contradiction what about the real numbers?

highlights proof by contradiction what about the real numbers? CSE 311: Foundations of Computing Fall 2013 Lecture 27: Turing machines and decidability highlights Cardinality A set S is countableiffwe can writeit as S={s 1, s 2, s 3,...} indexed by N Set of rationals

More information

Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009

Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009 CS 373: Theory of Computation Sariel Har-Peled and Madhusudan Parthasarathy Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009 This lecture covers Rice s theorem, as well as

More information

ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness. Prof. Peter Bermel January 11, 2017

ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness. Prof. Peter Bermel January 11, 2017 ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness Prof. Peter Bermel January 11, 2017 Outline Overview Definitions Computing Machines Church-Turing Thesis Polynomial Time (Class P)

More information

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine There is no known model of computation more powerful than Turing Machines Definition of Algorithm:

More information

16.1 Countability. CS125 Lecture 16 Fall 2014

16.1 Countability. CS125 Lecture 16 Fall 2014 CS125 Lecture 16 Fall 2014 16.1 Countability Proving the non-existence of algorithms for computational problems can be very difficult. Indeed, we do not know how to prove P NP. So a natural question is

More information

Variants of Turing Machine (intro)

Variants of Turing Machine (intro) CHAPTER 3 The Church-Turing Thesis Contents Turing Machines definitions, examples, Turing-recognizable and Turing-decidable languages Variants of Turing Machine Multi-tape Turing machines, non-deterministic

More information

Undecidability. Andreas Klappenecker. [based on slides by Prof. Welch]

Undecidability. Andreas Klappenecker. [based on slides by Prof. Welch] Undecidability Andreas Klappenecker [based on slides by Prof. Welch] 1 Sources Theory of Computing, A Gentle Introduction, by E. Kinber and C. Smith, Prentice-Hall, 2001 Automata Theory, Languages and

More information

More Turing Machines. CS154 Chris Pollett Mar 15, 2006.

More Turing Machines. CS154 Chris Pollett Mar 15, 2006. More Turing Machines CS154 Chris Pollett Mar 15, 2006. Outline Multitape Turing Machines Nondeterministic Turing Machines Enumerators Introduction There have been many different proposals for what it means

More information

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages COMP/MATH 300 Topics for Spring 2017 June 5, 2017 Review and Regular Languages Exam I I. Introductory and review information from Chapter 0 II. Problems and Languages A. Computable problems can be expressed

More information

A little context This paper is concerned with finite automata from the experimental point of view. The behavior of these machines is strictly determin

A little context This paper is concerned with finite automata from the experimental point of view. The behavior of these machines is strictly determin Computability and Probabilistic machines K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro in Automata Studies, Shannon, C. E. and McCarthy, J. Eds. Annals of Mathematics Studies, Princeton University

More information

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018 CS 301 Lecture 17 Church Turing thesis Stephen Checkoway March 19, 2018 1 / 17 An abridged modern history of formalizing algorithms An algorithm is a finite, unambiguous sequence of steps for solving a

More information

Non-emptiness Testing for TMs

Non-emptiness Testing for TMs 180 5. Reducibility The proof of unsolvability of the halting problem is an example of a reduction: a way of converting problem A to problem B in such a way that a solution to problem B can be used to

More information

CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 3: Diagonalization & Halting Problem Due: One week after shown in slides

CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 3: Diagonalization & Halting Problem Due: One week after shown in slides CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 3: Diagonalization & Halting Problem Due: One week after shown in slides First Person: Second Person: Family Name: Family Name: Given Name: Given

More information

CS61c: Representations of Combinational Logic Circuits

CS61c: Representations of Combinational Logic Circuits CS61c: Representations of Combinational Logic Circuits J. Wawrzynek March 5, 2003 1 Introduction Recall that synchronous systems are composed of two basic types of circuits, combination logic circuits,

More information

Turing Machine variants

Turing Machine variants Turing Machine variants We extend the hardware of our Turing Machine.. + 2-way infinite tape (M±) ++ more than one tape (M 2, M 3..) +++ 2-dimensional tape and explore Church s thesis....if it is true,

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 13 CHAPTER 4 TURING MACHINES 1. The definition of Turing machine 2. Computing with Turing machines 3. Extensions of Turing

More information

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Turing Machines Review An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Varieties of TMs Multi-Tape TMs Nondeterministic TMs String Enumerators

More information

Turing Machines Part II

Turing Machines Part II Turing Machines Part II Problem Set Set Five Five due due in in the the box box up up front front using using a late late day. day. Hello Hello Condensed Slide Slide Readers! Readers! This This lecture

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 8 Nancy Lynch Today More undecidable problems: About Turing machines: Emptiness, etc. About

More information

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Equivalence of TMs and Multitape TMs Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Turing Machines First proposed by Alan Turing in 1936 Similar to finite automaton, but with an unlimited and unrestricted

More information

Gottfried Wilhelm Leibniz (1666)

Gottfried Wilhelm Leibniz (1666) Euclid (c. -300) Euclid s GCD algorithm appeared in his Elements. Formulated geometrically: Find common measure for 2 lines. Used repeated subtraction of the shorter segment from the longer. Gottfried

More information

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK COMS11700 Undecidability Department of Computer Science, University of Bristol Bristol, UK 4 April 2014 COMS11700: Undecidability Slide 1/29 Decidability We are particularly interested in Turing machines

More information

Tape encoding of lists of numbers

Tape encoding of lists of numbers L7 74 We ve seen that a Turing machine s computation can be implemented by a register machine. The converse holds: the computation of a register machine can be implemented by a Turing machine. To make

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) October,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.   ETH Zürich (D-ITET) October, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) October, 19 2017 Part 5 out of 5 Last week was all about Context-Free Languages Context-Free

More information

The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational

The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational 1 The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational model. We'll remind you what a Turing machine is --- you

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 16 : Turing Machines

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 16 : Turing Machines COMP-330 Theory of Computation Fall 2017 -- Prof. Claude Crépeau Lec. 16 : Turing Machines COMP 330 Fall 2017: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic finite

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 20. To Infinity And Beyond: Countability and Computability

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 20. To Infinity And Beyond: Countability and Computability EECS 70 Discrete Mathematics and Probability Theory Spring 014 Anant Sahai Note 0 To Infinity And Beyond: Countability and Computability This note ties together two topics that might seem like they have

More information