F. Abdul Majeed 1, H. Karki 1, Y. Abdel Magid 2 & M. Karkoub 3. Abstract. 1 Introduction and problem formulation

Size: px
Start display at page:

Download "F. Abdul Majeed 1, H. Karki 1, Y. Abdel Magid 2 & M. Karkoub 3. Abstract. 1 Introduction and problem formulation"

Transcription

1 Computational Methods and Experimental Measurements XV 307 Analyses of the robustness of the mathematical model with the laboratory prototype of the drilling process during simulation and vibration control experiments F. Abdul Majeed 1, H. Karki 1, Y. Abdel Magid 2 & M. Karkoub 3 1 Department of Mechanical Engineering, The Petroleum Institute, U.A.E. 2 Department of Electrical Engineering, The Petroleum Institute, U.A.E. 3 Mechanical engineering Department, Texas A&M University, Qatar Abstract The drilling industry is faced with many challenges, and the sudden failure of a drill string during drilling is one of major concern. Exploration of the causes for the failures reveals vibrations as the major cause. In order to test and analyze the vibration patterns of rotary drilling, a laboratory proto type of the process is set up. The mathematical model developed to analyze the vibration presents residual error. Robustness issues pertaining to model error and modelling error is discussed. Methods to counter the errors and minimize the vibrations are also discussed. Keywords: rotary drilling, robustness, modeling error, vibration, experimental set up, unbalanced mass, parameter uncertainty. 1 Introduction and problem formulation There are many types and designs of drilling rigs. Drilling rigs are classified by the power used to drive the process (electric, mechanic or hydraulic), height of the derrick or the type of drill pipe used (cable, conventional and coil tubing). The drilling rig we are concentrating on is an electric driven, conventional rotary drilling, fig. 1. This is the widely used method of drilling and drilling is achieved by the drill bit as it rotates and cuts into rock. All the major items of machinery used in the rig are driven by electric motors. Metal or plastic drill doi: /cmem110271

2 308 Computational Methods and Experimental Measurements XV Anatomy of an oil rig Figure 1: Rotary oil rig features. pipe for the length of the drill string, and the rotation is achieved by turning a square or hexagonal pipe (the Kelly ) on a rotary table at drill floor level. Before drilling, a large, heavy bit is attached to the end of a hollow drill pipe. As drilling progresses, the drill bit forces its way underground and additional sections of pipe are connected at the top of the hole. The derrick is the name for the structure which supports the rig above the surface. The taller the derrick, the longer the sections of drill pipe that the derrick can hold at a time. Although early derricks were made of wood, modern derricks are constructed of highstrength steel. Throughout the rotary drilling process, a stream of fluid called drilling mud is continuously forced to the bottom of the hole, through the bit, and back up to the surface. This special mud, which contains clay and chemicals mixed with water, lubricates the bit and keeps it from getting too hot. It also acts as a cap to keep the oil from gushing up. The drill strings experience high vibrations and strong rocks in the path of drilling. These cause the dynamics presented by drill strings to be highly complex, non linear and unexpected. The drill string vibrations coupled together with well bore friction result in many phenomenon such as bit bounce, stick slip, forward and backward whirl. There are three main types of drill string vibration: Axial vibration is mainly caused when drilling with roller cone bits. It leads to jumps in drilling; bouncing and can slow down the rate of penetration.

3 Computational Methods and Experimental Measurements XV 309 Torsional vibration results due to twisting of the drill string, and sometimes breaking. It makes the rotation of the drill bit irregular and leads to the stick slip phenomenon. Lateral vibration occurs when the drill string is bent or when drilling in a non vertical well. The drill bit rotates with a center of rotation not coincident with the center of well, leading to hole enlargement and forward or backward whirl of the bit. This research concentrates on lateral vibrations occurring in the drill pipe due to a bend. Ideally with zero well bore friction and assuming the drill string is a perfect straight beam rotated with an axial load, there will be no nonlinearities or vibrations during drilling. However, in the presence of curved/inclined boreholes or unbalanced WOBs the friction between the drill bit and well borehole contact is uneven and different at different contact points. This result in the drill bit centerline not being in the center of the hole, hence the centrifugal force will now act as the center of gravity causing the drill string to bend. Bend drill strings do not follow circular trajectories, causing the drill bit to hit the sides of the borehole. This will eventually lead to the stick slip phenomenon, in which large vibrations and sudden unexpected drill bit movements occur. The usual solution in oil rigs is to stall the entire drilling process, and restart. In extreme cases the drill string would break requiring a call for an entire process up haul. 2 Experimental set up and literature review In order to understand and analyze the vibrations due to the bend drill string, experiments are conducted. The drilling process is simulated in the laboratory by a simple experimental set up, fig. 2. The set up operates by operating a motor, which rotates a large rotor connected to the motor shaft. A drill string (made of carbon steel chosen due to its proximity in properties to actual drill string material) is attached to the upper rotor by a universal joint. This joint provides two degree of rotational freedom (x and y axe.the motor rotation provides the set up with 1DOF of rotation about the z axes. In order to understand the behavior pattern of a bend drill string and accurately simulate its trajectories, a literature review is conducted. The following are the literature review results required for accurate modeling of the bend drill string features. The performance of drill strings and their effect on drilling performance have been investigated and analyzed in a number of researches [1 8]. Many different models were set up to analyze drill string vibrations including lateral vibrations (whirl) and mode coupling [3, 9, 10]. Other researchers have focused on models which represent torsional vibration and have attempted to suggest methods to avoid stick-slip behaviour [2, 7]. Jansen [11] proposed an unbalanced mass model to represent a bend drill string section in which self excited vibrations were studied. Similar models were also studied by other researchers; for example, Melakhessou et al. [5] modelled the drill string as an unbalanced rotor supported by two bearings and research is concentrated on a contact zone between the drill string and the borehole wall. Dykstra et al. [1] explains that the

4 310 Computational Methods and Experimental Measurements XV Figure 2: Laboratory drilling set up and close up of lower bit with unbalanced mass. source of vibration is the bit and hence the centrifugal forces developed when an unbalanced drill string is rotated can be one of the major sources of vibrations. Analyzing the literature, an unbalanced mass is placed on the lower rotor representing the drill bit to simulate the bend drill string properties. The experimental set up now has three DOFS. Apart from the rotation of the upper rotor, and lower rotor, there is tangential angular displacement for the lower rotor initiated by the new centre of rotation of the lower rotor not coinciding with the centre of rotation of the upper rotor. The lower rotor now follows an elliptical trajectory, also known popularly as bit whirl in the drilling field. This paper also analyses the behaviour of the system at low and average operating speeds of actual drilling. 3 Robustness issues 3.1 Residual error and Model error The mathematical model for the process was identified using the system identification black box modeling approach. The experimental set up was excited with chirp input to obtain the required identification data. The chirp input has correlation function properties very similar to white noise. A Box Jenkins model was identified for the process. Box Jenkins models are especially useful when the process is affected by disturbances entering late into the system. The laboratory operating speeds are selected to represent the rotary drilling process at its low and average operational speeds. The process is excited by command inputs of 8 RPM and 38 RPM, figs. 3 and 4. The usual rotary drilling speeds are around 35 to 45 RPM. The low speed is analyzed to understand the drill string behavior in the transient time. The upper rotary speed is the input speed of the process. The experimental responses of the process are recorded and

5 Computational Methods and Experimental Measurements XV 311 plotted in figures 3 and 4. The identified model is seen to have very close response to the process response. The residual signal graph between the process response and model response is seen to be very low with values around 180m RPM, figs. 5 and 6. This suggests that the model provides a good fit for analyzing the process behavior. Figure 3: Process data and model response for low drilling speed. Figure 4: Process data and Model response at average drilling speed. Figure 5: Residual signal for low speed analysis. Figure 6: Residual signal for average speed analysis.

6 312 Computational Methods and Experimental Measurements XV Figure 7: Larger view of vibrations in the process and model response. However, the very small vibrations in the speed of the process at the output due to the unbalanced mass are noticeable, fig. 7. Here the unbalanced mass is very small nearly 57 gms, which is about 5% of the mass of the lower rotor representing the drill bit. This mass will represent only a very small bend in the drill string. However, in reality, drill strings when they bend slightly, present more severe vibrations due to the presence of well bore friction and higher mass of the bottom hole assembly. The black box model of the process is identified in a Box Jenkins model format specifically because the Box Jenkins models are good for processes in which disturbances enter late in to the system. The residual error, figs. 5 and 6 presents us with a model robustness issue which needs to be dealt with. One suggestion is to combine the black box model with a separate model describing effect of the unbalanced mass using analytical principles and larger degrees of freedom Liao et al. [4]. The drilling system prototype concerned here can be seen to be a strictly proper system. In other words the gain tends to zero in the limit as frequency tends to infinity, fig. 8. Figure 8: Bode plot of the model with lower (green) and upper (red) bounds. This can be attributed to the presence of inertia in the system. The model itself will have robustness errors and they need to be analyzed further by looking for RHP poles and zeros, cancellations and analyzing the internal stability of the model.

7 Computational Methods and Experimental Measurements XV Modelling error Real time systems are nonlinear, time varying, infinite dimensional and very complicated. Modeling error is due to two major reasons. The model obtained here assumes a third order transfer function; this approximation leads to a simpler model and lack of robustness in the model. This is one of the major sources of modeling error. Assuming that the best model approximation of the plant is G p (; G p ( G( G( (1) i.e. if and N( G ( ; (2) p i 1 D( k N( G( (3) i 1 D( N( G ( (4) i k 1 D( N( where is the numerator and denominator of the plant transfer function. D( ΔG( is the modeling error, or the difference between the model and the best possible plant model. Another source of modeling error can be deduced from analyzing the frequency response magnitude; figs. 9 and 10.The frequency response gains are plotted for two different conditions, for small mass unbalance and large mass unbalance. It can be seen that as the frequency increases the size of the resonant peaks tend to decrease after a certain point ω. In the frequency response gain plots, the point ω of the drilling system here can be seen to be around 150m Hz for the two cases studied. This particular frequency ω is seen to be a constant for a particular system and does not vary with added disturbance, here the unbalanced mass. Hence we can safely assume that for frequencies higher than ω the magnitude of the frequency response will never exceed the gain at that value, i.e; 0; 0 ' 20log10 G ( jw) (5) ; ' where ρ is the value of gain at ω and it represents an upper bound on the magnitude of the frequency response of the modeling error. The second source of error in modeling is from parameter uncertainty. The parameters estimated to obtain the model will have a tolerance associated with their values. Hence at every frequency, the gain and phase response will have an

8 314 Computational Methods and Experimental Measurements XV Figure 9: Frequency response magnitude plot for small mass unbalance. Figure 10: Frequency response magnitude plot for large mass unbalance. uncertainty associated with its value. These are plotted in the bode plot, fig. 8, with the upper and lower bound of the magnitude and phase curves. 4 Vibration analysis The analytical equation for the lower rotor with the unbalanced mass can be written as Inman [12]: 2 m x cx kx m0e r sin rt (6) where m is the lower rotor mass, m 0 is the unbalanced mass, c is the damper constant, k is the spring constant (drill string considered as a spring and damper), e is the distance of the unbalanced mass from the center axis of rotation of lower rotor, ω r is the drilling rotational frequency and ξ is the damping ratio. The steady state displacement of the lower rotor is where r r n m0e X m ; ω n is the natural frequency. r 2 2 ( 1 r ) (2 r 2 ) 2 (7)

9 Computational Methods and Experimental Measurements XV 315 At any particular moment t, the deflection is: x p ( t) X sin( rt ) (8) Analyzing the above equations it can be inferred that an increase in the deflection amplitude can be minimized by increasing the damping in the system. It can also be noted that the most vibrations occur when the set up is operated at frequencies near the natural frequency. Hence it is also advisable to operate the set up at frequencies lower or higher than the natural frequency. Sources of model error will be further expanded in forthcoming papers. For laboratory scale assessment of vibration and related control the Box Jenkins model can be considered appropriate enough due to residual error values not exceeding 200 m RPM which is 0.4% of the rotation rate. For control purposes the controller effect is simulated and once an acceptable effect is realized the controller can be interfaced with the drilling setup to analyze experimental response. The under actuation of the lower rotor now presents another difficulty, due to any effect of the controller on the simulated response of the lower rotor will fail to achieve in the experimental set up. The unbalanced mass presents a change in the inertial mass properties of the lower rotor. The vibrations induced can only be minimized by assuring that the drilling is carried out at speeds neglecting the natural frequency, preferably low speeds so that the tangential acceleration is minimized and the drill bit does not cause too much damage to the borehole wall by enlarging it or making wedges in the bore hole and damaging the drill bit and other down hole components. 5 Summary This paper discusses the model of a drill string system representing rotary drilling. The experimental and simulated model responses are plotted and analyzed. The residual error is discussed and the source of the error due to lack of robustness in the model is also studied. Two major reasons for the uncertainty and presence of modeling error are discussed. The source and control of vibration is also discussed. Future work involves study and discussion of robustness issues arising in the model itself, and further expansion of the modeling errors and ways to overcome the errors for a better plant model. References [1] Dykstra, M., Christensen, H., Warren, T., and Azar, J., Drill string component mass imbalance: A major source of drill string vibrations, SPE Drilling and completion,vol.11, pp ,1996. [2] Germay, C., van de Wouw, N., Nijmeijer, H., and Sepulchre, R., Nonlinear drill string dynamics analysis, SIAM J. Applied Dynamical systems, Vol. 8, pp , 2009.

10 316 Computational Methods and Experimental Measurements XV [3] Leine, van Campen, D.H and Keultjes, W., Stick slip whirl interaction in drill string dynamics, ASME J. of vibration acoustics, Vol.124, pp , [4] Liao. C et al., Reduced order models of drill string dynamics, Paper presented at the Second international energy 2030 conference, UAE, [5] Melakhessou, H. et al., A nonlinear well drill string interaction model, J. Vibration acoustics, Vol.125, pp.46-52, [6] Mihajlovioc, N., Van Veggel, A., Van de Wouw, N. and Nijmeijer, H., Friction induced torsional vibrations in an experimental drill string system, Paper presented at the 23rd IASTED international conference on modeling, identification and control, pp , [7] Mihajlovic, N., van Veggel, A., Nan de Wow and Nijmeijer, H., Analysis of friction induced limit cycling in an experimental drill string system, J. of Dynamic systems, measurement and control, ASME, Vol.126, pp , [8] Navarro Lopez, E. and Suarez, R., Modeling and Analysis of stick slip behavior in a drill string under dry friction, Congresso Annual De La Amca, pp , [9] Christoforou, A. and Yigit, A., Dynamic modeling of rotating drill string with borehole interactions, J. sound and vibration, Vol.206, pp , [10] Elsayed, M. A., and Dareing, D. W., Coupling of Longitudinal and Torsional Vibrations in a Single-Mass Model of a Drillstring, Developments in Theoretical and Applied Mechanics, Vol. XVII, University of Arkansas, Fayetteville, AR, pp ,1994. [11] Jansen, J.D., Non linear rotor dynamics as applied to oil well drill string vibrations, J. Sound and vibration, Vol.147, pp , [12] Inman, D.J., Engineering Vibration, Prentice Hall, pp , 2001.

STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS

STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS R. I. Leine, D. H. van Campen Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

More information

Analysis and control of rotary drilling rigs

Analysis and control of rotary drilling rigs Loughborough University Institutional Repository Analysis and control of rotary drilling rigs This item was submitted to Loughborough University's Institutional Repository by the/an author. Additional

More information

HELICAL BUCKLING OF DRILL-STRINGS

HELICAL BUCKLING OF DRILL-STRINGS HELICAL BUCKLING OF DRILL-STRINGS Marcin Kapitaniak 1,, Vahid Vaziri 1,, and Marian Wiercigroch 1 1 Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE,

More information

Experimental Studies with Drill String: Effects of Drill Mud

Experimental Studies with Drill String: Effects of Drill Mud Experimental Studies with Drill String: Effects of Drill Mud Meryem Kanzari *, Mohammed Yousef A Alqaradawi, * and Balakumar Balachandran ** * Mechanical and Industrial Engineering Department, Qatar University,

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

1 General introduction

1 General introduction 1 General introduction 1.1 Oil well drilling system Oil and other hydrocarbons are the primary source of global energy. However, the exploration of these hydrocarbons presents a myriad of challenges resulting

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

Lateral Vibration of Oilwell Drillstring During Backreaming Operation

Lateral Vibration of Oilwell Drillstring During Backreaming Operation Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 14 Porto, Portugal, 3 June - July 14 A. Cunha, E. Caetano, P. Ribeiro, G. Müller eds. ISSN: 311-9; ISBN: 978-97-75-165-4

More information

3 Mathematical modeling of the torsional dynamics of a drill string

3 Mathematical modeling of the torsional dynamics of a drill string 3 Mathematical modeling of the torsional dynamics of a drill string 3.1 Introduction Many works about torsional vibrations on drilling systems [1, 12, 18, 24, 41] have been published using different numerical

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 - 1 - Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 In version 4.3 nonlinear rolling element bearings can be considered for transient analyses. The nonlinear forces are calculated with a

More information

1369. Vibration characteristic analysis of the multi-drilling mechanism

1369. Vibration characteristic analysis of the multi-drilling mechanism 1369. Vibration characteristic analysis of the multi-drilling mechanism Xinxia Cui 1, Huifu Ji 2, Mingxing Lin 3, Ziang Dong 4 1, 2 School of Mechanical and Electrical Engineering, China University of

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

Use of Full Spectrum Cascade for Rotor Rub Identification

Use of Full Spectrum Cascade for Rotor Rub Identification Use of Full Spectrum Cascade for Rotor Rub Identification T. H. Patel 1, A. K. Darpe 2 Department of Mechanical Engineering, Indian Institute of Technology, Delhi 110016, India. 1 Research scholar, 2 Assistant

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

Experimental Studies of Forward and Backward Whirls of Drill-String

Experimental Studies of Forward and Backward Whirls of Drill-String Experimental Studies of Forward and Backward Whirls of Drill-String Marcin Kapitaniak a, Vahid Vaziri a, Joseph Páez Chávez b,c, Marian Wiercigroch a, a Centre for Applied Dynamics Research, School of

More information

Dynamics of Machinery

Dynamics of Machinery Lab Manual Dynamics of Machinery (2161901) Name: Enrollment No.: Roll No.: Batch: Darshan Institute of Engineering & Technology, Rajkot DEPARTMENT OF MECHANICAL ENGINEERING Certificate This is to certify

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Coupling Axial Vibration With Hook Load/Bit Force And The Effect Of Shock Absorber

Coupling Axial Vibration With Hook Load/Bit Force And The Effect Of Shock Absorber International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (017), pp. 61-69 International Research Publication House http://www.irphouse.com Coupling Axial Vibration

More information

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES von Karman Institute for Fluid Dynamics Lecture Series Programme 1998-99 AEROELASTICITY IN AXIAL FLOW TURBOMACHINES May 3-7, 1999 Rhode-Saint- Genèse Belgium STRUCTURAL DYNAMICS: BASICS OF DISK AND BLADE

More information

FRICTION-INDUCED VIBRATIONS IN AN EXPERIMENTAL DRILL-STRING SYSTEM FOR VARIOUS FRICTION SITUATIONS

FRICTION-INDUCED VIBRATIONS IN AN EXPERIMENTAL DRILL-STRING SYSTEM FOR VARIOUS FRICTION SITUATIONS ENOC-5, Eindhoven, Netherlands, 7-1 August 5 FRICTION-INDUCED VIBRATIONS IN AN EXPERIMENTAL DRILL-STRING SYSTEM FOR VARIOUS FRICTION SITUATIONS N. Mihajlović, N. van de Wouw, M.P.M. Hendriks, H. Nijmeijer

More information

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS ROLLER BEARIG FAILURES I REDUCTIO GEAR CAUSED BY IADEQUATE DAMPIG BY ELASTIC COUPLIGS FOR LOW ORDER EXCITATIOS ~by Herbert Roeser, Trans Marine Propulsion Systems, Inc. Seattle Flexible couplings provide

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRST Volume 3 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 16 th February 2017 In association with International

More information

3D Finite Element Modeling and Vibration Analysis of Gas Turbine Structural Elements

3D Finite Element Modeling and Vibration Analysis of Gas Turbine Structural Elements 3D Finite Element Modeling and Vibration Analysis of Gas Turbine Structural Elements Alexey I. Borovkov Igor A. Artamonov Computational Mechanics Laboratory, St.Petersburg State Polytechnical University,

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

KNIFE EDGE FLAT ROLLER

KNIFE EDGE FLAT ROLLER EXPERIMENT N0. 1 To Determine jumping speed of cam Equipment: Cam Analysis Machine Aim: To determine jumping speed of Cam Formulae used: Upward inertial force = Wvω 2 /g Downward force = W + Ks For good

More information

1367. Study on lateral vibration of rotary steerable drilling system

1367. Study on lateral vibration of rotary steerable drilling system 1367. Study on lateral vibration of rotary steerable drilling system Qilong Xue 1, Ruihe Wang 2, Feng Sun 3 1, 3 Key Laboratory on Deep GeoDrilling Technology of the Ministry of Land and Resources, School

More information

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE Figure 3.18 (a) Imbalanced motor with mass supported by a housing mass m, (b) Freebody diagram for, The product is called the imbalance vector.

More information

Experimental Investigations of Whirl Speeds of a Rotor on Hydrodynamic Spiral Journal Bearings Under Flooded Lubrication

Experimental Investigations of Whirl Speeds of a Rotor on Hydrodynamic Spiral Journal Bearings Under Flooded Lubrication International Conference on Fluid Dynamics and Thermodynamics Technologies (FDTT ) IPCSIT vol.33() () IACSIT Press, Singapore Experimental Investigations of Whirl Speeds of a Rotor on Hydrodynamic Spiral

More information

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support radial loads under high speed operating conditions.

More information

Fundamentals of noise and Vibration analysis for engineers

Fundamentals of noise and Vibration analysis for engineers Fundamentals of noise and Vibration analysis for engineers M.P.NORTON Department of Mechanical Engineering, University of Western Australia CAMBRIDGE UNIVERSITY PRESS Preface xii Acknowledgements xv Introductory

More information

Contact problems in rotor systems

Contact problems in rotor systems Contact problems in rotor systems Liudmila Banakh Mechanical Engineering Research Institute of RAS, Moscow, Russia E-mail: banl@inbox.ru (Received 18 July 2016; accepted 24 August 2016) Abstract. We consider

More information

Research Article Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic Excitation

Research Article Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic Excitation Shock and Vibration Volume 216, Article ID 9168747, 7 pages http://dx.doi.org/1.1155/216/9168747 Research Article Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic

More information

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00 Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko FSD3020xxx-x_01-00 1 Content Introduction Vibration problems in EDGs Sources of excitation 2 Introduction Goal of this

More information

Towards Rotordynamic Analysis with COMSOL Multiphysics

Towards Rotordynamic Analysis with COMSOL Multiphysics Towards Rotordynamic Analysis with COMSOL Multiphysics Martin Karlsson *1, and Jean-Claude Luneno 1 1 ÅF Sound & Vibration *Corresponding author: SE-169 99 Stockholm, martin.r.karlsson@afconsult.com Abstract:

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 8 Balancing Lecture - 1 Introduce To Rigid Rotor Balancing Till

More information

In this lecture you will learn the following

In this lecture you will learn the following Module 9 : Forced Vibration with Harmonic Excitation; Undamped Systems and resonance; Viscously Damped Systems; Frequency Response Characteristics and Phase Lag; Systems with Base Excitation; Transmissibility

More information

PHY221 Classical Physics

PHY221 Classical Physics PHY221 Classical Physics Dr. Rhoda Hawkins Autumn Semester Harmonic oscillators 1. Imagine in a science fiction story a man called Doctor Who is in his spaceship (called TARDIS ) and has run out of fuel.

More information

(Refer Slide Time: 1: 19)

(Refer Slide Time: 1: 19) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 46 Force Measurement So this will be lecture

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

WORK SHEET FOR MEP311

WORK SHEET FOR MEP311 EXPERIMENT II-1A STUDY OF PRESSURE DISTRIBUTIONS IN LUBRICATING OIL FILMS USING MICHELL TILTING PAD APPARATUS OBJECTIVE To study generation of pressure profile along and across the thick fluid film (converging,

More information

1.053J/2.003J Dynamics and Control I Fall Final Exam 18 th December, 2007

1.053J/2.003J Dynamics and Control I Fall Final Exam 18 th December, 2007 1.053J/2.003J Dynamics and Control I Fall 2007 Final Exam 18 th December, 2007 Important Notes: 1. You are allowed to use three letter-size sheets (two-sides each) of notes. 2. There are five (5) problems

More information

T1 T e c h n i c a l S e c t i o n

T1 T e c h n i c a l S e c t i o n 1.5 Principles of Noise Reduction A good vibration isolation system is reducing vibration transmission through structures and thus, radiation of these vibration into air, thereby reducing noise. There

More information

Varuvan Vadivelan. Institute of Technology LAB MANUAL. : 2013 : B.E. MECHANICAL ENGINEERING : III Year / V Semester. Regulation Branch Year & Semester

Varuvan Vadivelan. Institute of Technology LAB MANUAL. : 2013 : B.E. MECHANICAL ENGINEERING : III Year / V Semester. Regulation Branch Year & Semester Varuvan Vadivelan Institute of Technology Dharmapuri 636 703 LAB MANUAL Regulation Branch Year & Semester : 2013 : B.E. MECHANICAL ENGINEERING : III Year / V Semester ME 6511 - DYNAMICS LABORATORY GENERAL

More information

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION IGC 2009, Guntur, INDIA NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION B. Manna Lecturer, Civil Engineering Department, National Institute of Technology, Rourkela 769008, India.

More information

A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements

A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements Alireza Moazenahmadi, Dick Petersen and Carl Howard School of Mechanical Engineering,

More information

The Phenomena of Oil Whirl and Oil Whip

The Phenomena of Oil Whirl and Oil Whip Ali M. Al-Shurafa, Vibration Engineer Saudi Electricity Company- Ghazlan Power Plant Saudi Arabia ashurafa@hotmail.com The Phenomena of Oil Whirl and Oil Whip 1. Introduction Large machines mounted on

More information

4 Experimental study of a real size vibro-impact system for the RHD

4 Experimental study of a real size vibro-impact system for the RHD 4 Experimental study of a real size vibro-impact system for the RHD In this chapter the application of a vibro-impact system for improving the drilling performance of oil well drilling will be considered.

More information

Jamil Sami Haddad 1, Waleed Momani 2

Jamil Sami Haddad 1, Waleed Momani 2 IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 30-334X, Volume 11, Issue 4 Ver. VIII (Jul- Aug. 014), PP 46-5 A comparison of two theoretical methods of the materials

More information

142. Determination of reduced mass and stiffness of flexural vibrating cantilever beam

142. Determination of reduced mass and stiffness of flexural vibrating cantilever beam 142. Determination of reduced mass and stiffness of flexural vibrating cantilever beam Tamerlan Omarov 1, Kuralay Tulegenova 2, Yerulan Bekenov 3, Gulnara Abdraimova 4, Algazy Zhauyt 5, Muslimzhan Ibadullayev

More information

ME6511 DYNAMICS LABORATORY LIST OF EXPERIMENTS 1. Free Transverse Vibration I Determination of Natural Frequency 2. Cam Analysis Cam Profile and Jump-speed Characteristics 3. Free Transverse Vibration

More information

Dynamic Analysis of Pelton Turbine and Assembly

Dynamic Analysis of Pelton Turbine and Assembly Dynamic Analysis of Pelton Turbine and Assembly Aman Rajak, Prateek Shrestha, Manoj Rijal, Bishal Pudasaini, Mahesh Chandra Luintel Department of Mechanical Engineering, Central Campus, Pulchowk, Institute

More information

Rotor-stator contact in multiple degree of freedom systems

Rotor-stator contact in multiple degree of freedom systems Rotor-stator contact in multiple degree of freedom systems A. D. Shaw 1, A. R. Champneys 2, M. I. Friswell 1 1 Swansea University, College of Engineering, UK 2 University of Bristol, Department of Engineering

More information

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

PROPELLER INDUCED STRUCTURAL VIBRATION THROUGH THE THRUST BEARING

PROPELLER INDUCED STRUCTURAL VIBRATION THROUGH THE THRUST BEARING PROPELLER INDUCED TRUCTURAL VIBRATION THROUGH THE THRUT BEARING Jie Pan, Nabil Farag, Terry Lin and Ross Juniper* DEPARTMENT OF MECHANICAL AND MATERIAL ENGINEERING THE UNIVERITY OF WETERN AUTRALIA 35 TIRLING

More information

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70 Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power

More information

An Analysis Technique for Vibration Reduction of Motor Pump

An Analysis Technique for Vibration Reduction of Motor Pump An Analysis Technique for Vibration Reduction of Motor Pump Young Kuen Cho, Seong Guk Kim, Dae Won Lee, Paul Han and Han Sung Kim Abstract The purpose of this study was to examine the efficiency of the

More information

Alfa-Tranzit Co., Ltd offers the new DYNAMICS R4.0 program system for analysis and design of rotor systems of high complexity

Alfa-Tranzit Co., Ltd offers the new DYNAMICS R4.0 program system for analysis and design of rotor systems of high complexity ROTORDYNAMICS OF TURBOMACHINERY Alfa-Tranzit Co., Ltd offers the new DYNAMICS R4. program system for analysis and design of rotor systems of high complexity Copyright Alfa-Tranzit Co., Ltd 2-25 e-mail

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

1430. Research on transverse parametric vibration and fault diagnosis of multi-rope hoisting catenaries

1430. Research on transverse parametric vibration and fault diagnosis of multi-rope hoisting catenaries 1430. Research on transverse parametric vibration and fault diagnosis of multi-rope hoisting catenaries Yuqiang Jiang 1, Xiaoping Ma 2, Xingming Xiao 3 1, 2 School of Information and Electrical Engineering,

More information

Dept.of Mechanical Engg, Defence Institute of Advanced Technology, Pune. India

Dept.of Mechanical Engg, Defence Institute of Advanced Technology, Pune. India Applied Mechanics and Materials Submitted: 2014-04-23 ISSN: 1662-7482, Vols. 592-594, pp 1084-1088 Revised: 2014-05-16 doi:10.4028/www.scientific.net/amm.592-594.1084 Accepted: 2014-05-19 2014 Trans Tech

More information

Vibration Dynamics and Control

Vibration Dynamics and Control Giancarlo Genta Vibration Dynamics and Control Spri ringer Contents Series Preface Preface Symbols vii ix xxi Introduction 1 I Dynamics of Linear, Time Invariant, Systems 23 1 Conservative Discrete Vibrating

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Dynamic Response in a Pipe String during Drop-Catch in a Wellbore

Dynamic Response in a Pipe String during Drop-Catch in a Wellbore Visit the SIMULIA Resource Center for more customer examples. Dynamic Response in a Pipe String during Drop-Catch in a Wellbore Allan Zhong, John Gano Halliburton Company Abstract: In field operations,

More information

Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment

Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment Surendra N. Ganeriwala (Suri) & Zhuang Li Mark H. Richardson Spectra Quest, Inc Vibrant Technology, Inc 8205 Hermitage Road

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

WEEKS 8-9 Dynamics of Machinery

WEEKS 8-9 Dynamics of Machinery WEEKS 8-9 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2011 Mechanical Vibrations, Singiresu S. Rao, 2010 Mechanical Vibrations: Theory and

More information

Static and Dynamic Analysis of mm Steel Last Stage Blade for Steam Turbine

Static and Dynamic Analysis of mm Steel Last Stage Blade for Steam Turbine Applied and Computational Mechanics 3 (2009) 133 140 Static and Dynamic Analysis of 1 220 mm Steel Last Stage Blade for Steam Turbine T. Míšek a,,z.kubín a aškoda POWER a. s., Tylova 57, 316 00 Plzeň,

More information

Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module - 12 Signature analysis and preventive maintenance Lecture - 3 Field balancing

More information

MULTIPLE CHOICE QUESTIONS OIL, GAS, AND PETROCHEMICALS. The Energy and Resources Institute

MULTIPLE CHOICE QUESTIONS OIL, GAS, AND PETROCHEMICALS. The Energy and Resources Institute MULTIPLE CHOICE QUESTIONS ON OIL, GAS, AND PETROCHEMICALS The Energy and Resources Institute Preface Petroleum as everyone knows consists of hydrocarbons of various molecular weights and other organic

More information

FEDSM99 S-291 AXIAL ROTOR OSCILLATIONS IN CRYOGENIC FLUID MACHINERY

FEDSM99 S-291 AXIAL ROTOR OSCILLATIONS IN CRYOGENIC FLUID MACHINERY Proceedings of the 3 rd ASME/JSME Joint Fluids Engineering Conference 1999 ASME Fluids Engineering Division Summer Meeting July 18-23 1999, San Francisco, California FEDSM99 S-291 AXIAL ROTOR OSCILLATIONS

More information

Orbit Analysis. Jaafar Alsalaet College of Engineering-University of Basrah

Orbit Analysis. Jaafar Alsalaet College of Engineering-University of Basrah Orbit Analysis Jaafar Alsalaet College of Engineering-University of Basrah 1. Introduction Orbits are Lissajous patterns of time domain signals that are simultaneously plotted in the X Y coordinate plane

More information

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Paper ID No: 23 Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Dr. Magnus Karlberg 1, Dr. Martin Karlsson 2, Prof. Lennart Karlsson 3 and Ass. Prof. Mats Näsström 4 1 Department

More information

Basics of rotordynamics 2

Basics of rotordynamics 2 Basics of rotordynamics Jeffcott rotor 3 M A O a rigid rotor disk rotates at angular frequency W massless shaft acts as a spring restoring displacements disk can move only in the plane defined by axes

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

VIBRATION ANALYSIS OF ROTARY DRIER

VIBRATION ANALYSIS OF ROTARY DRIER Engineering MECHANICS, Vol. 14, 2007, No. 4, p. 259 268 259 VIBRATION ANALYSIS OF ROTARY DRIER František Palčák*, Martin Vančo* In this paper the transfer of vibration from motor to the bottom group of

More information

Lab 1: Damped, Driven Harmonic Oscillator

Lab 1: Damped, Driven Harmonic Oscillator 1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information

Analyzing the Stability Robustness of Interval Polynomials

Analyzing the Stability Robustness of Interval Polynomials 1 Analyzing the Stability Robustness of Interval Polynomials Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Correspondence concerning this paper should be sent to

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F By Tom Irvine Email: tomirvine@aol.com May 19, 2011 Introduction Consider a launch vehicle with a payload. Intuitively, a realistic payload

More information

Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Research Article Response of a Warped Flexible Rotor with a Fluid Bearing

Research Article Response of a Warped Flexible Rotor with a Fluid Bearing Hindawi Publishing Corporation International Journal of Rotating Machinery Volume 8, Article ID 753, 9 pages doi:.55/8/753 Research Article Response of a Warped Flexible Rotor with a Fluid Bearing Jim

More information

Analysis of Tensioner Induced Coupling in Serpentine Belt Drive Systems

Analysis of Tensioner Induced Coupling in Serpentine Belt Drive Systems 2008-01-1371 of Tensioner Induced Coupling in Serpentine Belt Drive Systems Copyright 2007 SAE International R. P. Neward and S. Boedo Department of Mechanical Engineering, Rochester Institute of Technology

More information

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii, February 17-22, 2008 ISROMAC12-2008-20076 EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

More information

Consideration of the pulsation as a design criterion for a newly developed oil-injected process gas screw compressor

Consideration of the pulsation as a design criterion for a newly developed oil-injected process gas screw compressor Consideration of the pulsation as a design criterion for a newly developed oil-injected process gas screw compressor Dr.-Ing. J. Eggert Dipl.-Ing. N. Tewes MAN Diesel & Turbo SE, Oberhausen Abstract For

More information

Circular motion minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor Page 1 of 22. Name: Class: Date: Time: Marks:

Circular motion minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor Page 1 of 22. Name: Class: Date: Time: Marks: Circular motion 2 Name: Class: Date: Time: 67 minutes Marks: 62 marks Comments: Page 1 of 22 1 A lead ball of mass 0.25 kg is swung round on the end of a string so that the ball moves in a horizontal circle

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

DREDGING DYNAMICS AND VIBRATION MEASURES

DREDGING DYNAMICS AND VIBRATION MEASURES DREDGING DYNAMICS AND VIBRATION MEASURES C R Barik, K Vijayan, Department of Ocean Engineering and Naval Architecture, IIT Kharagpur, India ABSTRACT The demands for dredging have found a profound increase

More information

Modeling and simulation of multi-disk auto-balancing rotor

Modeling and simulation of multi-disk auto-balancing rotor IJCSI International Journal of Computer Science Issues, Volume, Issue 6, November 6 ISSN (Print): 69-8 ISSN (Online): 69-78 www.ijcsi.org https://doi.org/.9/66.8897 88 Modeling and simulation of multi-disk

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Investigation of Coupled Lateral and Torsional Vibrations of a Cracked Rotor Under Radial Load

Investigation of Coupled Lateral and Torsional Vibrations of a Cracked Rotor Under Radial Load NOMENCLATURE Investigation of Coupled Lateral and Torsional Vibrations of a Cracked Rotor Under Radial Load Xi Wu, Assistant Professor Jim Meagher, Professor Clinton Judd, Graduate Student Department of

More information

Calculating Method for the Axial Force of Washover String During Extracting Casing in Directional Well

Calculating Method for the Axial Force of Washover String During Extracting Casing in Directional Well Advances in Petroleum Exploration and Development Vol. 9, No., 05, pp. 86-9 DOI:0.3968/6634 ISSN 95-54X [Print] ISSN 95-5438 [Online] www.cscanada.net www.cscanada.org Calculating Method for the Axial

More information

DESIGN OF AN ULTRA-SPEED LAB-SCALE DRILLING RIG FOR SIMULATION OF HIGH SPEED DRILLING OPERATIONS IN HARD ROCKS. *V. Rasouli, B.

DESIGN OF AN ULTRA-SPEED LAB-SCALE DRILLING RIG FOR SIMULATION OF HIGH SPEED DRILLING OPERATIONS IN HARD ROCKS. *V. Rasouli, B. DESIGN OF AN ULTRA-SPEED LAB-SCALE DRILLING RIG FOR SIMULATION OF HIGH SPEED DRILLING OPERATIONS IN HARD ROCKS *V. Rasouli, B. Evans Department of Petroleum Engineering, Curtin University ARRC Building,

More information