New measurements of neutron electric dipole moment

Size: px
Start display at page:

Download "New measurements of neutron electric dipole moment"

Transcription

1 New measurements of neutron electric dipole moment A.P.Serebrov ), E.A.Kolomenskiy, A.N.Pirozhkov, I.A.Krasnoshekova, A.V.Vasiliev, A.O.Polyushkin, M.C.Lasakov, A.K.Fomin, I.V.Shoka, O.M.Zherebtsov, P.Geltenbort +, O.Zimmer +, S.N.Ivanov +, E.B.Alexandrov *, S.P.Dmitriev *, N.A.Dovator * B.P.Konstantiov Petersburg Nuclear Physics Institute of National Research Centre Kurchatov Institute, Gatchina, Leningrad region, Russia + Institut Max von Laue Paul Langevin, BP 56, 3802 Grenoble Cedex 9, France * Ioffe Physical Technical Institute RAS, 902 St. Petersburg, Russia The results of measurements of neutron electric dipole moment obtained by PNPI EDM spectrometer at reactor ILL are presented. As a result of given measurements the limit for EDM of neutron есm has been set on the confidence level 90%. Increase of measuring accuracy by 3- times is being discussed. Existence of electric dipole moment (EDM) of an elementary particle is possible only at simultaneous violation of space parity and invariance relevant to time reversal. The difficulties of the Standard Model in explanation of CP-violation are formally surmounted by other models such as super symmetry, models with multiple Higgs-particles and left-right symmetric theories. In these models CPnonconservation arises in the first order due to weak interaction, with neutron EDM being at the level accessible to a modern experiment. Baryon asymmetry of the Universe is predicted by such models at the observable level which points at possible validity of proposed versions of the theory. Search for neutron EDM in low energy physics is an alternative to search for new particles with hadrons colliders in high energy physics. A value or a new constraint on neutron EDM magnitude is a very sensitive test for choosing the theory with CP-violation. To illustrate it in coordinates of mass of particles being sought for in super symmetric theoretical models, Fig. shows areas (for possible existence of super particles) excluded by other experiments [, 2]. The vertical axis gives the super symmetric Higgs/Higgsino mass, while the horizontal axis gives the U()Y gaugino mass parameter M. The shaded region indicates the region for these masses needed to obtain the observed baryon asymmetry. The dark grey region is excluded by LEP. The grey region is excluded by the present electron EDM limit, while the dash-doted line gives prospective future experimental sensitivity of neutron EDM. The dashed line indicates sensitivity of future direct search measurements at the LHC. The area accessible to the Large Hadrons Collider (LHC, Switzerland) is shown with a dotted line. The area accessible for EDM E mail: serebrov@pnpi.spb.ru

2 experiment in increasing the experimental accuracy by two orders of magnitude is marked with a dot-dashed line. It will be quite possible to achieve it using new UCN sources of high intensity [3]. Fig.. Illustrative sensitivity of present and future EDM measurements to supersymmetric mass parameters relevant for electroweak baryogenesis [, 2]. Thus, the neutron EDM measurement is of significance for search for phenomena outside the scope of Standard Model and its discovery is likely to become the determining factor for choosing a version of the theory adequately describing processes with violation of CPsymmetry. At present the most accurate constraints on neutron EDM value have been obtained using the magnetic resonance method with the reversible electric field and prolonged holding of a neutron in the trap of EDM spectrometer [, 5]. Sensitivity of EDM spectrometer is determined by the number of registered neutrons, by width of magnetic resonance and by strength of electric field. Value of neutron EDM is calculated by the following formula: d n h( N N ) N 2( E E ) f, () where N and N are detector counts correspondingly in parallel and antiparallel directions of an electric field relative to magnetic field; h - the Planck constant, E is strength of electric N field; is slope of resonance curve at the operation point. f 2

3 Statistical error of measured EDM is expressed by the following formula: d n res h 2N N 2( E E ) f 2( E res h 2N E ) T N res, (2) res where N is neutron count at resonance frequency accumulated during the measuring time at one of the points of electric field; T is time interval between two impulses of oscillating field; N N N N is parameter determining the scope of a resonance curve. max min max min So, an experimental sensitivity d n is determined by neutron count N, interaction time in the installation and by the value of electric field intensity E. The experiment concerned is a new stage of experiments made by PNPI on search for neutron electric dipole moment by using the two chamber EDM spectrometer. Investigations are started within the framework of making preparations for putting into operation the reactor PIK built in PNPI. The extracted reactor beam is expected to have UCN source on the basis of super fluid helium. Besides, some preparation is in progress at reactor WWR-M PNPI for creating a new UCN source with a moderator based on super fluid helium. Both sources are supposed to have UCN density by two-three orders higher than the available source at high flux reactor in the Institute Laue Langevin (ILL, Grenoble, France). At present in PNPI there is no operating UCN source, therefore EDM installation is situated in ILL. It is located in the position of PF2 MAM turbine of UCN with UCN flux density of about n/сm 3 [6]. The project is supported by an international scientific committee ILL which recommends conducting prolonged (2-3 years) measurements for collecting statistics. Now ILL reactor has stopped its operation for a year for the planned reconstruction to be carried out. Thus we represent a new result obtained by PNPI installation with results of EDM-measurements on the latest three reactor cycles. Our work makes use of PNPI differential magnetic resonance spectrometer [] (Fig.2), the specific characteristic of which is availability of the two UCN storage chambers provided with a common system of magnetic fields and with electric fields being equal in magnitude but oppositely directed. Storage chambers are located in four layer magnetic screen made out of permalloy. Control and stabilization of magnetic conditions is maintained with the help of eight quantum magnetometers at optical pumping up of cesium atoms. They are placed around UCN storage chambers in pairs: one magnetometer over another one and provide monitoring of the mean magnetic field within the resonance range. They are also responsible for formation of resonance frequency by means of dividing cesium frequency with regard to gyro magnetic factors of cesium and neutron. For an electric field to be induced one applies a high voltage 3

4 source of 200 kv with polarity reverse of output voltage without switching off loading. Either glass ceramic or quartz is used as material for side walls of UCN storage chambers. In changing polarity of electric field EDM neutron effects in different chambers will have opposite signs whereas instability of common magnetic field results in the resonance frequency shift of similar signs. Difference in results of measurements in different chambers leads to adding effects of neutron EDM, with effects produced by correlated count alterations irrelevant to EDM being considerably suppressed. Fig.2. EDM spectrometer scheme. A system of double analysis of polarization is another peculiarity enhancing the installation sensitivity. At the exit from each storage chamber of the spectrometer there are two detectors with their own analyzers of polarization and flipper. This system allows detecting both components of neutron polarization at the leading field direction. This almost twice increases the summed up neutron count during measurements and allows compensation of variation of results related to fluctuations of neutron intensity from the source. Correlation data analysis of four detectors and regularly measured parameters of leakage currents as well as the number of breakdowns and recordings of magnetometers enable to reveal possible systematic effects. Actually, with the help of each of four detectors one measures neutron electric dipole moment d, d 2, d 3, d. The signs of these four effects account the sign of the derivative at the resonance point as well as direction of the electric field with respect to the magnetic field. Using these values one can deduce new four linear-independent values as shown below.

5 EDM [( d d2) ( d3 d)] [( d d2) ( d3 d)] N [( dd2 ) ( d3 d )] Z [( d d2) ( d3 d)] The first of them determines the neutron EDM effect, the second ( ) determines the effect of electric field influence on resonance conditions, the third ( N ) determines the effect of electric field influence on detector counting rate, with each of the above mentioned effects compensating other effects. Finally, in the last combination ( Z ) all above mentioned effects must be compensated, which is regarded as a significant criterion of compensation scheme operation. The measurements have been carried out for phase shifts between radio impulse 90 and 270 it means with different sign of derivative of resonance curve. It is very useful to compensate different type of drift and possible systematic effects. But t is to be noted that for detecting influence of electric polarity alteration on the detector counting rate ( N ) measuring results with phase shifts between radio impulses 90 and 270 must be subtracted rather than added. UCN storage time in spectrometer chambers was from 70 sec to 00 sec. Fig.3 shows resonance curves of the spectrometer for phase shifts 90 and 270. The depth of resonance peak-gap was 70% at the time of 95 sec between two pulses. Fig.3. Resonance curves for detectors D and D2 and phase shifts 90 and 270 for holding time 00 s. 5

6 An example of one of measuring series is presented in Fig.. The duration of this series was equal to 5 hours, electric field was 8kV/cm and UCN holding time in the traps of the spectrometer was 00 sec. Each point represents the result of a single measurement of EDM value in accordance with formula () in switching the electric field polarity in sequences (+ +) or ( ++ ) in order to eliminate the effect of the linear drift. The result of measurements of EDM in the top storage chamber is Dtop=(2.59±3.90) 0-25 e cm and the result for the bottom chamber is Dbott=-(3.98±.22) 0-25 e cm. The total result D=-(0.70±2.7) 0-25 e cm demonstrates the compensation of fluctuations of the magnetic field and permits to assess the sensitivity of the experimental set-up, which for this series of measurements amounted to e cm/day. Fig.. An example of one of measuring series. EDMtop and EDMbott are measuring value of EDM for top and bottom chamber; EDM is measured for both chambers. However, the time of collecting statistics during the experiment, as a rule, for different reasons is three times less than the current time. At present this installation has made a series of measurements of neutron EDM with collecting statistics during 3 reactor cycles. Table presents the results of EDM neutron measurements and values, N and Z controlling possible systematic effects in units e cm. As pointed out, the above mentioned systematic effects must be compensated in neutron EDM combination. For this reason, possible systematic effects at the level of 2-3 standard deviations must be compensated, thus, we do not consider that it is necessary to introduce any estimations on systematic in neutron EDM measuring results. It should be mentioned that control of possible effects on cesium magnetometers has also been conducted. The difference in recordings of magnetometers in the upper and lower planes (correspondingly in the vicinity of the top and

7 bottom chambers) at electric field switching does not exceed 0-6 nt. This limit can be recalculated in regard to the constraint on false EDM effect at the level of е сm, i.e. by the order of magnitude lower the stated accuracy of measurements. Table : Results of measurements in units 0-26 е сm. Old [] New Total EDM 0.7± ± ± ± ± ±5.0 N -.5±. 8.62± ±3.35 Z -0.8± ±.72.05±3.05 Variations of measurement results for normalized values EDM,, N and Z are presented in Fig.5. Distribution of EDM and Z results is determined by a statistical data variation. Distribution of and N results is somewhat extended because of magnetic field instability and because of neutron intensity correspondingly. Fig.5. Distribution of measurement results for EDM values,, N and Z. For each value are shown: 2 the ratio of distribution width to its statistical width as well as at fitting by means of normal distribution. Accuracy of measurements in ILL was есm, and on account of earlier made measurements at the reactor WWR-M the measuring accuracy is есm. This measuring 7

8 accuracy is as high as the level of modern experimental limit on neutron EDM value [5]. Limit set on 26 neutron EDM in our measurements is 5.20 есm, which corresponds to the confidence level of 90%. Such a result and confirmation of the existing constraint in an independent experiment made at another installation is of crucial importance for the fundamental problem involved. We are planning to increase accuracy of our measurements at the expense of enhancing 3- times UCN intensity at the entrance of the spectrometer by transporting it to another beam of higher intensity, as well as at the expense of enhancing 3 times the transmitting capability of the spectrometer using a new scheme of spectrometer traps. Thus, we are going to increase accuracy 26 of measurements by 3- times up to 0.70 есm. Concluding, the authors would like to express their gratitude to the staff of the workshop of experimental facilities in PNPI for their assistance in reconstructing the spectrometer and also to the personnel of ILL reactor for their help in assembling the installation and making measurements. Particularly we would like to thank T. Brenner from ILL and A.I. Egorov from PNPI for their assistance. References. NSAC Long Range Plan: The Frontiers of Nuclear Science, 2007; [ 2. M.J. Ramsey-Musolf, in: Proc. of the Intensity Frontier Workshop 20; [Fundamental Physics at the Intensity Frontier, arxiv: v [hep-ex]]. 3. A.P. Serebrov, V.A. Mityuklyaev, A.A. Zakharov et al., NIM A 6, 276 (2009).. I.S. Altarev, Y.V. Borisov, N.V. Borovikova et al., Phys. of At. Nucl. 59, 52 (996). 5. C.A. Baker, D.D. Doyle, P. Geltenbort et al., PRL 97, 380 (2006). 6. A.P. Serebrov, P. Geltenbort, I.V. Shoka et al., NIM A 6, 263 (2009). 8

Present status and future prospects of nedm experiment of PNPI-ILL-PTI collaboration

Present status and future prospects of nedm experiment of PNPI-ILL-PTI collaboration Present status and future prospects of nedm experiment of -ILL-PTI collaboration 1 Petersburg Nuclear Physics Institute NRC KI Gatchina, Russia E-mail: serebrov_ap@pnpi.nrcki.ru Use of ultracold neutrons

More information

Project of ultracold neutron source with superfluid helium at WWR-M reactor (PNPI, Gatchina) and scientific research program А.P.

Project of ultracold neutron source with superfluid helium at WWR-M reactor (PNPI, Gatchina) and scientific research program А.P. Project of ultracold neutron source with superfluid helium at WWR-M reactor (PNPI, Gatchina) and scientific research program А.P. Serebrov UCN2010 International Workshop on UCN and Fundamental Neutron

More information

Depolarization of ultracold neutrons during their storage in material bottles

Depolarization of ultracold neutrons during their storage in material bottles Physics Letters A 313 (2003) 373 379 www.elsevier.com/locate/pla Depolarization of ultracold neutrons during their storage in material bottles A.P. Serebrov a,,m.s.lasakov a, A.V. Vassiljev a, I.A. Krasnoschekova

More information

Preparation of facilities for fundamental research with ultracold neutrons at PNPI

Preparation of facilities for fundamental research with ultracold neutrons at PNPI Preparation of facilities for fundamental research with ultracold neutrons at PNPI A.P. Serebrov 1*, V.A. Mityuklyaev 1, A.A. Zakharov 1, A.N. Erykalov 1, M.S. Onegin 1, A.K. Fomin 1, V.A. Ilatovskiy 1,

More information

Plan to search for nnbar at WWR-M reactor

Plan to search for nnbar at WWR-M reactor Plan to search for nnbar at WWR-M reactor A. Fomin A. Serebrov, O. Zherebtsov, M. Chaikovskii, A. Murashkin, E. Leonova, O. Fedorova, V. Ivochkin, V. Lyamkin, D. Prudnikov, A. Chechkin PNPI, Gatchina,

More information

Low-energy heating of ultracold neutrons during their storage in material bottles

Low-energy heating of ultracold neutrons during their storage in material bottles Physics Letters A 309 (2003) 218 224 www.elsevier.com/locate/pla Low-energy heating of ultracold neutrons during their storage in material bottles A.P. Serebrov a,, J. Butterworth b,m.daum c, A.K. Fomin

More information

UCN supersource at PNPI and fundamental physics program А.P. Serebrov

UCN supersource at PNPI and fundamental physics program А.P. Serebrov UCN supersource at PNPI and fundamental physics program А.P. Serebrov 8 th UCN Workshop Ultra Cold & Cold Neutrons Physics & Sources 11-21 June 2011 1 Content 1. UCN sources at PNPI 2. Ultracold neutron

More information

CryoEDM: a cryogenic experiment to measure the neutron Electric Dipole Moment

CryoEDM: a cryogenic experiment to measure the neutron Electric Dipole Moment CryoEDM: a cryogenic experiment to measure the neutron Electric Dipole Moment C A Baker, S N Balashov, V Francis, K Green, M G D van der Grinten, P S Iaydjiev 1, S N Ivanov 2, A Khazov 3, M A H Tucker

More information

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement Hyperfine Interact (2013) 220:89 93 DOI 10.1007/s10751-013-0855-0 Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement K. Matsuta Y. Masuda

More information

The cryogenic neutron EDM experiment at ILL

The cryogenic neutron EDM experiment at ILL The cryogenic neutron EDM experiment at ILL and the result of the room temperature experiment James Karamath University of Sussex In this talk (n)edm motivation & principles Room-temperature nedm experiment

More information

New experimental limit on the electric dipole moment of the neutron

New experimental limit on the electric dipole moment of the neutron New eperimental limit on the electric dipole moment of the neutron Article (Published Version) Harris, P G, Baker, C A, Green, K, Iaydjiev, P, Ivanov, S, May, D J R, Pendlebury, J M, Shiers, D, Smith,

More information

The Search for the Neutron Electric Dipole Moment

The Search for the Neutron Electric Dipole Moment The Search for the Neutron Electric Dipole Moment University of Sussex Rutherford Appleton Laboratory Institut Laue Langevin R.A.L. /Sussex/ILL/Kure /Sussex/ILL collaboration Tony Baker David Shiers Keith

More information

The neutron Electric Dipole Moment

The neutron Electric Dipole Moment International Workshop on Fundamental Symmetries: from nuclei and neutrinos to the Universe ECT* Trento, 25-29 June 2007 The neutron Electric Dipole Moment Oscar Naviliat-Cuncic LPC-Caen and Université

More information

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin High-precision studies in fundamental physics with slow neutrons Oliver Zimmer Institut Laue Langevin ILL, 20 September 2016 Topics The impossible particle and its properties Search for an electric dipole

More information

The GRANIT project: Status and Perspectives

The GRANIT project: Status and Perspectives : Status and Perspectives Stephan Baeßler, a Alexei Gagarski, b Ludmilla Grigorieva, b Michael Kreuz, d Fabrice Naraghi, c Valery Nesvizhevsky, d Guillaume Pignol, c Konstantin Protassov, c, c Francis

More information

An option of «UCN pump» for ESS. V.V. Nesvizhevsky. Institut Max von Laue Paul Langevin, 71 av. des Martyrs, Grenoble, France.

An option of «UCN pump» for ESS. V.V. Nesvizhevsky. Institut Max von Laue Paul Langevin, 71 av. des Martyrs, Grenoble, France. An option of «UCN pump» for ESS V.V. Nesvizhevsky Institut Max von Laue Paul Langevin, 71 av. des Martyrs, 38000 Grenoble, France Abstract The aim of this short note is to present an option for a source

More information

meeting March 8, 2011

meeting March 8, 2011 meeting March 8, 2011 Yuri Kamyshkov / University of Tennessee email: kamyshkov@utk.edu 1 Neutron antineutron t transformation ti experiment would be an alternative way of searching for baryon number violation

More information

PIK reactor instrumentation program

PIK reactor instrumentation program National Research Center Kurchatov Institute B.P.Konstantinov Petersburg Nuclear Physics Institute PIK reactor instrumentation program Vladimir Voronin 23-rd International Seminar on Interaction of Neutrons

More information

A next generation measurement of the electric dipole moment of the neutron at the FRM II

A next generation measurement of the electric dipole moment of the neutron at the FRM II IL NUOVO CIMENTO Vol.?, N.?? A next generation measurement of the electric dipole moment of the neutron at the FRM II I. Altarev( 1 ), S. Chesnevskaya( 1 ), W. Feldmeier( 1 ), P. Fierlinger( 1 ), A. Frei(

More information

* Neutron magnetic storage and neutron lifetime measuring

* Neutron magnetic storage and neutron lifetime measuring * Neutron magnetic storage and neutron lifetime measuring Victor Ezhov Petersburg Nuclear Physics Institute NRC KI Mainz, 2016 Neutron magnetic storage Magnetic mirrors, channels and bottles neutrons.

More information

arxiv: v1 [nucl-ex] 7 Oct 2011

arxiv: v1 [nucl-ex] 7 Oct 2011 Proceedings of the DPF-2011 Conference, Providence, RI, August 8-13, 2011 1 arxiv:1110.1505v1 [nucl-ex] 7 Oct 2011 An Improved Search for the Neutron Electric Dipole Moment M. Burghoff and A. Schnabel

More information

Institute Laue-Langevin, Grenoble

Institute Laue-Langevin, Grenoble Institute Laue-Langevin, Grenoble Plan of this presentation 1. Short Introduction: Ultra Cold Neutrons - UCN. First experiment in 1968 in JINR, Dubna: V.I.Luschikov et al (1969). JETP Letters 9: 40-45.

More information

R. D. McKeown. Jefferson Lab College of William and Mary

R. D. McKeown. Jefferson Lab College of William and Mary R. D. McKeown Jefferson Lab College of William and Mary Jlab User Meeting, June 2010 1 The Standard Model Renormalizable Gauge Theory Spontaneous Symmetry Breaking n 1 n 2 n 3 Massless g,g Higgs Particle

More information

The ESS neutrino facility for CP violation discovery

The ESS neutrino facility for CP violation discovery The ESS neutrino facility for CP violation discovery IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg, France E-mail: marcos.dracos@in2p3.fr The relatively large value of the neutrino mixing

More information

Victor Ezhov Petersburg Nuclear Physics Institute NRC KI ISINN 2015 May 25-29, Dubna

Victor Ezhov Petersburg Nuclear Physics Institute NRC KI ISINN 2015 May 25-29, Dubna Neutron magnetic storage and neutron lifetime measuring Victor Ezhov Petersburg Nuclear Physics Institute NRC KI ISINN 2015 May 25-29, Dubna Neutron magnetic storage Magnetic mirrors, channels and bottles

More information

A neutron-antineutron oscillation experiment at the European Spallation Source

A neutron-antineutron oscillation experiment at the European Spallation Source Nuclear Physics B Proceedings Supplement 00 (2014) 1 6 Nuclear Physics B Proceedings Supplement A neutron-antineutron oscillation experiment at the European Spallation Source Camille Theroine a,b, on behalf

More information

On possibility of realization NEUTRINO-4 experiment on search for oscillations of the reactor antineutrino into a sterile state

On possibility of realization NEUTRINO-4 experiment on search for oscillations of the reactor antineutrino into a sterile state On possibility of realization NEUTRINO-4 experiment on search for oscillations of the reactor antineutrino into a sterile state A.P. Serebrov a*, А.К. Fomin a, V.G. Zinoviev a, V.G. Ivochkin a, Yu.E. Loginov

More information

NEUTRON ELECTRIC DIPOLE MOMENT EXPERIMENTS

NEUTRON ELECTRIC DIPOLE MOMENT EXPERIMENTS Modern Physics Letters A Vol. 23, Nos. 17 20 (2008) 1397 1408 c World Scientific Publishing Company NEUTRON ELECTRIC DIPOLE MOMENT EXPERIMENTS JEN-CHIEH PENG Department of Physics, University of Illinois

More information

TUNING NEUTRON RF-PULSE FREQUENCY

TUNING NEUTRON RF-PULSE FREQUENCY TUNING NEUTRON RF-PULSE FREQUENCY IN THE NEDM EXPERIMENT Michał Rawlik supervised by dr Jacek Zejma Institute of Physics Jagiellonian University Kraków SEPTEMBER 4, 2012 Abstract In the Paul Sherrer Institute

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information

CryoEDM The search for the electric dipole moment of the neutron

CryoEDM The search for the electric dipole moment of the neutron CryoEDM The search for the electric dipole moment of the neutron RAL, STFC Sussex University Oxford University ILL Kure University Swansea University Dr Christine Clarke1 4/19/2011 CryoEDM Motivation (CPV)

More information

The New Search for a Neutron EDM at the SNS

The New Search for a Neutron EDM at the SNS The New Search for a Neutron EDM at the SNS Jen-Chieh Peng University of Illinois at Urbana-Champaign The Third International Symposium on LEPTON MOMENTS, Cape Cod, June 19-22, 2006 Physics of neutron

More information

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London A new measurement of the electron edm E.A. Hinds Centre for Cold Matter Imperial College London Birmingham, 26 October 2011 How a point electron gets structure + + + - + point electron polarisable vacuum

More information

Neutron Electric Dipole Moment Experiment at PSI. Kazimierz Bodek for the nedm Collaboration

Neutron Electric Dipole Moment Experiment at PSI. Kazimierz Bodek for the nedm Collaboration Neutron Electric Dipole Moment Experiment at PSI Kazimierz Bodek for the nedm Collaboration The Neutron EDM Collaboration G. Ban, Th. Lefort, O. Naviliat-Cuncic Laboratoire de Physique Corpusculaire, Caen,

More information

New Search for Mirror Neutrons at HFIR

New Search for Mirror Neutrons at HFIR New Search for Mirror Neutrons at HFIR Leah Broussard Oak Ridge National Laboratory October 24, 2017 Neutron-Antineutron Oscillations: Appearance, Disappearance, and Baryogenesis (October 23-27, 2017)

More information

Dynamics of a two-step Electroweak Phase Transition

Dynamics of a two-step Electroweak Phase Transition Dynamics of a two-step Electroweak Phase Transition May 2, 2014 ACFI Higgs Portal Workshop in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang hiren.patel@mpi-hd.mpg.de Electroweak

More information

RUSSIA NEUTRON LANDSCAPE

RUSSIA NEUTRON LANDSCAPE NRC KI PNPI NRC KI JINR RUSSIA NEUTRON LANDSCAPE V.L. Aksenov Petersburg Nuclear Physics Institute NRC KI (Gatchina) Joint Institute for Nuclear Research (Dubna) International Conference Nucleus 2015,

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

The hunt for permanent electric dipole moments

The hunt for permanent electric dipole moments Journal of Physics: Conference Series The hunt for permanent electric dipole moments To cite this article: W Korsch 2012 J. Phys.: Conf. Ser. 337 012064 View the article online for updates and enhancements.

More information

Neutron lifetime, dark matter and search for sterile neutrino

Neutron lifetime, dark matter and search for sterile neutrino Neutron lifetime, dark matter and search for sterile neutrino A. P. Serebrov *, R.M. Samoilov, I.A. Mitropolsky, A.M. Gagarsky Petersburg Institute of Nuclear Physics, NRC Kurchatov institute, 188300 Gatchina,

More information

Electric dipole moments: theory and experiment

Electric dipole moments: theory and experiment Electric dipole moments: theory and experiment EA Hinds Blois June 2002 Two motivations to measure EDMs EDM violates T symmetry Deeply connected to CP violation and the matter-antimatter asymmetry of the

More information

Measuring the Neutron Electric Dipole Moment - A Tiny Number with Big Implications

Measuring the Neutron Electric Dipole Moment - A Tiny Number with Big Implications Measuring the Neutron Electric Dipole Moment - A Tiny Number with Big Implications Imperial/RAL Kyoto University nd, 2005 The Universe passed through a period of the very high energy density early in the

More information

Neutron lifetime experiment HOPE

Neutron lifetime experiment HOPE Neutron lifetime experiment HOPE Peter Geltenbort, Sergey Ivanov, Fabien Lafont, Thorsten Lauer, Kent Leung, Florian Martin, Felix Rosenau, Martin Simson Oliver Zimmer Institut Laue Langevin Grenoble Beta-decay

More information

Marcos Dracos IPHC, Université de Strasbourg, CNRS/IN2P3, F Strasbourg, France

Marcos Dracos IPHC, Université de Strasbourg, CNRS/IN2P3, F Strasbourg, France Neutrino CP Violation with the ESSνSB project IPHC, Université de Strasbourg, CNRS/INP3, F-603 Strasbourg, France E-mail: marcos.dracos@inp3.fr After measuring in 01 a relatively large value of the neutrino

More information

Erratum for Supersymmetric Electroweak Baryogenesis

Erratum for Supersymmetric Electroweak Baryogenesis Preprint typeset in JHEP style. - PAPER VERSION Erratum for Supersymmetric Electroweak Baryogenesis arxiv:hep-ph/v Oct James M. Cline McGill University, Montréal, Québec, Canada E-mail: cline@physics.mcgill.ca

More information

Yuri A. Kamyshkov. Department of Physics University of Tennessee, Knoxville, TN.

Yuri A. Kamyshkov. Department of Physics University of Tennessee, Knoxville, TN. NRC Committee on the Physics of the Universe Snowmass, July 13, 2001 aaaaaaaaaa `````````` Neutron Antineutron Search aaaaaaaaaa `````````` Yuri A. Kamyshkov Department of Physics University of Tennessee,

More information

Neutron electric dipole moment

Neutron electric dipole moment SEMINAR Neutron electric dipole moment Author: Samo Štajner Mentor: doc. dr. Simon Širca 22. 2. 2011 Abstract In this paper we review the current experimental state of neutron electric dipole moment determination.

More information

Improvements to the Mercury Electric Dipole Moment Experiment

Improvements to the Mercury Electric Dipole Moment Experiment Improvements to the Mercury Electric Dipole Moment Experiment Kyle Matsuda Advisor: Blayne Heckel INT REU, University of Washington August 2015 Table of Contents 1 Introduction 2 Experimental Setup 3 Current

More information

Polarized ion source with nearly resonant chargeexchange plasma ionizer: parameters and possibilities for improvements

Polarized ion source with nearly resonant chargeexchange plasma ionizer: parameters and possibilities for improvements Polarized ion source with nearly resonant chargeexchange plasma ionizer: parameters and possibilities for improvements Institute for Nuclear Research of Russian Academy of Sciences Moscow, 117312, Russia

More information

V.G. Baryshevsky. Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus

V.G. Baryshevsky. Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus The phenomena of spin rotation and depolarization of highenergy particles in bent and straight crystals at Large Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to

More information

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT 8 JUNE 2018 MARIA ŻUREK FOR THE JEDI COLLABORATION MOTIVATION Barion Asymmetry Problem Barion Asymmetry Observation Standard Cosmological

More information

Recent Results from T2K and Future Prospects

Recent Results from T2K and Future Prospects Recent Results from TK and Future Prospects Konosuke Iwamoto, on behalf of the TK Collaboration University of Rochester E-mail: kiwamoto@pas.rochester.edu The TK long-baseline neutrino oscillation experiment

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

7th International Workshop "Ultra Cold & Cold Neutrons. Physics & Sources". (8-14 of June 2009) Project leader: Anatoli SEREBROV

7th International Workshop Ultra Cold & Cold Neutrons. Physics & Sources. (8-14 of June 2009) Project leader: Anatoli SEREBROV 7th International Workshop "Ultra Cold & Cold Neutrons. Physics & Sources". (8-14 of June 2009) PROJECT OF SUPERFLUID HELIUM UCN SOURCE AT PNPI Arcady ZAKHAROV Project leader: Anatoli SEREBROV Reactor

More information

arxiv: v1 [hep-ex] 11 May 2017

arxiv: v1 [hep-ex] 11 May 2017 LATEST RESULTS FROM TK arxiv:1705.0477v1 [hep-ex] 11 May 017 Marcela Batkiewicz a, for the TK collaboration Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland Abstract. The TK (Tokai

More information

Neutron and electron electric dipole moments (EDMs)

Neutron and electron electric dipole moments (EDMs) QED & Quantum Vaccum, Low Energy Frontier, 05003 (2012) DOI: 10.1051/iesc/2012qed05003 Owned by the authors, published by EDP Sciences, 2012 Neutron and electron electric dipole moments (EDMs) Mike Tarbutt

More information

(Lifetime and) Dipole Moments

(Lifetime and) Dipole Moments Precision Measurements with the Muon: (Lifetime and) Dipole Moments B.L. Roberts Department of Physics Boston University roberts @bu.edu http://physics.bu.edu/roberts.html B. Lee Roberts, APPEAL07, CAST,

More information

arxiv: v1 [hep-ex] 10 Aug 2011

arxiv: v1 [hep-ex] 10 Aug 2011 The Physics Potential of SuperB F. F. Wilson 1 on behalf of the SuperB Collaboration STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK arxiv:1108.2178v1 [hep-ex] 10 Aug 2011 SuperB

More information

(1) with ( p, ) the basic conventional correlation being independent of neutron spin between the momenta of FF and TP; p

(1) with ( p, ) the basic conventional correlation being independent of neutron spin between the momenta of FF and TP; p DETAILED STUDY OF THE EFFECTS FOLLOWING FROM ROTATION OF THE SCISSIONING NUCLEI IN TERNARY FISSION OF 235 U BY COLD POLARISED NEUTRONS ( ROT AND TRI EFFECTS) A.Gagarski a, G. Petrov a, I. Guseva a, T.

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

The search for permanent electric dipole moments Klaus Kirch Paul Scherrer Institut and ETH Zürich

The search for permanent electric dipole moments Klaus Kirch Paul Scherrer Institut and ETH Zürich The search for permanent electric dipole moments Klaus Kirch Paul Scherrer Institut and ETH Zürich + _ 1 The search for permanent electric dipole moments Klaus Kirch Paul Scherrer Institut and ETH Zürich

More information

PoS(CHARM2016)074. Searches for CPV in D + decays at LHCb

PoS(CHARM2016)074. Searches for CPV in D + decays at LHCb Università di Pisa and Sezione INFN di Pisa, Pisa, Italy E-mail: simone.stracka@cern.ch Singly-Cabibbo-suppressed D + decays are a good place to search for CP violation in charm, (s which in the Standard

More information

Development of Closed Orbit Diagnostics toward EDM Measurements at COSY in Jülich

Development of Closed Orbit Diagnostics toward EDM Measurements at COSY in Jülich Development of Closed Orbit Diagnostics toward EDM Measurements at COSY in Jülich March 17, 2016 Fabian Hinder 1, 2 for the JEDI collaboration DPG Frühjahrstagung Darmstadt 1 Institut für Kernphysik IV,

More information

π p-elastic Scattering in the Resonance Region

π p-elastic Scattering in the Resonance Region New Results on Spin Rotation Parameter A in the π p-elastic Scattering in the Resonance Region I.G. Alekseev Λ, P.E. Budkovsky Λ, V.P. Kanavets Λ, L.I. Koroleva Λ, B.V. Morozov Λ, V.M. Nesterov Λ, V.V.

More information

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009 Charged current single pion to quasi-elastic cross section ratio in MiniBooNE Steven Linden PAVI09 25 June 2009 Motivation Oscillation searches needed for leptonic CP violation. One approach: search for

More information

Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings

Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings PHD defense talk Physics Institute III B Nuclear Physics Institute (IKP-II) Fabian Trinkel

More information

EDMs of stable atoms and molecules

EDMs of stable atoms and molecules W.Heil EDMs of stable atoms and molecules outline Introduction EDM sensitivity Recent progress in -EDMs paramagnetic atoms/molecules -EDMs diamagnetic atoms Conclusion and outlook Solvay workshop Beyond

More information

Search for a Permanent Electric Dipole Moment of 199 Hg

Search for a Permanent Electric Dipole Moment of 199 Hg Search for a Permanent Electric Dipole Moment of 199 Hg NIST, Boulder: University of Washington: Princeton University: W. Clark Griffith M. David Swallows David Meyer Blayne Heckel E. Norval Fortson Michael

More information

Intense Slow Muon Physics

Intense Slow Muon Physics 1 Intense Slow Muon Physics Yoshitaka Kuno a a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan Physics programs with slow muons at a neutrino factory are described. Emphasis is

More information

The Qweak experiment: a precision measurement of the proton s weak charge

The Qweak experiment: a precision measurement of the proton s weak charge The Qweak experiment: a precision measurement of the proton s weak charge R. D. Carlini Jefferson Lab, 1000 Jefferson Avenue, Newport News, Virginia 3606, USA Abstract. The Qweak experiment [1] will conduct

More information

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Vorobyev AS, Shcherbakov OA, Gagarski AM, Val ski GV, Petrov GA National Research Center Kurchatov

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

Nuclear spin maser and experimental search for 129 Xe atomic EDM

Nuclear spin maser and experimental search for 129 Xe atomic EDM Hyperfine Interact DOI 10.1007/s10751-012-0751-z Nuclear spin maser and experimental search for 129 Xe atomic EDM T. Inoue T. Furukawa A. Yoshimi Y. Ichikawa M. Chikamori Y. Ohtomo M. Tsuchiya N. Yoshida

More information

Time Reversal and the electron electric dipole moment. Ben Sauer

Time Reversal and the electron electric dipole moment. Ben Sauer Time Reversal and the electron electric dipole moment Ben Sauer Mysteries of physics Mysteries of physics Baryon asymmetry Why is there more matter than antimatter in the observable universe? Breaking

More information

LHCb collaboration. WELCOME to PNPI

LHCb collaboration. WELCOME to PNPI LHCb collaboration WELCOME to PNPI Petersbourg Nuclear Physics Iinstitute Russian Academy of Sciences Research directions High energy physics Nuclear physics Solid state physics Molecular biophysics Theoretical

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction

The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction A measurement of the parity conserving asymmetry in the neutron capture on 3 He at SNS Latiful Kabir University of Kentucky for the n-

More information

R-hadrons and Highly Ionising Particles: Searches and Prospects

R-hadrons and Highly Ionising Particles: Searches and Prospects R-hadrons and Highly Ionising Particles: Searches and Prospects David Milstead Stockholm University The need for new particles Why they could be heavy and stable How can we identify them in current and

More information

EDMs at Dimension Six

EDMs at Dimension Six EDMs at Dimension Six M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ EDMs 13, FNAL, February 2013

More information

EDM Measurements using Polar Molecules

EDM Measurements using Polar Molecules EDM Measurements using Polar Molecules B. E. Sauer Imperial College London J. J. Hudson, M. R. Tarbutt, Paul Condylis, E. A. Hinds Support from: EPSRC, PPARC, the EU Two motivations to measure EDMs EDM

More information

CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 250 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES

CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 250 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 25 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES S. VERMOTE AND C. WAGEMANS Department of Physics and Astronomy, University

More information

Neutron Electric Dipole Moment Search at Paul Scherrer Institute

Neutron Electric Dipole Moment Search at Paul Scherrer Institute Neutron Electric Dipole Moment Search at Paul Scherrer Institute G Ban On behalf of the nedm collaboration LPC Caen-ENSICAEN-CNRS IN2P3 Caen, France Outline Why measure nedm Measurement Principle Some

More information

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes Stefano Profumo California Institute of Technology TAPIR Theoretical AstroPhysics Including Relativity Kellogg Rad Lab Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

More information

DEAP & CLEAN Detectors for the Direct Detection of Dark Matter

DEAP & CLEAN Detectors for the Direct Detection of Dark Matter DEAP & CLEAN Detectors for the Direct Detection of Dark Matter Andrew Hime Physics Division, MS H803, Los Alamos National Laboratory Los Alamos, NM 87545, USA ahime@lanl.gov INPAC Meeting Berkeley, CA,

More information

arxiv: v1 [nucl-ex] 3 Sep 2018

arxiv: v1 [nucl-ex] 3 Sep 2018 A Plan for Electron Ion Collider in China arxiv:89.448v [nucl-ex] 3 Sep 28 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73, China E-mail: xchen@impcas.ac.cn One of the frontier research

More information

Quasi-specular albedo of cold neutrons from powder of nanoparticles

Quasi-specular albedo of cold neutrons from powder of nanoparticles Quasi-specular albedo of cold neutrons from powder of nanoparticles R. Cubitt 1, E.V. Lychagin 2, A.Yu. Muzychka 2, G.V. Nekhaev 2, V.V. Nesvizhevsky 1*, G. Pignol 3, K.V. Protasov 3, A.V. Strelkov 2 1

More information

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS PHYS 30121 NUCLEAR AND PARTICLE PHYSICS DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS Discrete symmetries are ones that do not depend on any continuous parameter. The classic example is reflection

More information

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov

More information

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS V.P. Ershov, V.V.Fimushkin, G.I.Gai, L.V.Kutuzova, Yu.K.Pilipenko, V.P.Vadeev, A.I.Valevich Λ and A.S. Belov Λ Joint Institute for Nuclear

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

New search for the Neutron Electric Dipole Moment using Ultracold Neutrons at the Spallation Neutron Source

New search for the Neutron Electric Dipole Moment using Ultracold Neutrons at the Spallation Neutron Source New search for the Neutron Electric Dipole Moment using Ultracold Neutrons at the Spallation Neutron Source Thesis by Riccardo Schmid In Partial Fulfillment of the Requirements for the Degree of Doctor

More information

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion C. Wimmer a, U. Fantz a,b and the NNBI-Team a a Max-Planck-Institut für Plasmaphysik, EURATOM

More information

UCN anomalous losses and the UCN capture cross-section on material defects

UCN anomalous losses and the UCN capture cross-section on material defects UCN anomalous losses and the UCN capture cross-section on material defects A. Serebrov, N. Romanenko, O. Zherebtsov, M. Lasakov, A. Vasiliev, A. Fomin, I. Krasnoshekova, A. Kharitonov, V. Varlamov Petersburg

More information

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se 3.2.7 Booster Injection and Extraction 3.2.7.1 Overview The Booster has two magnet systems for injection: Septum Si Kicker Ki The Booster has three magnet systems for extraction: Kicker Ke, comprising

More information

Louis Varriano University of Tennessee, Knoxville P599 PPAC Seminar April 16, 2014

Louis Varriano University of Tennessee, Knoxville P599 PPAC Seminar April 16, 2014 Louis Varriano University of Tennessee, Knoxville P599 PPAC Seminar April 16, 2014 Adviser: Dr. Yuri Kamyshkov and Dr. Zurab Berezhiani, L Aquila University Dark matter is prevalent in the universe. It

More information

Modern physics 1 Chapter 13

Modern physics 1 Chapter 13 Modern physics 1 Chapter 13 13. Particle physics Particle studied within the ATLAS-project CERN In the beginning of 1930, it seemed that all the physics fundaments was placed within the new areas of elementary

More information