FEEDBACK, STABILITY and OSCILLATORS


 Prudence Farmer
 1 years ago
 Views:
Transcription
1 FEEDBACK, STABILITY and OSCILLATORS à FEEDBACK, STABILITY and OSCILLATORS  STABILITY OF FEEDBACK SYSTEMS  Example : ANALYSIS and DESIGN OF PHASESHIFTOSCILLATORS  Example 2: ANALYSIS and DESIGN OF WIEN BRIDGE OSCILLATORS à FEEDBACK, STABILITY OF FEEDBACK SYSTEM, OSCILLATORS ü STABILITY OF FEEDBACK SYSTEM V out = A vo.hv in b.v out L A vf = V out ÄÄÄÄÄÄÄÄÄÄÄÄ V in = A vo.hv in b.v outl ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ fi A vf = V in A vo ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ +b.a vo The negative feedback effectively reduce the gain. Note that if» b.a vo» >> then, A vf > A vo ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ A vo.b > ÄÄÄÄÄ b For non  inverting opamp amplifier A vf = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ R ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ R +R F Univ. of Southern Maine Prof. M. G. Guvench
2 Phase at w Ø (number of zeros number of poles). 90 Even if A vo (0) may be very large, at high frequencies» A vo HjwL» can become very small; making the approximation above invalid. A vf HjwL = A vo HjwL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ + A vo HjwL.b HjwL For DC, the negative feedback results in a (+) sign in the denominator. Therefore,» A vf HjwL» will always be smaller than» A vo HjwL. But, if the inputs are reversed or somehow A vo HjwL.bHjwL changes its sign, the feedback becomes positive, the denominator can become <, therefore, A vf with feedback becomes even greater than A vo of the operational amplifier. Interesting Point: Denominator ª 0 fl "Instability" fl Oscillations Conditions for Instability HOscillationsL + A v HjwL.b HjwL 0 Equivalently J + A vo HjwL.b HjwLD = 0 + A vo HjwL.b HjwLD = 0 a. + vo HjwL.b HjwLD = 0 or vo HjwL.b HjwLD = b. vo HjwL.b HjwLD = 0 fi Phase of HA vo.bl = 0, 80, 360 Note that, it is impossible to make + A vo HjwL.b HjwLD = 0 for phase = 0or 360 Univ. of Southern Maine 2 Prof. M. G. Guvench
3 For instability : J vo.bd = 80 vo.bd = N or, J vo.bd = 80» A vo.b» = N Univ. of Southern Maine 3 Prof. M. G. Guvench
4 Stable system since» A vo.b < at the critical frequency(2) which satisfies the phase condition. Definitions/Conditions for Stability: Loop Gain = A vo.b Worst case: b= for passive circuits Univ. of Southern Maine 4 Prof. M. G. Guvench
5 f M (Phase Margin) > 30 ~ for a good internally compensated opamp Gain Margin > 0 db xxxxxxxxxxxxxxxxxxxxx OSCILLATOR ª Unstable but at a unique frequency so that it generates a sine wave with minimal distortion and minimal drift of oscillation frequency. Univ. of Southern Maine 5 Prof. M. G. Guvench
6 à Example : ANALYSIS and DESIGN OF PHASESHIFTOSCILLATORS Note that for an oscillator to oscillate it does not need a signal, therefore, the signal input shown in the block diagrams can be eliminated. Amplifier Gain = A v Beta HjωL =βhjω ) b (jw) circuit Beta HjwL =b HjwL = V 2 HjwL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ V HjwL Univ. of Southern Maine 6 Prof. M. G. Guvench
7 Educated conclusion: use higher number of RC's than 3 to achieve higher slope for better frequency V is known, I is unknown stimuli i j k V 0 0 y z = { i j k R + ÄÄÄÄÄÄÄÄÄÄÄ j wc R 0 R 2 R + ÄÄÄÄÄÄÄÄÄÄÄ j wc R 0 R 2 R + ÄÄÄÄÄÄÄÄÄÄÄ j wc and output voltage, V 2 = R.I 3 y i j z k { I I 2 I 3 y z { One can apply Cramer's Rule to solve for I 3 and the output voltage V 2 = R. I 3. In Mathematica the same calculation can be done by using linear solver which yields { I, I 2, I 3 } and pick out I 3, the third term from the list, and multiply it by R, as done below. V 2 = ExpandAllAR TakeALinearSolve ω > A i j k jrcy E R + j ω C R 2 R + j ω C R 0 R 0 R 2 R + j ω C y i, j k z { V 0 0 y E, 83<E ê. z { V y+ 5y 2 + y 3 == V + 6y+ 5y 2 + y ê. y > 3 j ω RC V 5 6 C 3 j 3 R 3 ω + 3 C 2 j 2 R 2 ω + 2 CjRω + Rearrange V 2 = V 5 H L + H6 L ω 2 R 2 C 2 jω RC ω 2 R 2 C 2 For the phase to reach 0 or 80 imaginary term should disappear, Univ. of Southern Maine 7 Prof. M. G. Guvench
8 Therefore, 6 ω 2 R 2 C = 0 ω 2 0 = $%%%%%%%%%%%%%%%% 6 R 2 C 2 Then, If Summary: V 2 V A vo i k j y z β { = i y j k 5. z { ω 0 2 = ω 2 R 2 C 2 ω 2 = = 6 R 2 C = 30 = 29 6 R 2 C 2 then oscillations will start and grow at ω 0. If» A vo» 29, If A vo < 0 (i.e. inverting) Oscillations will start and grow up at ω 0 = è!!! 6 RC A vf = A vo = A vo +β HjωL A vo = Univ. of Southern Maine 8 Prof. M. G. Guvench
9 à Example 2: ANALYSIS and DESIGN OF WIEN BRIDGE OSCILLATORS Univ. of Southern Maine 9 Prof. M. G. Guvench
10 Univ. of Southern Maine 0 Prof. M. G. Guvench
11 Beta =β HjωL = = = Z b Z a + Z b = R b +jω C b IR a + M + J jω C a IR a + M I + jω C jω C a R b M + b N R b +jω C b A R a + j Iω R a C b M + C b + E ω R b C a R b C a = + C b + M + j Iω R a R b I R a R b C a ω R b C a M When ω 2 = ω 0 2 = R a R b C a C b the imaginary term disappears β Hj ω 0 L = R a + C b + C a R b If H+L feedback is provided A vf = A vo β HjωL A vo at ω=ω 0 A vf Hjω 0 L A vo β Hjω 0 L A vo or A vf Hjω 0 L if A vo For C a = C b = C, R a = R b = R A vo 3 β Hjω 0 L = R a R b + C b C a + Univ. of Southern Maine Prof. M. G. Guvench
12 Wien  Bridge Oscillator i j R f + y z R a k R { R b + C b C a + Amplifier Design : Condition : Z in >> Z ab where Z ab = HZ a êê Z b L ω=ω0 Condition 2 : A vo > i k j y z β { ω=ω 0 In order to control the amplitude () Small Signal Gain > minimum needed for oscillation, (2) Average gain reduces and becomes less than ( M at the amplitude of oscillations it is required to stabilize. β ω= ω 0 Amplifer Chs. with Saturating Gain Univ. of Southern Maine 2 Prof. M. G. Guvench
13 Inverting Amplifier with Gain Saturation Low amplitudes Mid amplitudes High amplitudes R F = R F R F R F êê R F2 R F = R F êê R F2 êê R F3 i y β A vf = j k + z > β { β A v Univ. of Southern Maine 3 Prof. M. G. Guvench
14 H b.a v L b.a v > b.a v ª HA v L Large Signal HA v L Small signal Univ. of Southern Maine 4 Prof. M. G. Guvench
15 ACTIVE FILTERS à ACTIVE FILTERS  PASSIVE FILTER + AMPLIFIER  FILTER IS INTEGRATED IN THE FEEDBACK LOOP  TRUE ACTIVE FILTERS IMPLEMENTED WITH DEPENDENT SOURCES a. ACTIVE TWOPOLE SALLENKEY LOWPASS FILTER b. ACTIVE TWOPOLE SALLENKEY HIGHPASS FILTER c. ACTIVE TWOPOLE SALLENKEY BANDPASS FILTER à ACTIVE FILTERS "Active" Filter Passive Filter Components + OpAmp as amplifier + OpAmp as dependent source à Example : PASSIVE FILTER + AMPLIFIER Advantage:. R L does not load the filter; therefore, it does not affect the frequency response. 2. The filter can actually amplify the signal in its path. (Insertion gain vs insertion loss of a passive filter) Univ. of Southern Maine 5 Prof. M. G. Guvench
16 R Thevenin.C observe that ω 3dB = and depends on loading resistance R RC L. At higher frequencies, frequency response of "real opamp" will alter the frequency response of the active filter. * Note that the danger of instability at the frequency where phase angle ª 80 * If the opamp is internally frequency compensated it can introduce no more than 90 phase while its gain is still greater than "0 db". This implies that: Overall filter will never have a gain greater than 0 db when phase = 80 ï stable. Univ. of Southern Maine 6 Prof. M. G. Guvench
17 à Example 2: FILTER IS INTEGRATED IN THE FEEDBACK LOOP If the opamp has wide enough GBW and low frequency gain; A vf HjωL = V out V in = A vo > +βa vo β HjωL This has the effect of Low Pass ö Low Reject (High Pass) High Pass ö High Reject Band Pass ö Band Reject A Good "Band Reject" Filter Remark: A good Low / High / Band Reject actually reduces the signal in the reject band significantly, i.e. gain <<. Univ. of Southern Maine 7 Prof. M. G. Guvench
18 à Example 3: TRUE ACTIVE FILTERS IMPLEMENTED WITH DEPENDENT SOURCES a. ACTIVE TWOPOLE SALLENKEY LOWPASS FILTER b. ACTIVE TWOPOLE SALLENKEY HIGHPASS FILTER c. ACTIVE TWOPOLE SALLENKEY BANDPASS FILTER a. ACTIVE TWOPOLE SALLENKEY LOWPASS FILTER Equivalent circuit: Univ. of Southern Maine 8 Prof. M. G. Guvench
19 Node Equations: Univ. of Southern Maine 9 Prof. M. G. Guvench
20 i j k V in R + V O sc 0 y z = JHG + G 2 + sc L G 2 { G 2 HG 2 + sc 2 L N JV N V 0 V i in R j y z k 0 = JHG + G 2 + sc L HG 2 + sc L { H G 2 L HG 2 + sc 2 L N JV N V 0 Using Cramer' s Rule to get V O V in R V 0 V in R = DetA i V HG + G 2 + sc L in R j y z I V in M. k H G 2 L 0 E { R DetAJ HG + G 2 + sc L HG 2 + sc L H G 2 L HG 2 + sc 2 L N E = I V in M H G I V in M. R 2 L HG + G 2 + sc L HG 2 + sc 2 L G 2 HG 2 + sc L R V O V in = H HsL = G.G 2 s 2 C C 2 + sc G 2 + sc 2 HG + G 2 L + G 2 HG + G 2 L G 2 2 G 2 sc = G.G 2 s 2 C C 2 + sc 2 HG + G 2 L + G.G 2 = HR C L HR 2 C 2 L s 2 + s I + M + I M I M R C R 2 C R C R 2 C 2 Rename : 2 i =ω 0 j + R C R 2 C 2 k R C y z = 2 ζ ω 0 R 2 C { H HsL = ω 0 2 s ζω 0 s +ω 2 0 No inductor! The response of this circuit is similar to the response of an RLC  Low Pass passive filter shown below. Except that there is no need to employ bulky, lossy and expensive inductors to implement it. Univ. of Southern Maine 20 Prof. M. G. Guvench
21 V out ê V in = ê sc êhr + sl + ê scl = êhsrc + s 2 LC + L = H ê LCLêHs 2 + R ê Ls + ê LCL where ω 0 2 ê LC is the "resonant frequency" and 2 ζ ω 0 R ê L is the "damping factor" H = ω 0 2 s ζ ω 0 s +ω 2 0 a =, b = 2 ζ ω 0, c =ω 0 2 = constant Hs p L Hs p 2 L p, p 2 = è!!!!!!!!!!!!!!!! b ± b 2 4 ac 2 a = b 2 ± $%%%%%%%%%%%%%%%%%%% i k j b y z c 2 { 2 = ζ ω 0 ± "######################### Hζ ω 0 L 2 ω 02 = ζω 0 ± jω 0 "############ ζ 2 complex conjugate H =» constant»» s p»» s p 2» Univ. of Southern Maine 2 Prof. M. G. Guvench
22 b. ACTIVE TWOPOLE SALLENKEY HIGHPASS FILTER Insertion Loss Univ. of Southern Maine 22 Prof. M. G. Guvench
23 Univ. of Southern Maine 23 Prof. M. G. Guvench
24 c. ACTIVE TWOPOLE SALLENKEY BANDPASS FILTER Univ. of Southern Maine 24 Prof. M. G. Guvench
25 Node Equations : V IN i R j k + KV 2 R 0 y z = i j { k + R R + sc + sc sc y sc + sc z JV N V 2 R { or V i IN y R j z k 0 = i j { k 2 H R + scl HsC + K R L sc H + scl R y z JV N V 2 { Using Cramer' s rule, KV 2 = V OUT = K DetA i j 2 H R + scl V IN y R z k sc 0 E { DetA i2 H K + scl HsC + y R R j k sc H + scl z E R { = K + scv IN R 2 H + scl H K + scl sc HsC + L R R R Univ. of Southern Maine 25 Prof. M. G. Guvench
26 V OUT V IN = K sc R after dividing by C2, 2 HsCL H sc L + 2 H R R L2 HsCL 2 sc K R H HsL = K sc R HsCL 2 + H4 KL sc + 2 H R R L2 H HsL = K s RC è!!!! 2 s 2 + H4 KL RCÆ s + J RC N2 Æ 2 γ = 2 ζ ω n ω n 2 ω n = è!!! 2 RC ω n =ω 0 2 +γ 2 The damping factor : ζ= H4 KL RC 2 2 è!!!! RC = H4 KL 2 è!!! 2 Poles = γ±jω 0 Resonance is at ω=ω 0 BandWidth = BW =ω 2 ω = ω 0 +γ Hω 0 γl = 2 γ Quality Factor of a Resonant Circuit : Q = ω peak BW > ω 0 2 ζ = è!!! 2 4 K Univ. of Southern Maine 26 Prof. M. G. Guvench
27 K RC» H max» = H+jωL 2 + H 4 K L jω+hω RC 0L 2 jω = K 4 K = K è!!! 2 è!!! 2 4 K = K Q è!!! 2 K 4» H» max unstable! Oscillator Univ. of Southern Maine 27 Prof. M. G. Guvench
28 Univ. of Southern Maine 28 Prof. M. G. Guvench
OPERATIONAL AMPLIFIER ª Differentialinput, SingleEnded (or Differential) output, DCcoupled, HighGain amplifier
à OPERATIONAL AMPLIFIERS à OPERATIONAL AMPLIFIERS (Introduction and Properties) Phase relationships: Noninverting input to output is 0 Inverting input to output is 180 OPERATIONAL AMPLIFIER ª Differentialinput,
More informationà 10. DC (DIRECTCOUPLED) AMPLIFIERS
0.DCAmpsX.nb à 0. DC (DIRECTCOUPLED) AMPLIFIERS ü AC COUPLED SMALL SIGNAL AMPLIFIERS ADVANTAGES:. Signal, load and the amplifier bias are separate. One can work on the bias calculations stage by stage
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationJFET CAPACITANCE CALCULATIONS
JFET CAPACITANCE CALCULATIONS JFET CAPACITANCE CALCULATIONS In order to simplify the design procedure for the frequency response of the JFET amplifier we will consider effect of each capacitance separately.
More informationECE3050 Assignment 7
ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linearlog scales for the phase plots. On the magnitude
More informationOPERATIONAL AMPLIFIER APPLICATIONS
OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Noninverting Configuration (Chapter 2.3) 2.4 Difference
More informationECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)
More informationOpAmp Circuits: Part 3
OpAmp Circuits: Part 3 M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay Introduction to filters Consider v(t) = v
More informationà FIELD EFFECT TRANSISTORS
Prof.M.G.Guvench à FIELD EFFECT TRANSISTORS ü FET: CONTENTS Principles of Operation Models: DC, S.S.A.C. and SPICE Applications: AC coupled S.S. Amplifiers ü FET: NAMES JFET Junction Field Effect Transistor
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationEE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits
EE 58 Lecture 4 Filter Concepts/Terminology Basic Properties of Electrical Circuits Review from Last Time Filter Design Process Establish Specifications  possibly T D (s) or H D (z)  magnitude and phase
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationChapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Noninverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
More informationECE 255, Frequency Response
ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.
More informationDESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 Email: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OPAMP It consists of two stages: First
More informationFirst and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015
First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage
More informationStart with the transfer function for a secondorder highpass. s 2. ω o. Q P s + ω2 o. = G o V i
aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq
More informationSophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
More informationFEEDBACK AND STABILITY
FEEDBCK ND STBILITY THE NEGTIVEFEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x
More informationChapter 8: Converter Transfer Functions
Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right halfplane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.
More information7. DESIGN OF ACCOUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING
à 7. DESIGN OF ACCOUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING Figure. AC coupled common emitter amplifier circuit ü The DC Load Line V CC = I CQ + V CEQ + R E I EQ I EQ = I CQ + I BQ I
More informationESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower Onepole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationCHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS
CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators
More information8.1.6 Quadratic pole response: resonance
8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Secondorder denominator, of the form 1+a 1 s + a s v 1 (s) + C R Twopole lowpass filter example v (s) with
More informationStudio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232242 Twostage opamp Analysis Strategy Recognize
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More informationBasic Principles of Sinusoidal Oscillators
Basic Principles of Sinusoidal Oscillators Linear oscillator Linear region of circuit: linear oscillation Nonlinear region of circuit: amplitudes stabilization Barkhausen criterion X S Amplifier A X O
More informationFilters and Tuned Amplifiers
Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,
More informationESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Feedback concept Feedback in emitter follower Stability Onepole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
More informationECEN 325 Electronics
ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non
More informationEE348L Lecture 1. EE348L Lecture 1. Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis. Motivation
EE348L Lecture 1 Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis 1 EE348L Lecture 1 Motivation Example CMOS 10Gb/s amplifier Differential in,differential out, 5 stage dccoupled,broadband
More informationElectronic Circuits EE359A
Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 2012165549 Lecture 18 379 Signal Generators and Waveformshaping Circuits Ch 17 380 Stability in feedback systems Feedback system Bounded
More informationHomework Assignment 11
Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuoustime active filters. (3 points) Continuous time filters use resistors
More informationStability of Operational amplifiers
Stability o Operational ampliiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 005 05 Table o contents Use o operational ampliiers Stability o 2stage opamp
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationHandout 11: AC circuit. AC generator
Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For
More informationSwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto
SwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
More informationStability & Compensation
Advanced Analog Building Blocks Stability & Compensation Wei SHEN (KIP) 1 Bode Plot real zeros zeros with complex conjugates real poles poles with complex conjugates http://lpsa.swarthmore.edu/bode/bode.html
More informationFrequency Dependent Aspects of Opamps
Frequency Dependent Aspects of Opamps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and noninverting amplifier circuits with resistive
More informationProf. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA
AA3 LEZIONI DI FILTI ANALOGICI Danilo Manstretta AA 3 AA3 High Order OAC Filters H() s a s... a s a s a n s b s b s b s b n n n n... The goal of this lecture is to learn how to design high order OAC
More informationFrequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ
27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: smallsignal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential
More informationSinusoidal SteadyState Analysis
Chapter 4 Sinusoidal SteadyState Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
More informationMODULE4 RESONANCE CIRCUITS
Introduction: MODULE4 RESONANCE CIRCUITS Resonance is a condition in an RLC circuit in which the capacitive and inductive Reactance s are equal in magnitude, there by resulting in purely resistive impedance.
More informationBerkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad
Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design
More informationENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani
ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Opamp Circuits 2. Differential Amplifiers 3. Comparator Circuits
More informationECEN 325 Electronics
ECEN 325 Electronics Introduction Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ohm s Law i R i R v 1 v v 2 v v 1 v 2 v = v 1 v 2 v = v 1 v 2 v = ir
More informationUse of a Notch Filter in a Tuned Mode for LISA.
Use of a Notch Filter in a Tuned Mode for LISA. Giorgio Fontana September 00 Abstract. During interferometric measurements the proof mass must be free from any controlling force within a given observation
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More informationEE 230 Lecture 25. Waveform Generators.  Sinusoidal Oscillators The WeinBridge Structure
EE 230 Lecture 25 Waveform Generators  Sinusoidal Oscillators The WeinBridge Structure Quiz 9 The circuit shown has been proposed as a sinusoidal oscillator. Determine the oscillation criteria and the
More informationLecture 17 Date:
Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A
More information( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.
Problem ) RLC Parallel Circuit R L C E4 E0 V a. What is the resonant frequency of the circuit? The transfer function will take the form N ( ) ( s) N( s) H s R s + α s + ω s + s + o L LC giving ωo sqrt(/lc)
More informationThe general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).
ndorder filters The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). T (s) A p s a s a 0 s b s b 0 As before, the poles of the transfer
More informationSecondorder filters. EE 230 secondorder filters 1
Secondorder filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth, first, or secondorder polynomials in the numerator. Use two
More informationEE 230 Lecture 24. Waveform Generators.  Sinusoidal Oscillators
EE 230 Lecture 24 Waveform Generators  Sinusoidal Oscillators Quiz 18 Determine the characteristic equation for the following network without adding an excitation. C R L And the number is? 1 3 8 2? 6
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationR. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1. Review of Bode plots Decibels Table 8.1. Expressing magnitudes in decibels G db = 0 log 10
More informationPoles, Zeros, and Frequency Response
Complex Poles Poles, Zeros, and Frequency esponse With only resistors and capacitors, you're stuck with real poles. If you want complex poles, you need either an opamp or an inductor as well. Complex
More informationEE 508 Lecture 24. Sensitivity Functions  Predistortion and Calibration
EE 508 Lecture 24 Sensitivity Functions  Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 secondorder lowpass filters (all can realize same T(s) within a gain factor)
More informationSome of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e
Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L  L F  F jw s s jw X(jw) X*(t) F  F X*(jw) jwt e z jwt z e X(nT) Z  Z X(z)
More informationWorkshop: Average values and uncertainties Quantum aspects of physical chemistry
Workshop: Average values and uncertainties Quantum aspects of physical chemistry http://quantum.bu.edu/pltl/2/2.pdf Last updated Tuesday, November 15, 2005 12:56:1105:00 Copyright 2005 Dan Dill (dan@bu.edu)
More informationHOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0
HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.
More informationActive Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
More informationElectronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory
Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, AntiLogarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in
More informationInput and Output Impedances with Feedback
EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators Firstorder active filters Secondorder active filters Review from Last Time Input and Output Impedances
More informationRLC Circuits and Resonant Circuits
P517/617 Lec4, P1 RLC Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0
More informationLecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation
Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation 1 A. Closed Loop Transient Response Waveforms 1. Standard Quadratic T(s) Step Response a. Q > 1/2 Oscillatory decay to a
More informationTo find the step response of an RC circuit
To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit
More information6.1 Introduction
6. Introduction A.C Circuits made up of resistors, inductors and capacitors are said to be resonant circuits when the current drawn from the supply is in phase with the impressed sinusoidal voltage. Then.
More informationAdjoint networks and other elements of circuit theory. E416 4.Adjoint networks
djoint networks and other elements of circuit theory Oneport reciprocal networks oneport network is reciprocal if: V I I V = Where and are two different tests on the element Example: a linear impedance
More informationD is the voltage difference = (V +  V  ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V , and one output terminal Y. It provides a gain A, which is usually
More informationECEN 607 (ESS) OpAmps Stability and Frequency Compensation Techniques. Analog & MixedSignal Center Texas A&M University
ECEN 67 (ESS) OpAmps Stability and Frequency Compensation Techniques Analog & MixedSignal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative
More informationFeedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
More informationFirstOrder LowPass Filter
Filters, Cost Functions, and Controller Structures Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 218! Dynamic systems as lowpass filters! Frequency response of dynamic systems!
More informationChapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
More informationLecture 4: RLC Circuits and Resonant Circuits
Lecture 4: RLC Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L
More informationEE 508 Lecture 22. Sensitivity Functions  Comparison of Circuits  Predistortion and Calibration
EE 58 Lecture Sensitivity Functions  Comparison of Circuits  Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 secondorder lowpass filters (all can realize same
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationExercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )
Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3
More informationEstimation of Circuit Component Values in Buck Converter using Efficiency Curve
ISPACS2017 Paper 2017 ID 21 Nov. 9 NQL5 Paper ID 21, Estimation of Circuit Component Values in Buck Converter using Efficiency Curve S. Sakurai, N. Tsukiji, Y. Kobori, H. Kobayashi Gunma University 1/36
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationMicrowave Oscillators Design
Microwave Oscillators Design Oscillators Classification Feedback Oscillators β Α Oscillation Condition: Gloop = A β(jω 0 ) = 1 Gloop(jω 0 ) = 1, Gloop(jω 0 )=2nπ Negative resistance oscillators Most used
More informationHomework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. KW Tube Amplifier b) Load Resistor e) Commoncathode a) Input Diff Pair f) CathodeFollower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 8 Natural and Step Responses of RLC Circuits Nam Ki Min nkmin@korea.ac.kr 01094192320 8.1 Introduction to the Natural Response
More informationEE202 Exam III April 13, 2015
EE202 Exam III April 3, 205 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo7:308:30 Furgason 3:304:30 DeCarlo:302:30 202 2022 2023 INSTRUCTIONS There are 2 multiple choice
More informationEE202 Exam III April 6, 2017
EE202 Exam III April 6, 207 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo202 DeCarlo2022 7:30 MWF :30 TTH INSTRUCTIONS There are 3 multiple choice worth 5 points each and
More informationResonant Matching Networks
Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OPAMP) Circuits
ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OPAMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform
More informationAdvanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc
Advanced Analog Building Blocks Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc 1 Topics 1. S domain and Laplace Transform Zeros and Poles 2. Basic and Advanced current
More informationLecture 9 Time Domain vs. Frequency Domain
. Topics covered Lecture 9 Time Domain vs. Frequency Domain (a) AC power in the time domain (b) AC power in the frequency domain (c) Reactive power (d) Maximum power transfer in AC circuits (e) Frequency
More informationFrequency response. Pavel Máša  XE31EO2. XE31EO2 Lecture11. Pavel Máša  XE31EO2  Frequency response
Frequency response XE3EO2 Lecture Pavel Máša  Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More information(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =
3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in
More informationEE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)
EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband
More information55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a classb amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
More informationTaking the Laplace transform of the both sides and assuming that all initial conditions are zero,
The transfer function Let s begin with a general nthorder, linear, timeinvariant differential equation, d n a n dt nc(t)... a d dt c(t) a 0c(t) d m = b m dt mr(t)... a d dt r(t) b 0r(t) () where c(t)
More information