db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E

Size: px
Start display at page:

Download "db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E"

Transcription

1 line B1, second floor. t = thickness of connected part Pu = factored load to be resisted d = diameter of the bolt eb = one-half the depth of the beam, in. ec = one-half the depth of the column, in. Hub = factored shear force for gusset-to-beam connection. Vub = factored axial force for gusset-to-beam connection. Huc = factored shear force for gusset-to-column connection. Vuc = factored axial force for gusset-to-column connection. N = horizontal distance of gusset plate, in. V = vertical distance of gusset plate, in. α = distance from the face of the column flange to the centroid of the gusset-to-beam connection, in. β = distance from the face of the beam flange to the centroid of the gusset-to-column connection, in. g = workable gage. rut = tensile force per bolt ruv = shear force per bolt Ft = nominal tensile strength of bolt. D = number of sixteenths-of-an-inch in the fillet weld size. ex = horizontal component of eccentricity of Pu with respect to centroid of weld group. C = coefficient for eccentrically loaded weld groupd C1 = electrode strength coefficient Member A-E, Interior floor girder: Pu = k W24x68 ASTM 992 db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E W10x49 ASTM dc = 9.98 in tw = 0.34 in bf = 10 in tf = 0.56 in 2L6x4x1/2 W10x49 Fy = 50 ksi Fu = 65 ksi 13 Member A-C, : 15 2L6x4x1/2LLBB A36 Ag = 9.5 in 2 Fy = 36 ksi Fu = 58 ksi Gusset plate: α = 16.5 in. β = 6.7 in. t = 1/2 in. N = 20 1/8 in. V = 13 3/4 in. W.P. W24x68 SHEET 125 of 131

2 SHEET 126 of 131 eb = in. ec = 4.99 in. Calculate gusset interface forces: r = ( (α+ec) 2 + (β+eb) 2 ) = 28.4 in. On the gusset-to-column connection: Huc = ec * Pu/r = 22.3 Kips Vuc = β * Pu/r = 30.0 Kips On the gusset-to-beam connection: Hub = α * Pu/r = 73.8 Kips Vub = eb * Pu/r = 53.0 Kips Vu Pu Hu Huc Vuc Hub Vub

3 SHEET 127 of 131 Design of gusset-to-column connection: Try : 2L4x4x5/8 welded to the gusset and bolted with 4 rows of 3/4 in. diameter A325-N bolts in standard holes to the column flange. Use 3 in. spacing between bolts and lev = 1.5 in t = 5/8 Fy = 36 ksi Ab = 0.44 in 2 Fu = 58 ksi n = 8 rut = Huc / n = ruv = Vuc / n = 2.8 Kips/bolt 3.7 Kips/bolt Ft = (fv) < 90 ksi ; Ft = 95.8 ksi > 90 ksi fv = ruv / Ab = 8.48 ksi Ft = 90.0 ksi φ Rn = φ * Ft *Ab = kips/bolt > rut Bearing strength per bolt is: φ Rn = φ (2.4*d*t*Fu) = 48.9 Kips/bolt > φ Rn (table 7-10) = 15.9 Kips/bolt Check prying action : (Illustration of variables in prying action calculations LRFD fig. 9-4) g = 2 in. (LRFD Fig. 10-6) b = g - t/2 = 1.69 in a = (angle leg) - g = 1.50 in < 1.25 b= 2.11 in a = 1.50 in.

4 SHEET 128 of 131 b' = b - d/2 = a' = a + d/2 = 1.31 in in. ρ = b' / a' = 0.7 β = 1/ρ (φrn / rut -1)= if β > 1, α' = 1.0; δ = 1 d'/p = if β < 1, α' = 1/δ (β/(1-β)) 0.63 α' = 1.0 p = 2.0 in t req. = ( (4.44 * rut * b ) / ( p * Fy * (1+ δ * α ))) t req. = in. < 5/8 in. angles are Ok! 2L 4 x 3 1/2 x 1/2 3.5" 1.25" 3" λ 3"

5 SHEET 129 of 131 Design of column-to-gusset connection : Try : 2L4x4x5/8 welded to the gusset and bolted with 4 rows of 3/4 in. diameter A325-N bolts in standard holes to the column flange. Use 3 in. spacing between bolts and lev = 1.5 in W10x49 V β λ Angles 2L6x4x1/ eb ec α N t = 1/2 Fy = 36 ksi Ab = 0.44 in 2 Fu = 58 ksi n = 4 rut = Huc / n = ruv = Vuc / n = 4.0 Kips/bolt 9.2 Kips/bolt Ft = (fv) < 90 ksi ; Ft = 42.3 ksi > 90 ksi fv = ruv / Ab = ksi Ft = 42.3 ksi φ Rn = φ * Ft *Ab = kips/bolt > rut Bearing strength per bolt is: φ (2.4*d*t*Fu) = 39.2 Kips/bolt > φ Rn (table 7-10) = 15.9 Kips/bolt

6 SHEET 130 of 131 Check areas: (since their strengths are the same this will check which section governs in block shear design) Angles Shear areas: Both Angles: (double the area) Agv = in 2 Agv = in 2 Anv = 3.59 in 2 Anv = in 2 Tension areas: Agt = 0.75 in 2 Agt = 1.5 in 2 Ant = 0.53 in 2 Ant = in 2 Shear areas: Agv = in 2 Anv = 3.84 in 2 Tension areas: Agt = 1.00 in 2 Ant = 0.78 in 2 The gusset plate will govern the design because it has less area than the angles. Check Block shear in gusset plate: Shear rupture design strength φvn: LRFD J4-1 φ(.6*fu)*anv = kips Tension rupture design strength φtn: LRFD J4-2 φfu*ant = kips The larger fracture term controls: LRFD J4-1 controls Pu = Vuc = 30 k Block shear strength: φ Rn = kips < φ Rn = kips > Pu = 30 kips

7 SHEET 131 of 131 Design of gusset-to-beam connection: Pub = (Hub 2 + Vub 2 ) = D req = 1.4 Pub / (1.392 *N) = 0 say 2 sixteenths from LRFD table J2.4 the minimum weld size required is : 4 sixteenths gusset plate thickness = 1/2 Use : 4 sixteenths in. fillet welds Check local web yielding of the beam: φ Rn = φ (N k) Fyw * tw = kips > Vub = 53.0 kips (φ = 1) W10x49 t = 1/2" 2L6x4x1/2 Gusset to beam connection 1/4" Fillet welds Gusset to column connection 4 rows of 3/4" bolts W24x68

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E le B1, second floor. t = thickness of connected part Pu = factored load to be resisted d = diameter of the bolt eb = one-half the depth of the beam, ec = one-half the depth of the column, Hub = factored

More information

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION CALCULATION FOR SHEAR CONNECTION 8.xmcd 1 of 30 I. DESIGN DATA AND LOAD ( LRFD - AISC 14th Edition ) COLUMN

More information

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB 1 of 18 SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB Description:Detailed Report 17 2 of 18 I. DESIGN DATA AND LOADS (ASD-14th Edition) COLUMN PROPERTIES: W14X90 -

More information

CONNECTION DESIGN. Connections must be designed at the strength limit state

CONNECTION DESIGN. Connections must be designed at the strength limit state CONNECTION DESIGN Connections must be designed at the strength limit state Average of the factored force effect at the connection and the force effect in the member at the same point At least 75% of the

More information

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges FHWA Bridge Design Guidance No. 1 Revision Date: July 21, 2008 Load Rating Evaluation of Gusset Plates in Truss Bridges By Firas I. Sheikh Ibrahim, PhD, PE Part B Gusset Plate Resistance in Accordance

More information

MODULE F: SIMPLE CONNECTIONS

MODULE F: SIMPLE CONNECTIONS MODULE F: SIMPLE CONNECTIONS This module of CIE 428 covers the following subjects Connector characterization Failure modes of bolted shear connections Detailing of bolted connections Bolts: common and

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A Ab Ae Ag Agv An Ant Anv Aw = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area An by the shear lag factor

More information

DL CMU wall = 51.0 (lb/ft 2 ) 0.7 (ft) DL beam = 2.5 (lb/ft 2 ) 18.0 (ft) 5

DL CMU wall = 51.0 (lb/ft 2 ) 0.7 (ft) DL beam = 2.5 (lb/ft 2 ) 18.0 (ft) 5 SUJECT: HEADER EAM SELECTION SHEET 108 of 131 INTERIOR HEADER EAM SELECTION - ay length = 36 ft. (stairwell) INTERIOR HEADER EAM Header eam 1 2 Total ay Length = 36 (ft) Total ay Width = 10 (ft) 20.5 Fill

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Structural Design and Material Properties of Steel Presented by: Civil Engineering Academy Advantages 1. High strength per unit length resulting in smaller dead

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

CHAPTER II EXPERIMENTAL INVESTIGATION

CHAPTER II EXPERIMENTAL INVESTIGATION CHAPTER II EXPERIMENTAL INVESTIGATION 2.1 SCOPE OF TESTING The objective of this research is to determine the force distribution between the column web and stiffener when the column flanges are subjected

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1

Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1 Current Date: 08-Dec-13 7:05 PM Units system: SI File name: E:\ram\1\1.cnx\ Microsoft Steel connections Detailed report Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

Steel Design. Notation: a A A b A e

Steel Design. Notation: a A A b A e Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

Example 4: Design of a Rigid Column Bracket (Bolted)

Example 4: Design of a Rigid Column Bracket (Bolted) Worked Example 4: Design of a Rigid Column Bracket (Bolted) Example 4: Design of a Rigid Column Bracket (Bolted) Page : 1 Example 4: Design of a Rigid Column Bracket (Bolted) Determine the size of the

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

Timber and Steel Design. Lecture 11. Bolted Connections

Timber and Steel Design. Lecture 11. Bolted Connections Timber and Steel Design Lecture 11 Bolted Connections Riveted Connections Types of Joints Failure of Joints Bearing & Friction connections Truss Joints Shear and Tension on Bolt S U R A N A R E E UNIVERSITY

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

AISC Live Webinars. Thank you for joining our live webinar today. We will begin shortly. Please stand by.

AISC Live Webinars. Thank you for joining our live webinar today. We will begin shortly. Please stand by. AISC Live Webinars Thank you for joining our live webinar today. We will begin shortly. Please stand by. Thank you. Need Help? Call ReadyTalk Support: 800.843.9166 There s always a solution in Steel AISC

More information

Project data Project name Project number Author Description Date 26/04/2017 Design code AISC dome anchor. Material.

Project data Project name Project number Author Description Date 26/04/2017 Design code AISC dome anchor. Material. Project data Project name Project number Author Description Date 26/04/2017 Design code AISC 360-10 Material Steel A36, A529, Gr. 50 Concrete 4000 psi dome anchor Connection Name Description Analysis Design

More information

Appendix K Design Examples

Appendix K Design Examples Appendix K Design Examples Example 1 * Two-Span I-Girder Bridge Continuous for Live Loads AASHTO Type IV I girder Zero Skew (a) Bridge Deck The bridge deck reinforcement using A615 rebars is shown below.

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8) Application nr. 7 (Connections) Strength of bolted connections to EN 1993-1-8 (Eurocode 3, Part 1.8) PART 1: Bolted shear connection (Category A bearing type, to EN1993-1-8) Structural element Tension

More information

WRAP-AROUND GUSSET PLATES

WRAP-AROUND GUSSET PLATES WRAP-AROUND GUSSET PLATES Where a horizontal brae is loated at a beam-to-olumn intersetion, the gusset plate must be ut out around the olumn as shown in Figure. These are alled wrap-around gusset plates.

More information

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.)

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.) ENCE 455 Design of Steel Structures II. Tension Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Tension Members Following subjects are covered: Introduction

More information

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7.

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7. PROFILE SIZES: BEAM : UB254X146X43 D b = 259.60 mm W b = 147.30 mm T b = 12.70 mm t wb = 7.30 mm r b = 7.60 mm COLUMN : UC254X254X73 D C = 254.00 mm W c = 254.00 mm T C = 14.20 mm t wc = 8.60 mm r C =

More information

Unfinished Bolt ordinary, common, rough or black bolts High strength Bolt friction type bolts

Unfinished Bolt ordinary, common, rough or black bolts High strength Bolt friction type bolts Bolted Connections Introductions: Connections are always needed to connect two members. It is necessary to ensure functionality and compactness of structures. Prime role of connections is to transmit force

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

DNV DESIGN. POU_Rect - Design Report Page 1 of 11

DNV DESIGN. POU_Rect - Design Report Page 1 of 11 DNV DESIGN Page 1 of 11 Details Code Details Code DNV 2.7-1 2006 with AISC 360-10 ASD Description This is the 2006 edition of the DNV Standard for Certification No 2.7-1, which defines minimum technical

More information

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members CH. 5 TRUSSES BASIC PRINCIPLES Typical depth-to-span ratios range from 1:10 to 1:20 - Flat trusses require less overall depth than pitched trusses Spans: 40-200 Spacing: 10 to 40 on center - Residential

More information

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006 Job No. Sheet 1 of 6 Rev B, Route de Limours Tel : (0)1 0 85 5 00 Fax : (0)1 0 5 75 8 Revised by MEB Date April 006 DESIGN EXAMPLE 6 BOLTED JOINT A 0 0 angle loaded in tension is to be connected to a gusset

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

BLOCK SHEAR BEHAVIOUR OF COPED STEEL BEAMS

BLOCK SHEAR BEHAVIOUR OF COPED STEEL BEAMS University of Alberta Department of Civil & Environmental Engineering Structural Engineering Report No. 244 BLOCK SHEAR BEHAVIOUR OF COPED STEEL BEAMS by Cameron R. Franchuk Robert G. Driver and Gilbert

More information

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS DESIGN STATEMENT THIS GALVANISED STEEL PLATFORM IS ANALYSED USING THE ALLOWABLE STRESS DESIGN METHOD TO DETERMINE MATERIAL STRENGTH. MEMBER SIZES AND FASTENERS ARE CHOSEN NOT SO MUCH FOR THEIR STRENGTH

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

6593 Riverdale St. San Diego, CA (619) Page of. Client: ProVent PV1807 Description: CBKD-92 ( **) Unit: ZF180

6593 Riverdale St. San Diego, CA (619) Page of. Client: ProVent PV1807 Description: CBKD-92 ( **) Unit: ZF180 6593 Riverdale St. Client: ProVent PV1807 Description: CBKD-92 (80-266-19**) Unit: ZF180 Curb Information Hcurb = 18 in (Height of curb) Lcurb = 115.25 in (Length of curb) wcurb = 84 in (Width of curb)

More information

Beam Design and Deflections

Beam Design and Deflections Beam Design and Deflections tation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight Aweb = area of the web of

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 016 A FORMULATED APPROACH TO CISC SHEAR CONNECTION RESISTANCE AND FLEXIBILITY DESIGN Josiah J. Matthews University of New Brunswick, Canada Kaveh Arjomandi University

More information

SHEAR LAG IN SLOTTED-END HSS WELDED CONNECTIONS

SHEAR LAG IN SLOTTED-END HSS WELDED CONNECTIONS SHEAR LAG IN SLOTTED-END HSS WELDED CONNECTIONS by Jeffrey A. Packer 1 1 Bahen/Tanenbaum Professor of Civil Engineering, University of Toronto, Ontario, Canada A very popular and simple HSS connection,

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

6593 Riverdale St. San Diego, CA (619) Page of

6593 Riverdale St. San Diego, CA (619) Page of Client: ProVent PV1805 Project: CBISC-05 Iso Curb CBISPRS Upper curb rail Unit: YORK ZX 04-07; XX A7; ZY, ZQ, XY, XQ 04-06 Curb Information Hcurb upper = 5.5 in (Height of upper curb rail) Lcurb = 70.375

More information

Software Verification

Software Verification AISC-360-10 Example 001 COMPOSITE GIRDER DESIGN EXAMPLE DESCRIPTION A typial bay of a omposite floor system is illstrated below. Selet an appropriate ASTM A992 W-shaped beam and determine the reqired nmber

More information

Abstract Block shear is a mode of failure in which a steel member fails in tension along one plane and shear on a

Abstract Block shear is a mode of failure in which a steel member fails in tension along one plane and shear on a Abstract Block shear is a mode of failure in which a steel member fails in tension along one plane and shear on a perpendicular plane along the fasteners. The design process for block shear has been at

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1. NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 8 CHAPTER 2 LITERATURE REVIEW 2.1 GENERAL A brief review of the research carried out during the past years related to the behaviour of bolted steel angle tension members is presented herewith. Literature

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

6593 Riverdale St. San Diego, CA (619) Page of

6593 Riverdale St. San Diego, CA (619) Page of 6593 Riverdale St. Client: ProVent PV1807 Description: CBKD-91 (80-266-18**) Unit: YORK ZJ,ZR 180-300 / ZF 210-300 / XP 180-240 Curb Information Hcurb = 18 in (Height of curb) Lcurb = 126.25 in (Length

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

An investigation of the block shear strength of coped beams with a welded. clip angles connection Part I: Experimental study

An investigation of the block shear strength of coped beams with a welded. clip angles connection Part I: Experimental study An investigation of the block shear strength of coped beams with a welded clip angles connection Part I: Experimental study Michael C. H. Yam a*, Y. C. Zhong b, Angus C. C. Lam b, V. P. Iu b a Department

More information

JointsForTekla Ver January

JointsForTekla Ver January Ing. Giovanni Conticello Ing. Sebastiano Floridia With the important help of Ing. Giovanni Trigili JointsForTekla Ver. 1.11.0.59 - January 23 2014 Design of joints of steel structures in environment TeklaStructures

More information

(Round up to the nearest inch.)

(Round up to the nearest inch.) Assignment 10 Problem 5.46 LRFD First, select the lightest weight W14 column. Use the recommended design value for K for the pinned-fixed support condition specified (ref. Commentary, Appendix 7, AISC

More information

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section Application nr. 3 (Ultimate Limit State) Resistance of member cross-section 1)Resistance of member crosssection in tension Examples of members in tension: - Diagonal of a truss-girder - Bottom chord of

More information

TESTING AND DESIGN OF EXTENDED SHEAR TAB - PHASE I

TESTING AND DESIGN OF EXTENDED SHEAR TAB - PHASE I UP i) A TE;l) FII\JA L,ztPO,zT FINAL REPORT TO THE AMERI CAN INSTITUTE OF STEEL CONSTRUCTION TESTING AND DESIGN OF EXTENDED SHEAR TAB - PHASE I by Donald R. Shennan and AI Ghorbanpoor University of Wisconsin-Milwaukee

More information

the Steel Construction Manual

the Steel Construction Manual A Beginner s Guide to the Steel Construction Manual An introduction to designing steel structures using the AISC Steel Construction Manual, 13 th edition. By T. Bart Quimby, P.E., Ph.D. Owner & Principal

More information

3 A y 0.090

3 A y 0.090 ROBLM.1 5.0 in. 5 8 in. diameter A standard tension test is used to determine the properties of an experimental plastic. The test specimen is a 5 -in.-diameter rod and it is subjected to an 800-lb tensile

More information

The subject of this paper is the development of a design

The subject of this paper is the development of a design The erformance and Design Checking of Chord-Angle Legs in Joist Girders THEODORE V. GALAMBOS ABSTRACT The subject of this paper is the development of a design checking method for the capacity of the outstanding

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

Steel Cross Sections. Structural Steel Design

Steel Cross Sections. Structural Steel Design Steel Cross Sections Structural Steel Design PROPERTIES OF SECTIONS Perhaps the most important properties of a beam are the depth and shape of its cross section. There are many to choose from, and there

More information

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

Chapter 4 Pure Bending

Chapter 4 Pure Bending Chapter Pure endg INTRODUCTION endg tress W W L endg of embers made of everal aterials 0 5 lumum 0.5 TYP rass teel rass 2.5 2 lumum 2.5 1.5 12 Cross-section, Cross-section, tress Concentrations r r D d

More information

Design of Shear Tab Connections for Gravity and Seismic Loads

Design of Shear Tab Connections for Gravity and Seismic Loads June 2005 Design of Shear Tab Connections for Gravity and Seismic Loads By Abolhassan Astaneh-Asl, Ph.D., P.E. Professor University of California, Berkeley (A copy of this report can be downloaded for

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Guide Specifications (1993-2002) 2.3 LOADS 2.4 LOAD COMBINATIONS

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

Structural Steel Design Project

Structural Steel Design Project Job No: Sheet 1 of 6 Rev Worked Example - 1 Made by Date 4-1-000 Checked by PU Date 30-4-000 Analyse the building frame shown in Fig. A using portal method. 15 kn C F I L 4 m 0 kn B E H K 6 m A D G J 4

More information

STRUCTURAL ENGINEERS INC. Rt. 4 Box 148 Radford, VA (703) (703)

STRUCTURAL ENGINEERS INC. Rt. 4 Box 148 Radford, VA (703) (703) ' STRUCTURAL ENGINEERS INC. Rt. 4 Box 148 Radford, VA 24141 (73) 231-674 (73) 731-333 December 23, 1988 Mr. Robert Q. Disque American Institute of steel Construction The Wrigley Building, 8th Floor 4 North

More information

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren CE 123 - Reinforced Concrete Midterm Examination No. 2 Instructions: Read these instructions. Do not turn the exam over until instructed to do so. Work all problems. Pace yourself so that you have time

More information

Anchor Bolt Design (Per ACI and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12)

Anchor Bolt Design (Per ACI and Design of Reinforcement in Concrete Pedestals CSA Today, Vol III, No. 12) Anchor Bolt Design (Per ACI 318-08 and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12) Design Assumptions: Base Units and Design 1. Tension is equally distributed among all

More information

Preferred practice on semi-integral abutment layout falls in the following order:

Preferred practice on semi-integral abutment layout falls in the following order: GENERAL INFORMATION: This section of the chapter establishes the practices and requirements necessary for the design and detailing of semi-integral abutments. For general requirements and guidelines on

More information

Design of Eccentrically Braced Frames

Design of Eccentrically Braced Frames Design of Eccentricall Braced Frames Aninda Dutta, Ph.D., S.E. What is an eccentricall braced frame? In an eccentric braced frame the braces are eccentric to the beam-column connection, i.e. the do not

More information

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual) 1 / 8 Geometry beam span L 40 ft Steel Wide Flange Beam: beam spacing s beam 10 ft F y 50 ksi construction live load LL construc 20 psf row 148 live load LL 150 psf unit weight of concrete UW conc 145

More information

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Module 7 Gantry Girders and Plate Girders Lecture - 3 Introduction to Plate girders

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday) FALL 2013 lecture

More information

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1.

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1. Problem 7.1 Determine the soil pressure distribution under the footing. Elevation Plan M 180 e 1.5 ft P 10 (a) B= L= 8 ft L e 1.5 ft 1.33 ft 6 1 q q P 6 (P e) 180 6 (180) 4.9 kip/ft B L B L 8(8) 8 3 P

More information

BRACING MEMBERS SUMMARY. OBJECTIVES. REFERENCES.

BRACING MEMBERS SUMMARY. OBJECTIVES. REFERENCES. BRACING MEMBERS SUMMARY. Introduce the bracing member design concepts. Identify column bracing members requirements in terms of strength and stiffness. The assumptions and limitations of lateral bracing

More information

Torsional Analysis of

Torsional Analysis of Steel Design Guide Series Torsional Analysis of Structured Steel Members Steel Design Guide Series Torsional Analysis of Structural Steel Members Paul A. Seaburg, PhD, PE Head, Department of Architectural

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

BEAMS. By.Ir.Sugeng P Budio,MSc 1

BEAMS. By.Ir.Sugeng P Budio,MSc 1 BEAMS B.Ir.Sugeng P Budio,MSc 1 INTRODUCTION Beams are structural members that support transverse loads and are therefore subjected primaril to flexure, or bending. If a substantial amount of axial load

More information

Unified Design Criteria for Steel Cantilever Plate Connection Elements. Pouya Salem

Unified Design Criteria for Steel Cantilever Plate Connection Elements. Pouya Salem Unified Design Criteria for Steel Cantilever Plate Connection Elements by Pouya Salem A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in STRUCTURAL

More information

3.5 Reinforced Concrete Section Properties

3.5 Reinforced Concrete Section Properties CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

More information

ADVANCED STEEL DESIGN M.TECH- STRUCTURAL ENGINEERING PREPARED BY MRS.PRAVEENA RAO ASSISTANT PROFESSOR DEPARTMENT OF CIVIL ENGINEERING, IARE

ADVANCED STEEL DESIGN M.TECH- STRUCTURAL ENGINEERING PREPARED BY MRS.PRAVEENA RAO ASSISTANT PROFESSOR DEPARTMENT OF CIVIL ENGINEERING, IARE ADVANCED STEEL DESIGN M.TECH- STRUCTURAL ENGINEERING PREPARED BY MRS.PRAVEENA RAO ASSISTANT PROFESSOR DEPARTMENT OF CIVIL ENGINEERING, IARE UNIT 1 SIMPLE CONNECTION RIVETED, BOLTED PINNED & WELDED CONNECTION

More information

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted Errata posted 8-16-2017 Revisions are shown in red. Question 521, p. 47: Question 521 should read as follows: 521. The W10 22 steel eam (Fy = 50 ksi) shown in the figure is only raced at the center of

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

Hilti North America Installation Technical Manual Technical Data MI System Version

Hilti North America Installation Technical Manual Technical Data MI System Version MIC-SA-MAH 174671 Hilti North America Installation Technical Manual Technical Data MI System Version 1. 08.017 Terms of common cooperation / Legal disclaimer The product technical data published in these

More information

Hilti North America Installation Technical Manual Technical Data MI System Version

Hilti North America Installation Technical Manual Technical Data MI System Version MIC-S10-AH-L 179517-1 Hilti North America Installation Technical Manual Technical Data MI System Version 1. 08.017 Terms of common cooperation / Legal disclaimer The product technical data published in

More information

10012 Creviston DR NW Gig Harbor, WA fax

10012 Creviston DR NW Gig Harbor, WA fax C.R. Laurence Co., Inc. ATTN: Chris Hanstad 2503 East Vernon Los Angeles, CA 90058 27 March 2013 SUBJ: CRL SRS STANDOFF RAILING SYSTEM GLASS BALUSTRADE GUARDS The SRS Standoff Railing System is an engineered

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

Chapter 8: Bending and Shear Stresses in Beams

Chapter 8: Bending and Shear Stresses in Beams Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information