On the Structure of Primes Simon Mark Horvat

Size: px
Start display at page:

Download "On the Structure of Primes Simon Mark Horvat"

Transcription

1 On the Structure of Primes Simon Mark Horvat This paper explains the structure of Prime numbers and shows that they are not random. Discussion On pages 322 through 324 of Prime Obssesion, [Derbyshire, 2004], Derbyshire discusses some of the ways in which Primes appear to be random, including the Cramér model which states that...aside from this one restraint on their average frequency, the primes are utterly random... In this paper I show that the Primes are not random and form a lattice-like structure over the Integers. Terms not explained in this paper are documented in a more detailed, unpublished, paper [Horvat 2005] from which this paper has been condensed. Section 1: Structure of Primes over Z Definition: Prime Number Let P Z. We say that P is Prime if its only (+)ve divisors are 1 and P The first 5 negative, and the first 32 positive, Primes in standard representation -7, -5, -3, -2, -1, 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127 The sample of Primes extended and expressed in a Modulo 6 grid representation. 3(2n-1) 2(3n-1) 6n-1 6n 6n+1 2(3n+1) 3(2n+1) -(5x5) -(2x3)x (2x3)x3-17 -(3x5) -(2x7) -13 -(2x3)x2-11 -(2x5) -(3x3) -(2x4) -7 -(2x3) -5 -(2x2) x2 5 2x3 7 2x4 3x3 2x5 11 2x3x2 13 2x7 3x5 17 2x3x x3x4 5x5 29 2x3x5 31 5x7 2x3x x3x x3x8 7x7 53 2x3x9 5x x3x x13 2x3x x3x x11 2x3x x3x14 5x x3x15 7x13 5x19 2x3x x3x x3x x3x19 5x23 7x17 2x3x20 11x11 5x5x5 2x3x Author: 2005 Simon Mark Horvat, vsn Page 1

2 173 2x3x29 5x5x7 13x29 2x3x x3x64 5x7x x3x65 17x23 Table 1-1: Integers modulo 6 There is a Lattice-like structure of Composite strands over Z with Prime numbers at the base of each strand. This structure shows more clearly if we leave out the Composite strands of 2n and 3n, n Z, and restrict ourselves to composite strands over the set {6n ± 1}, where the strands are z=x.p i, for all Primes P i >3 and all integers x in {6n ± 1} Fundamental Theorem of Primes: All Integers are members of only one of the sets: Prime Base, B = {±P 1, ±P 2 } = {-3, -2, 2, 3} Subtractive Primes, P S, of the form 2.3.n - 1, n Z Additive Primes, P A, of the form 2.3.n + 1, n Z Composites of the forms 2.n, 3.n, n Z, n 1, ie Multiples of 2 and/or 3, includes 0 Composites, of the form 2.3.n ± 1, n Z, ie Multiples of Primes other than 2 or 3 Theorem: Additive and Subtractive Prime sets All prime numbers ±P i, other than ±2 and ±3, are of the form ±P i = (2.3.n) ± 1 = n.p 2 # ± 1, n Z. ±P i = n.p 2 # - 1 are termed Subtractive Primes, ±P i = n.p 2 # + 1 are Additive Primes. The set ±P i = (2.3.n) ± 1 is closed under multiplication and division I term the set, {6n ± 1}, the Prime Candidates (PC), P. Figure 1-1 shows stylised representations of the Composite strands over the set {6n ± 1} for the range [-31, 187]. Also, it does not include the Composite strands of 2 and 3. Each horizontal unit is of size 1. Each vertical unit is of size 6 and is referred to as a unit of size K, due to the PC Key function, K(r), defined below. For clarity I have only included strands for n=0, ±1, ±2, ±3, ±4. From left to right the graphs are Composite strands of: {6n -1}, {6n ± 1}, {6n +1}, 5 and 25 {all intersections with {6n±1} of the strand of 25 overlap with the strand of 5} 5 and 7, 11 and and and 25 Just plotting these few strands shows part of why it has been so difficult to find the Structure of Primes over Z ; Primes are indirectly related, and are the result of gaps in the Composite weave of smaller Primes Author: 2005 Simon Mark Horvat, vsn Page 2

3 Author: 2005 Simon Mark Horvat, vsn Page 3

4 Theorem: Prime Candidate Holes x = 6n ± 1 is Prime iff it is not the intersection of a Composite strand of a smaller Prime Candidate, x' = 6m ± 1, with the Prime Candidate Set, n,m Z,0 m n This is really just the Sieve of Eratosthenes restricted to the Prime Candidate set and can be equivalently stated as: Theorem: Prime PC Holes x = 6n ± 1 is Prime iff it is not the product of a smaller Prime Candidate, x' = 6m ± 1, n,m Z,0 m n Let P i ± be the i th Subtractive or Additive Prime Candidate, P i ± = 6i ± 1, P i - = 6i 1, P i + = 6i + 1, i Z. Define the PC Key function K( r ) st 1) K r = r 1,r R, r 0 6 2) K r = r 1,r R 6 Therefore, i N, K(P i ) = i K(P i + ) = i K(P i ± ) = i K( r ) is the distance of r from zero in terms of Prime Candidate Integer Key values Section 2: Prime Density and the Prime Number Theorem The Prime Number Theorem approximates the number of primes that are less than a given number n [Ingham 1932] [Jameson 2003] [Weisstein (2)] Theorem: Prime Number Theorem The number of primes that are less than a given number n is approximately n/ln(n), n n ln n It's clear now why the density of Prime Numbers decreases as n increases; the Prime Candidate Strands (multiples) of P n ± intersect with the Prime Candidate Set and prevent a Prime Candidate from being Prime, resulting in fewer Prime Candidate Holes as z increases. Euclid's Proof though, shows that existing Composite strands do not fill all of the Prime Candidate Set but instead must always leave Prime Holes forming the start of new Composite strands over P While this cause is straightforward, its effect is not. Attempts to calculate the Number of Primes by Combinatorial methods based on this structure are quickly affected by Complexity Theory. This simple structure has quite tangled results Section 3: Factoring Composites Take any integer z. Divide z by 2 until there are no more factors of 2, to obtain y Author: 2005 Simon Mark Horvat, vsn Page 4

5 Divide y by 3 until there are no more factors of 3, to obtain x By the Fundamental Theorem of Primes x is now of the form: i) 6c-1, or ii) 6c+1 for some integer c Subtractive Prime Candidates are of the form 6c-1. IF 6c-1 is not Prime then 6c-1 = (6n-1)(6m+1) has non-trivial Integer solutions for all 3 PC Key values c, n, m. Solving for PC Key value m m (6n-1) = c-n m= c n 6n 1 IF (6c-1) is a multiple of (6n-1) then (c-n) is a multiple of (6n-1) and (c-n) mod (6n-1) 0 c mod (6n-1) n 6c-1 mod (6n-1) 0 6c mod (6n-1) 1 Solving for PC Key value n n (6m+1) = c+m n= c m 6m 1 IF (6c-1) is a multiple of (6m+1) then (c+m) is a multiple of (6m+1) and (c+m) mod (6m+1) 0 c mod (6m+1) -m 6c-1 mod (6m+1) 0 6c mod (6m+1) 1 Additive Prime Candidates are of the form 6c+1. IF 6c+1 is not Prime then either 1) 6c+1 = (6n-1)(6m-1), or, 2) 6c+1 = (6n+1)(6m+1) have non-trivial Integer solutions for all 3 PC Key values c, n, m. In each case we need only solve for one term, n or m, WLOG Case 1) Product of Subtractive Prime Candidates: Solving for PC Key value m m (6n-1) = c+n m= c n 6n 1 IF (6c+1) is a multiple of (6n-1) then (c+n) is a multiple of (6n-1) and (c+n) mod (6n-1) 0 c mod (6n-1) -n 6c-1 mod (6n-1) 0 6c mod (6n-1) 1 Author: 2005 Simon Mark Horvat, vsn Page 5

6 Case 2) Product of Additive Prime Candidates: Solving for PC Key value n n (6m+1) = c-m n= c m 6m 1 IF (6c+1) is a multiple of (6m+1) then (c-m) is a multiple of (6m+1) and (c-m) mod (6m+1) 0 c mod (6m+1) m 6c+1 mod (6m+1) 0 6c mod (6m+1) -1 Note: P n ± and P m ± may be themselves be Composite Prime Candidates for some, but not all, values of n and m. There must be at least one n and m for which these PCs are not Composite, even if it is for PC Key values of 1 and C Initial PC Key value = =1 c 6 In both cases, factoring a Subtractive or an Additive PC, one can safely use this value as the Initial PC Key value Section 4: PC Multiplication Charts PC Multiplication charts demonstrate the relationships between PCs, especially when we look at the charts in terms of their PC Integer Key values The difference between (6n-1)x(6m+1) and (6{n+1}-1)x(6m+1) is m = 6(6m+1) The difference between (6n-1)x(6m+1) and (6n-1)x(6{m+1}+1) is n = 6(6n 1) Table 4-1: Subtractive Row x Additive Column PC Multiplication Chart The difference between (6n-1)x(6m-1) and (6{n+1}-1)x(6m-1) is m = 6(6m 1) The difference between (6n-1)x(6m-1) and (6n-1)x(6{m+1}-1) is n = 6(6n 1) Author: 2005 Simon Mark Horvat, vsn Page 6

7 Table 4-2: Subtractive x Subtractive PC Multiplication Chart The difference between (6n+1)x(6m+1) and (6{n+1}+1)x(6m+1) is m = 6(6m+1) The difference between (6n+1)x(6m+1) and (6n+1)x(6{m+1}+1) is n = 6(6n+1) Table 4-3: Additive x Additive PC Multiplication Chart Table 4-4: Subtractive Row x Additive Column Multiplication Chart in PC Key Values Table 4-5: Subtractive x Subtractive PC Multiplication Chart in PC Key Values Author: 2005 Simon Mark Horvat, vsn Page 7

8 Table 4-6: Additive x Additive PC Multiplication Chart in PC Key Values Columns in Tables 4-4 and 4-5 have magnitude reflected in PC Key Column 0, with sign not reflected Rows in Tables 4-4 and 4-6 have magnitude reflected in PC Key Row 0, with sign not reflected Both Rows and Columns are reflected between Tables 4-5 and 4-6, resulting in a 180 o rotation around the intersection of PC Key Row 0 and Column 0 Section 5: Generalised Prime Lattice Structures Given the simplicity of the Prime structure I wondered what is it about the Prime structure which gives us Primes? On further consideration it is clear that the underlying property of the Prime structure itself is in the term ±1 Definition: The Generalised Prime Lattice Structure B z ={0} {±P i e i,±p j e j,...,±p k e k }, S z =z n 1, A z =z n 1, z, n Z, z 0, If B {z} ={0} then z=0 else z=p i e i.p j e j.... P k e k where B(z) is the Prime Base for this set, and B(z) may be written using the product, ie B(6), or as a set of primes, ie B({±2, ±3}) or B({2, 3}). ±1 is an element of all Generalised Prime Candidate sets, zn ±1. It is the result of the cases with z and/or n equal to zero. The X Base Primes in B z ={0} {±P i e i,±p j e j,...,±p k e k }, if any, are the first X Primes in B(z) in order of size. Note that these Base Primes in B(z) are the set {±P i e i,±p j e j,...,±p k e k }, and not the set {±P i 1,±P j 1,...,±Pk 1 }, unless e i =1 for all i, ie, the Base Primes of B(245)=B({5,49}) are 5 and 49 I now term Primes of the form 6n ±1, the Natural Primes, or B(6) = B(2, 3) = B(±2, ±3), with the set of Base Primes {±2, ±3}. In the Fundamental Theorem of Primes the Prime Base was labelled as B = {±2, ±3}. I will retain B as indicating the special case of the Prime Base of the Natural Primes The set of Prime Candidates under B(z), {zn ±1}, is closed under multiplication Author: 2005 Simon Mark Horvat, vsn Page 8

9 (z n 1) x (z m 1) = z 2 nm zn zm +1 = z (znm n m) +1 (z n 1) x (z m +1) = z 2 nm +zn zm 1 = z (znm +n m) 1 (z n +1) x (z m +1) = z 2 nm +zn +zm +1 = z (znm +n +m) +1 Note these are generalised forms of the multiplicative equations for the Natural Primes, with z in place of 6 (6n 1) x (6m 1) = 6 2 nm 6n 6m +1 = 6 (6nm n m) +1 (6n 1) x (6m +1) = 6 2 nm +6n 6m 1 = 6 (6nm +n m) 1 (6n +1) x (6m +1) = 6 2 nm +6n +6m +1 = 6 (6nm +n +m) +1 {zn ±1} is also closed under division, with sub-factors of form zn ±1 or is itself Prime in B({z}), meaning that it does not decompose into sub-factors of form zn ±1 other than its own (+)ve or ( )ve value and ±1 The PC Key function K(x) is now extended to K Z (x), the value of n in zn ±1 under B(z). I will retain K(x) as an alternative shorthand nomenclature equivalent to K Z (x) in the current Prime Base under consideration With B(z), we are not studying all integers; instead we are investigating the Patterns of the Prime Lattice structures formed over the subsets of Subtractive and Additive Prime Candidates under B(z), {zn ±1}. Theorem 11 is a corollary to Theorem 9, providing a definition for Prime PCs in B(z) Theorem: Prime PCs in B(z) x = zn ± 1 is a Prime PC in B(z) iff it is not the product of a smaller Prime Candidate in B(z), x' = zm ± 1, z,n,m Z,z 0,0 m n ie, in B(10), P 2 - = 19, P 2 + = 21 There are neither Prime, nor Composite, PCs in B(0) as it only has the 2 PCs, ±1 All of B(1)'s Primes are the same as B(6)'s Primes, but in B(1): There are no Primes in the Prime Base, B(1) = {±1} ±2 and ±3 are Prime PCs, not Base Primes All Primes are both Subtractive and Additive PCs y is a Prime PC in B(y -1) and B(y +1) for all Integers y, y>1 B(z) Prime PC is an equivalent term to Prime PC in B(z) For example, not counting 1, the first few (+)ve Prime PCs in B(10) are: 9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 59, 61, 69, 71, 79, 89, 91, 101, 109, 111, 119, 129,... Many B(10) Prime PCs are not Natural Primes, ie not Prime in B(6): 9, 21, 39, 49, 51, 69, 91, 111, 119, 129,... Many B(10) Prime PCs are not even Prime Candidates in B(6): 9, 21, 39, 51, 69, 111, 129,... The first few Composite Prime Candidates in B(10) are: 81 = 9x9 99 = 9x11 Author: 2005 Simon Mark Horvat, vsn Page 9

10 121 = 11x = 9x = 9x = 11x = 11x = 9x29 10n-1 10n 10n (2x5)x (2x5) x x5x x5x x5x x5x x5x x5x x5x8 9x9 89 2x5x9 91 9x11 2x5x x5x x5x12 11x x5x x5x x5x x5x x5x17 9x x5x x21 2x5x x5x x19 2x5x x5x x5x23 11x x5x89 9x9x11 There are 15 (+)ve Prime PCs in B(10) before the first B(10) Composite PC, 81 { K 10 (81)=8 }, then 2 more B(10) Prime PCs before the next Composite B(10) PC, 99 { K 10 (99)=10 }, totaling 17 B(10) Prime PCs below 99 There are 7 (+)ve Prime PCs in the Natural Primes, B(6) { 5, 7, 11, 13, 17, 19, 23 } before the first Composite PC, 25 { K(25)=4 }, then 2 more Primes before the next Composite PC, 35 { K(35)=6 } Thus, the Weave of the Prime Lattice varies depending on the value of z. Examining the composites formed by set of Prime Candidates under B(z), {zn ±1}: K Z ( (z n 1) x (z m 1) ) = znm n m K Z ( (z n 1) x (z m +1) ) = znm +n m K Z ( (z n +1) x (z m +1) ) = znm +n +m Many of the properties documented in this paper hold for B(z), ie Factorisation Algorithms in B(z), there will be a Prime Number Theorem applicable to each B(z), z>0 Author: 2005 Simon Mark Horvat, vsn Page 10

11 For small values of n, or m, the above multiples are affected more by the value of z. As zn ±1 tends towards infinity the effect of z decreases and, for z>6, the Density of Primes in Prime Candidates under B(z) decreases for the same reason, and in the same manner, as the density of Primes in the Prime Candidates of the Natural Primes, B(6) Theorem: Infinity of Prime PCs in B(z) : There are an infinite number of Prime PCs in B(z), z>0 Lattice Structures over R The domain of z in B(z) may be extended in at least two ways to include the Real numbers. Case 1: Extend the Domain of the z term to R In this extended domain the Real Prime Base, B(r), has an infinite number of members, r n, all of the integer powers of the Real number r B z ={r n }, S z =r n 1, A z =r n 1, n Z,r R,r 0, Case 2: Extend the Domain of n to R Another way to extend the domain into the Reals is to extend n into the Reals instead of z. This subset is formed by taking a Real number, r 0, and all of the Reals an integer displacement from r 0 n={r 0 y },r 0 R, y Z Then B z ={0} {±P i e i,±p j e j,...,±p k e k }, S z =z {r 0 y} 1, A z =z{r 0 y} 1, z Z, z 0, r 0 R, y Z Lattice Structures over C A Gaussian Integer is a Complex number z=a+bi, where a and b are integers. Gaussian Integers can be uniquely factored in terms of Gaussian Primes [Weisstein (3)] A Gaussian Prime is a Gaussian Integer which is only divisible by itself and 1, and by no other Gaussian Integer. [Loy (1)] Definition: Gaussian primes are Gaussian integers satisfying one of the following properties [Weisstein (4)]. 1. If both a and b are nonzero then a+bi is a Gaussian prime iff a 2 +b 2 is a Natural Prime. 2. If a = 0, then bi is a Gaussian prime iff b is a Natural Prime and b 3 (mod 4). 3. If b = 0, then a is a Gaussian prime iff a is a Natural Prime and a 3 (mod 4). The Natural Primes which are also Gaussian Primes are 3, 7, 11, 19, 23, 31, 43,... [Sloane A002145]. 2 is a Natural prime, but it is not a Gaussian prime because it has Gaussian Integer factors, (1 i)(1+i) = = 2 Theorem: A Prime Candidate Structure of Gaussian Primes Author: 2005 Simon Mark Horvat, vsn Page 11

12 For Gaussian Prime z = a+bi. If a = 0, or b = 0, then if z >3 and the Integer Key Value, n=k( z ) is: - Even, then z is a Subtractive Prime, 6n 1, n>1, - Odd, then z is an Additive Prime, 6n +1, n>0, Note that this Theorem only describes the structure of a subset of the Gaussian Primes. There may be more Prime Candidate, or other, types of structures to consider. Section 6: Generalising Euclid's Proof of the Infinitude of Primes [not included in this condensed extract from the unpublished paper [Horvat 2005] ]... Section 7: Symmetric Prime Lattices In this Section, we examine Symmetric Prime Lattices, refer Figure 7-1: "Symmetries of {6n ±1} over [-31, 343]". Figure 7-1 shows that every pattern of Composite strands has a cycle of length 6 x Product of the strands and 180 o Rotational Symmetry repeated at half of this cycle length, starting from 0 K. ie, a pair of Composite strands z i =6n i -1 and z j =6n j +1 have a cycle of length 6n i n j, or n i n j K, and repeated 180 o Rotational Symmetry at every 3n i n j, =(n i n j )/2 K, starting from 0 K. The cycle and symmetry length properties hold regardless of the number of strands involved. In Figure 7-1, from left to right, the graphs are Composite strands of: Strand(s) Cycle Length Points of Symmetry K 6.5n K K 12.5n K 5, 7 35 K (=6x35 =210) 17.5n K (=3x35n =105n) 5,11 55 K 27.5n K 5,13 65 K 32.5n K 7,11 77 K 38.5n K 5,17 85 K 42.5n K 7,13 91 K 45.5n K 7, K 59.5n K 7, K 66.5n K 11, K 71.5n K 5,7, K 192.5n K 17,19,23,25 185,725 K 92,862.5n K Table 7-1: Symmetries of {6n ± 1} n Z These symmetries hold for all B(z), for Integer values of z, with z being the size of unit K. I have not investigated these symmetries yet in terms of Real z Author: 2005 Simon Mark Horvat, vsn Page 12

13 Author: 2005 Simon Mark Horvat, vsn Page 13

14 References: Caldwell, Chris K., Are all primes (past 2 and 3) of the forms 6n+1 and 6n-1? Derbyshire, John, 2003, Prime Obsession. ISBN: Chapter 18 Hoffman, Paul, 1998, The Man Who Loved Only Numbers. ISBN: ) P Erdős was the master of elementary methods... 2) P32-33 Euclid's Proof of the Infinitude of Primes Horvat 2005, The Structure of Primes and Prime Lattice Theory. Unpublished Paper Hui, K, Infinitely many Primes of form 6n+5. Ingham, A. E., 1932, The Distribution of Prime Numbers. ISBN: Jameson, G. J. O., 2003, The Prime Number Theorem. ISBN: Loy, J, (1) Gaussian Primes. Loy, J, (2) Primes and 6. RSA, RSA Challenge. Sloane A Weisstein, Eric W. (1) "Fundamental Theorem of Arithmetic." From MathWorld--A Wolfram Web Resource. Weisstein, Eric W. (2) "Prime Number Theorem." From MathWorld--A Wolfram Web Resource. Weisstein, Eric W. (3) "Gaussian Integer." From MathWorld--A Wolfram Web Resource. Weisstein, Eric W. (4) "Gaussian Prime." From MathWorld--A Wolfram Web Resource. Author: 2005 Simon Mark Horvat, vsn Page 14

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively 6 Prime Numbers Part VI of PJE 6.1 Fundamental Results Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively D (p) = { p 1 1 p}. Otherwise

More information

CHAPTER 14. Ideals and Factor Rings

CHAPTER 14. Ideals and Factor Rings CHAPTER 14 Ideals and Factor Rings Ideals Definition (Ideal). A subring A of a ring R is called a (two-sided) ideal of R if for every r 2 R and every a 2 A, ra 2 A and ar 2 A. Note. (1) A absorbs elements

More information

Arithmetic, Algebra, Number Theory

Arithmetic, Algebra, Number Theory Arithmetic, Algebra, Number Theory Peter Simon 21 April 2004 Types of Numbers Natural Numbers The counting numbers: 1, 2, 3,... Prime Number A natural number with exactly two factors: itself and 1. Examples:

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

P a g e 1. Prime Gaps. The Structure and Properties of the Differences between Successive Prime Numbers. Jerrad Neff

P a g e 1. Prime Gaps. The Structure and Properties of the Differences between Successive Prime Numbers. Jerrad Neff P a g e 1 Prime Gaps The Structure and Properties of the Differences between Successive Prime Numbers Jerrad Neff P a g e 2 Table of Contents 1. Defining the Prime Gap Function 2. Discoveries and Data

More information

Chapter 14: Divisibility and factorization

Chapter 14: Divisibility and factorization Chapter 14: Divisibility and factorization Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Summer I 2014 M. Macauley (Clemson) Chapter

More information

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B.

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B. Relations Binary Relation Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation Let R A B be a relation from A to B. If (a, b) R, we write a R b. 1 Binary Relation Example:

More information

Discrete Math, Second Problem Set (June 24)

Discrete Math, Second Problem Set (June 24) Discrete Math, Second Problem Set (June 24) REU 2003 Instructor: Laszlo Babai Scribe: D Jeremy Copeland 1 Number Theory Remark 11 For an arithmetic progression, a 0, a 1 = a 0 +d, a 2 = a 0 +2d, to have

More information

Homework 10 M 373K by Mark Lindberg (mal4549)

Homework 10 M 373K by Mark Lindberg (mal4549) Homework 10 M 373K by Mark Lindberg (mal4549) 1. Artin, Chapter 11, Exercise 1.1. Prove that 7 + 3 2 and 3 + 5 are algebraic numbers. To do this, we must provide a polynomial with integer coefficients

More information

1. How many labeled trees are there on n vertices such that all odd numbered vertices are leaves?

1. How many labeled trees are there on n vertices such that all odd numbered vertices are leaves? 1. How many labeled trees are there on n vertices such that all odd numbered vertices are leaves? This is most easily done by Prüfer codes. The number of times a vertex appears is the degree of the vertex.

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

THE N-VALUE GAME OVER Z AND R

THE N-VALUE GAME OVER Z AND R THE N-VALUE GAME OVER Z AND R YIDA GAO, MATT REDMOND, ZACH STEWARD Abstract. The n-value game is an easily described mathematical diversion with deep underpinnings in dynamical systems analysis. We examine

More information

Sierpinski s Triangle and the Lucas Correspondence Theorem

Sierpinski s Triangle and the Lucas Correspondence Theorem Sierpinski s Triangle and the Lucas Correspondence Theorem Julian Trujillo, and George Kreppein Western Washington University November 30, 2012 History of Sierpinski s Triangle Sierpinski s triangle also

More information

4. Congruence Classes

4. Congruence Classes 4 Congruence Classes Definition (p21) The congruence class mod m of a Z is Example With m = 3 we have Theorem For a b Z Proof p22 = {b Z : b a mod m} [0] 3 = { 6 3 0 3 6 } [1] 3 = { 2 1 4 7 } [2] 3 = {

More information

1. multiplication is commutative and associative;

1. multiplication is commutative and associative; Chapter 4 The Arithmetic of Z In this chapter, we start by introducing the concept of congruences; these are used in our proof (going back to Gauss 1 ) that every integer has a unique prime factorization.

More information

Odd Primes. Theory W: Structure and organization of odd primes (8th problem of Hilbert) mathscience.tsoft .com

Odd Primes. Theory W: Structure and organization of odd primes (8th problem of Hilbert) mathscience.tsoft .com T-Soft@mail mathscience.tsoftemail.com Odd Primes Theory W: Structure and organization of odd primes (8th problem of Hilbert) WOLF François and WOLF Marc PhDs in materials science Ceramists engineers IT

More information

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z:

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z: NUMBER SYSTEMS Number theory is the study of the integers. We denote the set of integers by Z: Z = {..., 3, 2, 1, 0, 1, 2, 3,... }. The integers have two operations defined on them, addition and multiplication,

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. Congruences Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same

More information

5.1. Primes, Composites, and Tests for Divisibility

5.1. Primes, Composites, and Tests for Divisibility CHAPTER 5 Number Theory 5.1. Primes, Composites, and Tests for Divisibility Definition. A counting number with exactly two di erent factors is called a prime number or a prime. A counting number with more

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Section II.2. Finitely Generated Abelian Groups

Section II.2. Finitely Generated Abelian Groups II.2. Finitely Generated Abelian Groups 1 Section II.2. Finitely Generated Abelian Groups Note. In this section we prove the Fundamental Theorem of Finitely Generated Abelian Groups. Recall that every

More information

Extended Essay - Mathematics

Extended Essay - Mathematics Extended Essay - Mathematics Creating a Model to Separate or Group Number Sets by their Cardinalities Pope John Paul II C.S.S. September 2009 Candidate Number: 001363-012 The conquest of the actual infinite

More information

7. Prime Numbers Part VI of PJE

7. Prime Numbers Part VI of PJE 7. Prime Numbers Part VI of PJE 7.1 Definition (p.277) A positive integer n is prime when n > 1 and the only divisors are ±1 and +n. That is D (n) = { n 1 1 n}. Otherwise n > 1 is said to be composite.

More information

CIS 6930/4930 Computer and Network Security. Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography 1 Review of Modular Arithmetic 2 Remainders and Congruency For any integer a and any positive

More information

Elliptic Curves I. The first three sections introduce and explain the properties of elliptic curves.

Elliptic Curves I. The first three sections introduce and explain the properties of elliptic curves. Elliptic Curves I 1.0 Introduction The first three sections introduce and explain the properties of elliptic curves. A background understanding of abstract algebra is required, much of which can be found

More information

Mathematical Case Studies: Some Number Theory

Mathematical Case Studies: Some Number Theory Mathematical Case Studies: Some Number Theory Rob Arthan rda@lemma-one.com 31 December 2016 Abstract This ProofPower-HOL document presents some definitions and theorems from number theory. The topics currently

More information

Proof of Infinite Number of Triplet Primes. Stephen Marshall. 28 May Abstract

Proof of Infinite Number of Triplet Primes. Stephen Marshall. 28 May Abstract Proof of Infinite Number of Triplet Primes Stephen Marshall 28 May 2014 Abstract This paper presents a complete and exhaustive proof that an Infinite Number of Triplet Primes exist. The approach to this

More information

A SURVEY OF PRIMALITY TESTS

A SURVEY OF PRIMALITY TESTS A SURVEY OF PRIMALITY TESTS STEFAN LANCE Abstract. In this paper, we show how modular arithmetic and Euler s totient function are applied to elementary number theory. In particular, we use only arithmetic

More information

Primes. Rational, Gaussian, Industrial Strength, etc. Robert Campbell 11/29/2010 1

Primes. Rational, Gaussian, Industrial Strength, etc. Robert Campbell 11/29/2010 1 Primes Rational, Gaussian, Industrial Strength, etc Robert Campbell 11/29/2010 1 Primes and Theory Number Theory to Abstract Algebra History Euclid to Wiles Computation pencil to supercomputer Practical

More information

ECEN 5022 Cryptography

ECEN 5022 Cryptography Elementary Algebra and Number Theory University of Colorado Spring 2008 Divisibility, Primes Definition. N denotes the set {1, 2, 3,...} of natural numbers and Z denotes the set of integers {..., 2, 1,

More information

Algebraic number theory Solutions to exercise sheet for chapter 4

Algebraic number theory Solutions to exercise sheet for chapter 4 Algebraic number theory Solutions to exercise sheet for chapter 4 Nicolas Mascot n.a.v.mascot@warwick.ac.uk), Aurel Page a.r.page@warwick.ac.uk) TAs: Chris Birkbeck c.d.birkbeck@warwick.ac.uk), George

More information

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School Basic counting techniques Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elementary counting methods Periklis A. Papakonstantinou MSIS, Rutgers Business School ALL RIGHTS RESERVED

More information

2 Elementary number theory

2 Elementary number theory 2 Elementary number theory 2.1 Introduction Elementary number theory is concerned with properties of the integers. Hence we shall be interested in the following sets: The set if integers {... 2, 1,0,1,2,3,...},

More information

QUARTERNIONS AND THE FOUR SQUARE THEOREM

QUARTERNIONS AND THE FOUR SQUARE THEOREM QUARTERNIONS AND THE FOUR SQUARE THEOREM JIA HONG RAY NG Abstract. The Four Square Theorem was proved by Lagrange in 1770: every positive integer is the sum of at most four squares of positive integers,

More information

Elliptic Curves over Finite Fields

Elliptic Curves over Finite Fields Elliptic Curves over Finite Fields Katherine E. Stange Stanford University Boise REU, June 14th, 2011 Consider a cubic curve of the form E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 If you intersect

More information

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z:

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z: Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some z Z Notation: b Fact: for all, b, c Z:, 1, and 0 0 = 0 b and b c = c b and c = (b + c) b and b = ±b 1

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Sphere Packings. Ji Hoon Chun. Thursday, July 25, 2013

Sphere Packings. Ji Hoon Chun. Thursday, July 25, 2013 Sphere Packings Ji Hoon Chun Thursday, July 5, 03 Abstract The density of a (point) lattice sphere packing in n dimensions is the volume of a sphere in R n divided by the volume of a fundamental region

More information

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions MATH 11/CSCI 11, Discrete Structures I Winter 007 Toby Kenney Homework Sheet 5 Hints & Model Solutions Sheet 4 5 Define the repeat of a positive integer as the number obtained by writing it twice in a

More information

The Impossibility of Certain Types of Carmichael Numbers

The Impossibility of Certain Types of Carmichael Numbers The Impossibility of Certain Types of Carmichael Numbers Thomas Wright Abstract This paper proves that if a Carmichael number is composed of primes p i, then the LCM of the p i 1 s can never be of the

More information

The cocycle lattice of binary matroids

The cocycle lattice of binary matroids Published in: Europ. J. Comb. 14 (1993), 241 250. The cocycle lattice of binary matroids László Lovász Eötvös University, Budapest, Hungary, H-1088 Princeton University, Princeton, NJ 08544 Ákos Seress*

More information

arxiv:math/ v1 [math.nt] 9 Aug 2004

arxiv:math/ v1 [math.nt] 9 Aug 2004 arxiv:math/0408107v1 [math.nt] 9 Aug 2004 ELEMENTARY RESULTS ON THE BINARY QUADRATIC FORM a 2 + ab + b 2 UMESH P. NAIR Abstract. This paper examines with elementary proofs some interesting properties of

More information

NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

More information

An Introduction to Proof-based Mathematics Harvard/MIT ESP: Summer HSSP Isabel Vogt

An Introduction to Proof-based Mathematics Harvard/MIT ESP: Summer HSSP Isabel Vogt An Introduction to Proof-based Mathematics Harvard/MIT ESP: Summer HSSP Isabel Vogt Class Objectives Field Axioms Finite Fields Field Extensions Class 5: Fields and Field Extensions 1 1. Axioms for a field

More information

Part IA Numbers and Sets

Part IA Numbers and Sets Part IA Numbers and Sets Definitions Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Sieving 2m-prime pairs

Sieving 2m-prime pairs Notes on Number Theory and Discrete Mathematics ISSN 1310 5132 Vol. 20, 2014, No. 3, 54 60 Sieving 2m-prime pairs Srečko Lampret Pohorska cesta 110, 2367 Vuzenica, Slovenia e-mail: lampretsrecko@gmail.com

More information

Number Theory and Graph Theory. Prime numbers and congruences.

Number Theory and Graph Theory. Prime numbers and congruences. 1 Number Theory and Graph Theory Chapter 2 Prime numbers and congruences. By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-1:Primes

More information

God may not play dice with the universe, but something strange is going on with the prime numbers.

God may not play dice with the universe, but something strange is going on with the prime numbers. Primes: Definitions God may not play dice with the universe, but something strange is going on with the prime numbers. P. Erdös (attributed by Carl Pomerance) Def: A prime integer is a number whose only

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

Chris Smyth School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK.

Chris Smyth School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK. THE DIVISIBILITY OF a n b n BY POWERS OF n Kálmán Győry Institute of Mathematics, University of Debrecen, Debrecen H-4010, Hungary. gyory@math.klte.hu Chris Smyth School of Mathematics and Maxwell Institute

More information

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof.

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof. PGSS Discrete Math Solutions to Problem Set #4 Note: signifies the end of a problem, and signifies the end of a proof. 1. Prove that for any k N, there are k consecutive composite numbers. (Hint: (k +

More information

DIVISIBILITY OF BINOMIAL COEFFICIENTS AT p = 2

DIVISIBILITY OF BINOMIAL COEFFICIENTS AT p = 2 DIVISIBILITY OF BINOMIAL COEFFICIENTS AT p = 2 BAILEY SWINFORD Abstract. This paper will look at the binomial coefficients divisible by the prime number 2. The paper will seek to understand and explain

More information

On Exponentially Perfect Numbers Relatively Prime to 15

On Exponentially Perfect Numbers Relatively Prime to 15 On Exponentially Perfect Numbers Relatively Prime to 15 by Joseph F. Kolenick Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Mathematics Program YOUNGSTOWN

More information

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is LARGE PRIME NUMBERS 1. Fermat Pseudoprimes Fermat s Little Theorem states that for any positive integer n, if n is prime then b n % n = b for b = 1,..., n 1. In the other direction, all we can say is that

More information

Primes and Factorization

Primes and Factorization Primes and Factorization 1 A prime number is an integer greater than 1 with no proper divisors. The list begins 2, 3, 5, 7, 11, 13, 19,... See http://primes.utm.edu/ for a wealth of information about primes.

More information

Mahler s Polynomials and the Roots of Unity

Mahler s Polynomials and the Roots of Unity Mahler s Polynomials and the Roots of Unity James Pedersen 1 Introduction In their paper [4] "Mahler Polynomials and the Roots of Unity", Karl Dilcher and Larry Ericksen introduce the reader to the relationships

More information

Arithmetic Properties for a Certain Family of Knot Diagrams

Arithmetic Properties for a Certain Family of Knot Diagrams Arithmetic Properties for a Certain Family of Knot Diagrams Darrin D. Frey Department of Science and Math Cedarville University Cedarville, OH 45314 freyd@cedarville.edu and James A. Sellers Department

More information

Discrete Structures Lecture Primes and Greatest Common Divisor

Discrete Structures Lecture Primes and Greatest Common Divisor DEFINITION 1 EXAMPLE 1.1 EXAMPLE 1.2 An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

More information

Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet

Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet Week # 1 Order of Operations Step 1 Evaluate expressions inside grouping symbols. Order of Step 2 Evaluate all powers. Operations Step

More information

SUBGROUPS OF PRODUCT GROUPS. A Thesis. Presented to the. Faculty of. San Diego State University. In Partial Fulfillment

SUBGROUPS OF PRODUCT GROUPS. A Thesis. Presented to the. Faculty of. San Diego State University. In Partial Fulfillment SUBGROUPS OF PRODUCT GROUPS A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Robin Michael Devitt-Ryder

More information

Polynomial and Rational Functions. Chapter 3

Polynomial and Rational Functions. Chapter 3 Polynomial and Rational Functions Chapter 3 Quadratic Functions and Models Section 3.1 Quadratic Functions Quadratic function: Function of the form f(x) = ax 2 + bx + c (a, b and c real numbers, a 0) -30

More information

Finite Fields: An introduction through exercises Jonathan Buss Spring 2014

Finite Fields: An introduction through exercises Jonathan Buss Spring 2014 Finite Fields: An introduction through exercises Jonathan Buss Spring 2014 A typical course in abstract algebra starts with groups, and then moves on to rings, vector spaces, fields, etc. This sequence

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

Chapter 2 Formulas and Definitions:

Chapter 2 Formulas and Definitions: Chapter 2 Formulas and Definitions: (from 2.1) Definition of Polynomial Function: Let n be a nonnegative integer and let a n,a n 1,...,a 2,a 1,a 0 be real numbers with a n 0. The function given by f (x)

More information

Discrete mathematics I - Number theory

Discrete mathematics I - Number theory Discrete mathematics I - Number theory Emil Vatai (based on hungarian slides by László Mérai) 1 January 31, 2018 1 Financed from the financial support ELTE won from the Higher Education

More information

Elementary Properties of the Integers

Elementary Properties of the Integers Elementary Properties of the Integers 1 1. Basis Representation Theorem (Thm 1-3) 2. Euclid s Division Lemma (Thm 2-1) 3. Greatest Common Divisor 4. Properties of Prime Numbers 5. Fundamental Theorem of

More information

CSC 474 Network Security. Outline. GCD and Euclid s Algorithm. GCD and Euclid s Algorithm Modulo Arithmetic Modular Exponentiation Discrete Logarithms

CSC 474 Network Security. Outline. GCD and Euclid s Algorithm. GCD and Euclid s Algorithm Modulo Arithmetic Modular Exponentiation Discrete Logarithms Computer Science CSC 474 Network Security Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography CSC 474 Dr. Peng Ning 1 Outline GCD and Euclid s Algorithm Modulo Arithmetic Modular Exponentiation

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions Basic Combinatorics Math 4010, Section 01 Fall 01 Homework 8 Solutions 1.8.1 1: K n has ( n edges, each one of which can be given one of two colors; so Kn has (n -edge-colorings. 1.8.1 3: Let χ : E(K k

More information

CYCLICITY OF (Z/(p))

CYCLICITY OF (Z/(p)) CYCLICITY OF (Z/(p)) KEITH CONRAD 1. Introduction For each prime p, the group (Z/(p)) is cyclic. We will give seven proofs of this fundamental result. A common feature of the proofs that (Z/(p)) is cyclic

More information

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2000 2013 Contents 9 Introduction to Number Theory 63 9.1 Subgroups

More information

An Exploration of the Arithmetic Derivative

An Exploration of the Arithmetic Derivative . An Exploration of the Arithmetic Derivative Alaina Sandhu Research Midterm Report, Summer 006 Under Supervision: Dr. McCallum, Ben Levitt, Cameron McLeman 1 Introduction The Arithmetic Derivative is

More information

A summary of matrices and matrix math

A summary of matrices and matrix math A summary of matrices and matrix math Vince Cronin, Baylor University, reviewed and revised by Nancy West, Beth Pratt-Sitaula, and Shelley Olds. Total horizontal velocity vectors from three GPS stations

More information

The critical group of a graph

The critical group of a graph The critical group of a graph Peter Sin Texas State U., San Marcos, March th, 4. Critical groups of graphs Outline Laplacian matrix of a graph Chip-firing game Smith normal form Some families of graphs

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 8 February 1, 2012 CPSC 467b, Lecture 8 1/42 Number Theory Needed for RSA Z n : The integers mod n Modular arithmetic GCD Relatively

More information

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS The integers are the set 1. Groups, Rings, and Fields: Basic Examples Z := {..., 3, 2, 1, 0, 1, 2, 3,...}, and we can add, subtract, and multiply

More information

Generalized Near-Bell Numbers

Generalized Near-Bell Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 12 2009, Article 09.5.7 Generalized Near-Bell Numbers Martin Griffiths Department of Mathematical Sciences University of Esse Wivenhoe Par Colchester

More information

Introduction Integers. Discrete Mathematics Andrei Bulatov

Introduction Integers. Discrete Mathematics Andrei Bulatov Introduction Integers Discrete Mathematics Andrei Bulatov Discrete Mathematics - Integers 9- Integers God made the integers; all else is the work of man Leopold Kroenecker Discrete Mathematics - Integers

More information

2016 Canadian Intermediate Mathematics Contest

2016 Canadian Intermediate Mathematics Contest The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 2016 Canadian Intermediate Mathematics Contest Wednesday, November 23, 2016 (in North America and South America) Thursday, November

More information

4 Number Theory and Cryptography

4 Number Theory and Cryptography 4 Number Theory and Cryptography 4.1 Divisibility and Modular Arithmetic This section introduces the basics of number theory number theory is the part of mathematics involving integers and their properties.

More information

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0).

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0). LARGE PRIME NUMBERS 1. Fast Modular Exponentiation Given positive integers a, e, and n, the following algorithm quickly computes the reduced power a e % n. (Here x % n denotes the element of {0,, n 1}

More information

CSE 311 Lecture 13: Primes and GCD. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 13: Primes and GCD. Emina Torlak and Kevin Zatloukal CSE 311 Lecture 13: Primes and GCD Emina Torlak and Kevin Zatloukal 1 Topics Modular arithmetic applications A quick wrap-up of Lecture 12. Primes Fundamental theorem of arithmetic, Euclid s theorem, factoring.

More information

Chapter 1- Polynomial Functions

Chapter 1- Polynomial Functions Chapter 1- Polynomial Functions Lesson Package MHF4U Chapter 1 Outline Unit Goal: By the end of this unit, you will be able to identify and describe some key features of polynomial functions, and make

More information

MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

More information

THE DYNAMICS OF SUCCESSIVE DIFFERENCES OVER Z AND R

THE DYNAMICS OF SUCCESSIVE DIFFERENCES OVER Z AND R THE DYNAMICS OF SUCCESSIVE DIFFERENCES OVER Z AND R YIDA GAO, MATT REDMOND, ZACH STEWARD Abstract. The n-value game is a dynamical system defined by a method of iterated differences. In this paper, we

More information

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2006 Contents 9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups

More information

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4 MATH 25 CLASS 21 NOTES, NOV 7 2011 Contents 1. Groups: definition 1 2. Subgroups 2 3. Isomorphisms 4 1. Groups: definition Even though we have been learning number theory without using any other parts

More information

Digit Reversal Without Apology

Digit Reversal Without Apology Digit Reversal Without Apology Lara Pudwell Rutgers University Piscataway, NJ 08854 lpudwell@math.rutgers.edu In A Mathematician s Apology [1] G. H. Hardy states, 8712 and 9801 are the only four-figure

More information

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Asia Pacific Journal of Multidisciplinary Research, Vol 3, No 4, November 05 Part I On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Romer C Castillo, MSc Batangas

More information

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.4 2.6 of Rosen Introduction I When talking

More information

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number Topic Contents Factoring Methods Unit 3 The smallest divisor of an integer The GCD of two numbers Generating prime numbers Computing prime factors of an integer Generating pseudo random numbers Raising

More information

Simultaneous Diophantine Approximation with Excluded Primes. László Babai Daniel Štefankovič

Simultaneous Diophantine Approximation with Excluded Primes. László Babai Daniel Štefankovič Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič Dirichlet (1842) Simultaneous Diophantine Approximation Given reals integers α,,...,, 1 α 2 α n Q r1,..., r n

More information

Outline. Some Review: Divisors. Common Divisors. Primes and Factors. b divides a (or b is a divisor of a) if a = mb for some m

Outline. Some Review: Divisors. Common Divisors. Primes and Factors. b divides a (or b is a divisor of a) if a = mb for some m Outline GCD and Euclid s Algorithm AIT 682: Network and Systems Security Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography Modulo Arithmetic Modular Exponentiation Discrete Logarithms

More information

Outline. AIT 682: Network and Systems Security. GCD and Euclid s Algorithm Modulo Arithmetic Modular Exponentiation Discrete Logarithms

Outline. AIT 682: Network and Systems Security. GCD and Euclid s Algorithm Modulo Arithmetic Modular Exponentiation Discrete Logarithms AIT 682: Network and Systems Security Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography Instructor: Dr. Kun Sun Outline GCD and Euclid s Algorithm Modulo Arithmetic Modular Exponentiation

More information

On the polynomial x(x + 1)(x + 2)(x + 3)

On the polynomial x(x + 1)(x + 2)(x + 3) On the polynomial x(x + 1)(x + 2)(x + 3) Warren Sinnott, Steven J Miller, Cosmin Roman February 27th, 2004 Abstract We show that x(x + 1)(x + 2)(x + 3) is never a perfect square or cube for x a positive

More information

A Few Primality Testing Algorithms

A Few Primality Testing Algorithms A Few Primality Testing Algorithms Donald Brower April 2, 2006 0.1 Introduction These notes will cover a few primality testing algorithms. There are many such, some prove that a number is prime, others

More information