Exact and high order discretization schemes. Wishart processes and their affine extensions

Size: px
Start display at page:

Download "Exact and high order discretization schemes. Wishart processes and their affine extensions"

Transcription

1 for Wishart processes and their affine extensions CERMICS, Ecole des Ponts Paris Tech - PRES Université Paris Est Modeling and Managing Financial Risks -2011

2 Plan 1 Motivation and notations 2 Splitting operator property Exact simulation 3 Wishart processes Affine processes 4

3 Plan 1 Motivation and notations 2 Splitting operator property Exact simulation 3 Wishart processes Affine processes 4

4 Motivation Wishart process and affine process defined on the symmetric positive cone S + d (R) are a key-tool for: - Defining the natural correlation between processes. - A generalization of stochastic volatility in multidimension. - Pricing complex derivatives taking into account the relationship between spot (Outperformer, Best/Worst of options...). Pricing with Fourier transform methods are less efficient in the multi dimension context. To the best of our knowledge, this is the first exact simulation and high order discretization that work without any restriction on parameters.

5 Definitions We say that the process (Xt x ) t 0 is a continuous positive affine process, if it is a solution of the following SDE: X x t = x + Z t 0 (α + B(X x s )) ds + Z t 0 p p X x s dw sa + a T dws T X x s, (1) where (W t, t 0) denotes a d-by-d square matrix made of independent standard Brownian motions, x, ᾱ S + d (R), a M d(r), B L(S d (R)) ( where L(S d (R)) is a linear mapping on S d (R)), and x S + d (R) x = odiag(λ 1,..., λ d )o T = x = odiag( λ 1,..., p λ d )o T. Wishart processes correspond to the following case : α 0, ᾱ = αa T a and b M d (R), x S d (R), B(x) = bx + xb T. (2)

6 Application in finance : Gourieroux and Sufana model We consider d risky assets S 1 t,..., S d t. Let (B t, t 0) denote a standard Brownian motion on R d that is independent from (X t) t 0 WIS d (x, α, b, a). Then, we have t 0, 1 l d, ds l t S l t = rdt + ( X tdb t) l. Gourieroux and Sufana model assumes that the Wishart process (X t) t 0 is the Covariance matrix of the spot vector (S t) t 0. Da Fonseca and al. have chosen the adequate correlation between spot vector (S t) t 0 and its Covariance matrix (X t) t 0 to observe the smile effect, and to keep the model affine.

7 Plan Splitting operator property Exact simulation 1 Motivation and notations 2 Splitting operator property Exact simulation 3 Wishart processes Affine processes 4

8 Splitting operator property Exact simulation Composition technique for the exact simulation Proposition If (Yt x ) t 0 is an affine process starting from x and associated to the infinitesimal operator L Y, such that L Y = L Z + L X, and L Z L X = L X L Z. Then Y x t X Z x t t, where (X x t ) t 0 and (Z x t ) t 0 are two affine independent processes associated respectively to two infinitesimal generators L X and L Z. Proof. For some class of functions f E[f (Xt x )] = P k=0 tk L k X f (x)/k! := e tl X h i h h ii (f )(x) E f (X Z t x t ) = E E f (X Z t x t ) Zt x = P h i + t k 1 k 1 =0 E k 1 L k 1! X f (Z t x ) = P + t k 1 +k 2 k 1,k 2 =0 k 1!k 2! Lk 1 X Lk 2 Z f (x) = P t k k=0 (L k! X + L Z ) k f (x) = E[f (Yt x )]

9 Splitting operator property Exact simulation Canonical Wishart process transformation Proposition Let t > 0, a, b M d (R) and α d 1. Let m t = exp(tb), q t = R t 0 exp(sb)at a exp(sb T )ds and n = Rk(q t). Then, there is θ t G d (R) such that q t = tθ tid n θt T, and we have: WIS d (x, α, b, a; t) = Law θ twis d (θ 1 t m txmt T (θt 1 ) T, α, 0, Id n ; t)θt T Remark General /Non central Wishart distribution Canonical/Central Wishart distribution In the case of d = 1, we obtain the usual identity of Bessel and CIR processes WIS 1(x, α, b, a; t) = a 2 e 2bt 1 2btx WIS 1(, α, 0, 1; t). Law 2bt a 2 (1 e 2bt )

10 A remarkable splitting operator Splitting operator property Exact simulation Theorem Let L be the generator associated to the Wishart process WIS d (x, α, 0, Id n) and L i be the generator associated to WIS d (x, α, 0, ed i ) for i {1,..., d}. Then, we have n L = L i and i, j {1,..., d}, L i L j = L j L i, (3) i=1 where 1 i d, 1 k, l d, (e i d ) k,l = 1 {k=l=i}, (I n d ) k,l = 1 {k=l,k n} Remark The operators L i and L j are the same up to the exchange of coordinates i and j. The processes WIS d (x, α, 0, ed i ) and WIS d(x, α, 0, Id n ) are well defined on S + d (R) under the same hypothesis, namely α d 1 and x S+ d (R).

11 Splitting operator property Exact simulation Exact simulation for the canonical Wishart distribution Let us consider t > 0 and x S + d (R). We define iteratively: where, X 1,x i,...xt t X 1,x t WIS d (x, α, 0, e 1 d; t), 2,X 1,x t Xt WIS d (X 1,x t, α, 0, ed; 2 t),... 1,x n,...xt Wishart process starting from X Xt WIS d (X n 1,...X t 1,x t, α, 0, e n d ; t), is sampled according to the distribution at time t of an independent 1,x i 1,...Xt t and with parameters (α, 0, e i d). We have the following result: Proposition Let X 1,x n,...xt t 1,x be defined as above. Then X n,...x t WIS d (x, α, 0, Id n ; t). t

12 Splitting operator property Exact simulation Exact simulation of WIS d (x, α, 0, ed 1 ), with d N Theorem The solution of WIS d (x, α, 0, ed) 1 is given explicitly by: 0 1 (U u P Xt x t ) {1,1} + r ((Ut u ) {1,k+1} ) 2 ((Ut u ) {1,l+1} ) T 1 l r 0 = q B k=1 ((Ut u ) {1,l+1} ) 1 l r I r 0 A qt, where d(ut u ) {1,1} = (α r)dt + 2 p (Ut u ) {1,1} dzt 1 0, d((ut u ) {1,l+1} ) 1 l r = (dzt l+1 ) 1 l r. d((ut u ) {k,l} ) 2 k,l r = d((xt x ) {k,l} ) 2 k,l r = 0, and q 0 c r 0 A. 0 k r I d r 1 TT

13 Splitting operator property Exact simulation Methodology to sample Exactly Wishart distribution WIS d (x, α, b, a; t) θ t WIS d (θt 1 m t xmt T (θt 1 ) T, α, 0, Id n; t)θt t Law 2 n d, WIS d (x, α, 0, Id n ), By composition Technique 2 i d, WIS d (x, α, 0, ed i ), By permutation WIS d (x, α, 0, ed 1). Sampling one square Bessel process and d 1 Brownian motions.

14 Plan Wishart processes Affine processes 1 Motivation and notations 2 Splitting operator property Exact simulation 3 Wishart processes Affine processes 4

15 Wishart processes Affine processes A potential ν order scheme for the operator L 1, d N Theorem By replacing in Transformation ((U u t ) {1,l} ) 2 l d (resp. (U u t ) {1,1} ) with t(ĝ i ) 1 i r (resp. with (Ûu t ) {1,1} ), then ˆX t is a potential ν-order scheme for the operator L 1, where : (Ĝ i ) 1 i r is a sequence of independent real variables with finite moments of any order such that: i {1,..., r}, k 2ν + 1, E[(Ĝ i ) k ] = E[G k ], where G N (0, 1). (Ûu t ) {1,1} is sampled independently according to a potential weak νth-order scheme for the CIR process d(ut u ) {1,1} = (α r)dt + 2 p (Ut u ) {1,1} dzt 1 starting from u {1,1}.

16 Wishart processes Affine processes Methodology to build the scheme of order ν ŴIS d (x, α, b, a; t) = θ t ŴIS d (θt 1 m t xmt T (θt 1 ) T, α, 0, Id n; t)θt t 2 n d, ŴIS d (x, α, 0, Id n ), By composition Technique 2 i d, ŴIS d (x, α, 0, ed i ), By permutation ŴIS d (x, α, 0, ed 1). Schemes of order ν for: one square Bessel process and d 1 Brownian motions.

17 Wishart processes Affine processes The third order discretization for Wishart process Theorem Let (Xt x ) t 0 WIS d (x, α, b, a) such that either a G d (R) or a T ab = ba T a, and f Cpol(S d (R)). Let ( ˆX N, 0 i N) be sampled with the scheme defined t i N previously with the third order scheme for the CIR given in Alfonsi-2009 and starting from x 0 S + d (R). Then, C, N 0 > 0, N N 0, E[f ( ˆX N t N N )] E[f (X x 0 t )] C/N 3. Remark New extension of the regularity of the function u(t, x) = E [f (X x t )], from the CIR process to Wishart process. (Phd thesis A.Alfonsi 2006)

18 Wishart processes Affine processes Canonical positive affine process transformation Proposition Let (Xt x ) t 0 AFF d (x, ᾱ, B, a) and n = Rk(a) be the rank of a T a. Then, there exist a diagonal matrix δ, and a non singular matrix u G d (R) such that ᾱ = u T δu, and a T a = u T Id n u, and we have: (Xt x ) t 0 = u T AFF d (u 1 ) T xu 1, δ, B u, Id n u, Law where y S d (R), B u(y) = (u 1 ) T B(u T yu)u 1.

19 Wishart processes Affine processes The potential second order discretization for a general affine process defined on S + d (R) It is sufficient to study the affine process AFF d (x, δ, B, I n d ). By splitting operator, if L denotes the infinitesimal generator of AFF d (x, δ, B, I n d ), we conclude then that L = L ODE + L Wishart, L ODE = Tr((δ δ min Id n + B(x))D S ) Xt 1, L Wishart = Tr((δ min Id n )D S ) + 2Tr(xD S Id n D S ) = P n i=1 L i Xt 2. Proposition 1,x t/2 2,X Both schemes X 1,X 2,x 1,x t 1,Xt 2,Xt t/2 and UXt + (1 U)Xt are potential second order scheme for AFF d (x, δ, B, Id n ), where U is an independent Bernoulli variable with parameter 1. 2

20 Wishart processes Affine processes Fast potential second order discretization for a general affine process defined on S + d (R), δ di n d The previous algorithm requires O(d 4 ), on each step time due to Cholesky decomposition of each transformation (L i ) 1 i d. In the case of δ di n d we propose an other scheme that costs only O(d 3 ) : L = L ODE + L Wishart, L ODE = Tr((δ di n d + B(x))D S ), L Wishart = Tr((dI n d )D S ) + 2Tr(xD S I n d D S ) (c + t GI n d )(c + t GI n d ) T, where G is a matrix, in M d (R), made of independent variables that fit the first five moments of normal random variable.

21 Plan 1 Motivation and notations 2 Splitting operator property Exact simulation 3 Wishart processes Affine processes 4

22 Time computation for E [exp(itr(vx x T ))]:Nmc = 106, a = I d, b = 0, x = 10I d, v = 0.09I d and T = 1 N = 10 N = 30 Schemes R. value Im. value Time R. value Im. value Time Exact (1 step) nd order bis nd order rd order Exact (N steps) Corrected Euler α = 3.5, d = 3, R = 10 3, Im = 10 3, exact value R. = and Im.= Exact (1 step) nd order rd order Exact (N steps) Corrected Euler α =2.2, d = 3, R = , Im = , exact value R. = and Im.= Exact (1 step) nd order bis nd order rd order Exact (N steps) Corrected Euler α = 10.5, d = 10, R = , Im = , exact value R. = and Im.= Exact (1 step) nd order rd order Exact (N steps) Corrected Euler α = 9.2, d = 10, R = , Im = , exact value R. = and Im.=

23 Laplace transform E [exp(itr(vx x T ))], d = El O3 Ex Ex O O O Figure: d = 3, 10 7 MC, T = 10. The RV of E[exp( Tr(iv ˆX N t N N ))] in function of T /N. Left: v = 0.05I d and x = 0.4I d, α = 4.5, a = I d and b = 0. Ex.Val.: Right: v = 0.2I d q and x = 0.4I d + 0.2q, α = 2.22, a = I d and b = 0.5I d. Ex.Val: Here, q is the matrix defined by: q i,j = 1 i j. The width of each point represents the 95% confidence interval.

24 Laplace transform E [exp(itr(vxt x ))], d = Ex O O O3 Ex O El Figure: d = 10, 10 7 MC, T = 10. Left: IM of E[exp( Tr(iv ˆX N t N N ))] with v = 0.009I d in function of T /N, x = 0.4I d, α = 12.5, b = 0 and a = I d. Ex.Val: Right: RV of E[exp( Tr(iv ˆX N t N N ))] with v = 0.009I d in function of T /N, x = 0.4I d, α = 9.2, b = 0.5I d and a = I d. Ex.Val The width of each point represents the 95% confidence interval.

25 Trajectory error E [max 0 s T Tr(X x s ))] El El O2 2.5 Ex O2 O O Figure: d = 3, 10 7 MC, T = 1, x = 0.4I d + 0.2q with q i,j = 1 i j, α = 2.2, b = 0 and a = I d. Left, E[max 0 k N Tr( ˆX N t k N )], right: E[max 0 k N Tr( ˆX N t k N )] E[max 0 k N Tr(X x t k N )] in function of T /N. The width of each point gives the precision up to two standard deviations.

26 Gourieroux Sufana Model - Put Best of Option O El Val 15.2 O Val 14.8 El Figure: E[e rt (K max (Ŝ1,N t N N, Ŝ2,N t N N )) + ] in function of T /N. d = 2, T = 1, K = 120, S 0 1 = S2 0 = 100, and r = 0.02, x = 0.04I d q with q i,j = 1 i j, a = 0.2I d, b = 0.5I d and α = 4.5 (left), α = 1.05 (right). The width of each point gives the precision up to two standard deviations (10 6 MC).

27 Summary In this work, we have presented : Exact scheme for Wishart process. Second and third order scheme for Wishart process. Potential second order scheme for a general affine process defined on S + d (R).

28 Thank you!!

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009 Affine Processes Econometric specifications Eduardo Rossi University of Pavia March 17, 2009 Eduardo Rossi (University of Pavia) Affine Processes March 17, 2009 1 / 40 Outline 1 Affine Processes 2 Affine

More information

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility José Enrique Figueroa-López 1 1 Department of Statistics Purdue University Statistics, Jump Processes,

More information

Discretization of SDEs: Euler Methods and Beyond

Discretization of SDEs: Euler Methods and Beyond Discretization of SDEs: Euler Methods and Beyond 09-26-2006 / PRisMa 2006 Workshop Outline Introduction 1 Introduction Motivation Stochastic Differential Equations 2 The Time Discretization of SDEs Monte-Carlo

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

Information and Credit Risk

Information and Credit Risk Information and Credit Risk M. L. Bedini Université de Bretagne Occidentale, Brest - Friedrich Schiller Universität, Jena Jena, March 2011 M. L. Bedini (Université de Bretagne Occidentale, Brest Information

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009 A new approach for investment performance measurement 3rd WCMF, Santa Barbara November 2009 Thaleia Zariphopoulou University of Oxford, Oxford-Man Institute and The University of Texas at Austin 1 Performance

More information

Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises

Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises Hongwei Long* Department of Mathematical Sciences, Florida Atlantic University, Boca Raton Florida 33431-991,

More information

Supermodular ordering of Poisson arrays

Supermodular ordering of Poisson arrays Supermodular ordering of Poisson arrays Bünyamin Kızıldemir Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Lecture 12: Diffusion Processes and Stochastic Differential Equations

Lecture 12: Diffusion Processes and Stochastic Differential Equations Lecture 12: Diffusion Processes and Stochastic Differential Equations 1. Diffusion Processes 1.1 Definition of a diffusion process 1.2 Examples 2. Stochastic Differential Equations SDE) 2.1 Stochastic

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

Squared Bessel Process with Delay

Squared Bessel Process with Delay Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 216 Squared Bessel Process with Delay Harry Randolph Hughes Southern Illinois University Carbondale, hrhughes@siu.edu

More information

Vast Volatility Matrix Estimation for High Frequency Data

Vast Volatility Matrix Estimation for High Frequency Data Vast Volatility Matrix Estimation for High Frequency Data Yazhen Wang National Science Foundation Yale Workshop, May 14-17, 2009 Disclaimer: My opinion, not the views of NSF Y. Wang (at NSF) 1 / 36 Outline

More information

LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES

LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES ADRIAN D. BANNER INTECH One Palmer Square Princeton, NJ 8542, USA adrian@enhanced.com RAOUF GHOMRASNI Fakultät II, Institut für Mathematik Sekr. MA 7-5,

More information

Risk-Sensitive and Robust Mean Field Games

Risk-Sensitive and Robust Mean Field Games Risk-Sensitive and Robust Mean Field Games Tamer Başar Coordinated Science Laboratory Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, IL - 6181 IPAM

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

Ulam Quaterly { Volume 2, Number 4, with Convergence Rate for Bilinear. Omar Zane. University of Kansas. Department of Mathematics

Ulam Quaterly { Volume 2, Number 4, with Convergence Rate for Bilinear. Omar Zane. University of Kansas. Department of Mathematics Ulam Quaterly { Volume 2, Number 4, 1994 Identication of Parameters with Convergence Rate for Bilinear Stochastic Dierential Equations Omar Zane University of Kansas Department of Mathematics Lawrence,

More information

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Group 4: Bertan Yilmaz, Richard Oti-Aboagye and Di Liu May, 15 Chapter 1 Proving Dynkin s formula

More information

Estimation for the standard and geometric telegraph process. Stefano M. Iacus. (SAPS VI, Le Mans 21-March-2007)

Estimation for the standard and geometric telegraph process. Stefano M. Iacus. (SAPS VI, Le Mans 21-March-2007) Estimation for the standard and geometric telegraph process Stefano M. Iacus University of Milan(Italy) (SAPS VI, Le Mans 21-March-2007) 1 1. Telegraph process Consider a particle moving on the real line

More information

MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES

MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES D. NUALART Department of Mathematics, University of Kansas Lawrence, KS 6645, USA E-mail: nualart@math.ku.edu S. ORTIZ-LATORRE Departament de Probabilitat,

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

Contagious default: application of methods of Statistical Mechanics in Finance

Contagious default: application of methods of Statistical Mechanics in Finance Contagious default: application of methods of Statistical Mechanics in Finance Wolfgang J. Runggaldier University of Padova, Italy www.math.unipd.it/runggaldier based on joint work with : Paolo Dai Pra,

More information

A Class of Fractional Stochastic Differential Equations

A Class of Fractional Stochastic Differential Equations Vietnam Journal of Mathematics 36:38) 71 79 Vietnam Journal of MATHEMATICS VAST 8 A Class of Fractional Stochastic Differential Equations Nguyen Tien Dung Department of Mathematics, Vietnam National University,

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Multilevel Monte Carlo for Stochastic McKean-Vlasov Equations

Multilevel Monte Carlo for Stochastic McKean-Vlasov Equations Multilevel Monte Carlo for Stochastic McKean-Vlasov Equations Lukasz Szpruch School of Mathemtics University of Edinburgh joint work with Shuren Tan and Alvin Tse (Edinburgh) Lukasz Szpruch (University

More information

Chapter 4: Monte-Carlo Methods

Chapter 4: Monte-Carlo Methods Chapter 4: Monte-Carlo Methods A Monte-Carlo method is a technique for the numerical realization of a stochastic process by means of normally distributed random variables. In financial mathematics, it

More information

Convergence at first and second order of some approximations of stochastic integrals

Convergence at first and second order of some approximations of stochastic integrals Convergence at first and second order of some approximations of stochastic integrals Bérard Bergery Blandine, Vallois Pierre IECN, Nancy-Université, CNRS, INRIA, Boulevard des Aiguillettes B.P. 239 F-5456

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

Understanding Regressions with Observations Collected at High Frequency over Long Span

Understanding Regressions with Observations Collected at High Frequency over Long Span Understanding Regressions with Observations Collected at High Frequency over Long Span Yoosoon Chang Department of Economics, Indiana University Joon Y. Park Department of Economics, Indiana University

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM. 1. Introduction This paper discusses arbitrage-free separable term structure (STS) models

SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM. 1. Introduction This paper discusses arbitrage-free separable term structure (STS) models SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM DAMIR FILIPOVIĆ Abstract. This paper discusses separable term structure diffusion models in an arbitrage-free environment. Using general consistency

More information

Mortality Surface by Means of Continuous Time Cohort Models

Mortality Surface by Means of Continuous Time Cohort Models Mortality Surface by Means of Continuous Time Cohort Models Petar Jevtić, Elisa Luciano and Elena Vigna Longevity Eight 2012, Waterloo, Canada, 7-8 September 2012 Outline 1 Introduction Model construction

More information

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations Simo Särkkä Aalto University Tampere University of Technology Lappeenranta University of Technology Finland November

More information

Elliptic Operators with Unbounded Coefficients

Elliptic Operators with Unbounded Coefficients Elliptic Operators with Unbounded Coefficients Federica Gregorio Universitá degli Studi di Salerno 8th June 2018 joint work with S.E. Boutiah, A. Rhandi, C. Tacelli Motivation Consider the Stochastic Differential

More information

Stochastic Calculus (Lecture #3)

Stochastic Calculus (Lecture #3) Stochastic Calculus (Lecture #3) Siegfried Hörmann Université libre de Bruxelles (ULB) Spring 2014 Outline of the course 1. Stochastic processes in continuous time. 2. Brownian motion. 3. Itô integral:

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Convex Stochastic Control and Conjugate Duality in a Problem of Unconstrained Utility Maximization Under a Regime Switching Model

Convex Stochastic Control and Conjugate Duality in a Problem of Unconstrained Utility Maximization Under a Regime Switching Model Convex Stochastic Control and Conjugate Duality in a Problem of Unconstrained Utility Maximization Under a Regime Switching Model by Aaron Xin Situ A thesis presented to the University of Waterloo in fulfilment

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

On the Multi-Dimensional Controller and Stopper Games

On the Multi-Dimensional Controller and Stopper Games On the Multi-Dimensional Controller and Stopper Games Joint work with Yu-Jui Huang University of Michigan, Ann Arbor June 7, 2012 Outline Introduction 1 Introduction 2 3 4 5 Consider a zero-sum controller-and-stopper

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

Affine processes on positive semidefinite matrices

Affine processes on positive semidefinite matrices Affine processes on positive semiefinite matrices Josef Teichmann (joint work with C. Cuchiero, D. Filipović an E. Mayerhofer) ETH Zürich Zürich, June 2010 C. Cuchiero, D. Filipović, E. Mayerhofer, J.

More information

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Simo Särkkä Aalto University, Finland November 18, 2014 Simo Särkkä (Aalto) Lecture 4: Numerical Solution of SDEs November

More information

Density models for credit risk

Density models for credit risk Density models for credit risk Nicole El Karoui, Ecole Polytechnique, France Monique Jeanblanc, Université d Évry; Institut Europlace de Finance Ying Jiao, Université Paris VII Workshop on stochastic calculus

More information

Stein s method and zero bias transformation: Application to CDO pricing

Stein s method and zero bias transformation: Application to CDO pricing Stein s method and zero bias transformation: Application to CDO pricing ESILV and Ecole Polytechnique Joint work with N. El Karoui Introduction CDO a portfolio credit derivative containing 100 underlying

More information

Optimal transportation and optimal control in a finite horizon framework

Optimal transportation and optimal control in a finite horizon framework Optimal transportation and optimal control in a finite horizon framework Guillaume Carlier and Aimé Lachapelle Université Paris-Dauphine, CEREMADE July 2008 1 MOTIVATIONS - A commitment problem (1) Micro

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications J.P Bouchaud with: M. Potters, G. Biroli, L. Laloux, M. A. Miceli http://www.cfm.fr Portfolio theory: Basics Portfolio

More information

Gaussian representation of a class of Riesz probability distributions

Gaussian representation of a class of Riesz probability distributions arxiv:763v [mathpr] 8 Dec 7 Gaussian representation of a class of Riesz probability distributions A Hassairi Sfax University Tunisia Running title: Gaussian representation of a Riesz distribution Abstract

More information

Jump-type Levy Processes

Jump-type Levy Processes Jump-type Levy Processes Ernst Eberlein Handbook of Financial Time Series Outline Table of contents Probabilistic Structure of Levy Processes Levy process Levy-Ito decomposition Jump part Probabilistic

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

arxiv: v1 [math.pr] 24 Sep 2018

arxiv: v1 [math.pr] 24 Sep 2018 A short note on Anticipative portfolio optimization B. D Auria a,b,1,, J.-A. Salmerón a,1 a Dpto. Estadística, Universidad Carlos III de Madrid. Avda. de la Universidad 3, 8911, Leganés (Madrid Spain b

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Properties of an infinite dimensional EDS system : the Muller s ratchet

Properties of an infinite dimensional EDS system : the Muller s ratchet Properties of an infinite dimensional EDS system : the Muller s ratchet LATP June 5, 2011 A ratchet source : wikipedia Plan 1 Introduction : The model of Haigh 2 3 Hypothesis (Biological) : The population

More information

Stabilization of Distributed Parameter Systems by State Feedback with Positivity Constraints

Stabilization of Distributed Parameter Systems by State Feedback with Positivity Constraints Stabilization of Distributed Parameter Systems by State Feedback with Positivity Constraints Joseph Winkin Namur Center of Complex Systems (naxys) and Dept. of Mathematics, University of Namur, Belgium

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Change detection problems in branching processes

Change detection problems in branching processes Change detection problems in branching processes Outline of Ph.D. thesis by Tamás T. Szabó Thesis advisor: Professor Gyula Pap Doctoral School of Mathematics and Computer Science Bolyai Institute, University

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

Stochastic Numerical Analysis

Stochastic Numerical Analysis Stochastic Numerical Analysis Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Stoch. NA, Lecture 3 p. 1 Multi-dimensional SDEs So far we have considered scalar SDEs

More information

Obstacle problems for nonlocal operators

Obstacle problems for nonlocal operators Obstacle problems for nonlocal operators Camelia Pop School of Mathematics, University of Minnesota Fractional PDEs: Theory, Algorithms and Applications ICERM June 19, 2018 Outline Motivation Optimal regularity

More information

Stochastic calculus without probability: Pathwise integration and functional calculus for functionals of paths with arbitrary Hölder regularity

Stochastic calculus without probability: Pathwise integration and functional calculus for functionals of paths with arbitrary Hölder regularity Stochastic calculus without probability: Pathwise integration and functional calculus for functionals of paths with arbitrary Hölder regularity Rama Cont Joint work with: Anna ANANOVA (Imperial) Nicolas

More information

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Jingyi Zhu Department of Mathematics University of Utah zhu@math.utah.edu Collaborator: Marco Avellaneda (Courant

More information

Eigenvector stability: Random Matrix Theory and Financial Applications

Eigenvector stability: Random Matrix Theory and Financial Applications Eigenvector stability: Random Matrix Theory and Financial Applications J.P Bouchaud with: R. Allez, M. Potters http://www.cfm.fr Portfolio theory: Basics Portfolio weights w i, Asset returns X t i If expected/predicted

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

Accurate approximation of stochastic differential equations

Accurate approximation of stochastic differential equations Accurate approximation of stochastic differential equations Simon J.A. Malham and Anke Wiese (Heriot Watt University, Edinburgh) Birmingham: 6th February 29 Stochastic differential equations dy t = V (y

More information

Real Time Stochastic Control and Decision Making: From theory to algorithms and applications

Real Time Stochastic Control and Decision Making: From theory to algorithms and applications Real Time Stochastic Control and Decision Making: From theory to algorithms and applications Evangelos A. Theodorou Autonomous Control and Decision Systems Lab Challenges in control Uncertainty Stochastic

More information

Krylov methods for the computation of matrix functions

Krylov methods for the computation of matrix functions Krylov methods for the computation of matrix functions Jitse Niesen (University of Leeds) in collaboration with Will Wright (Melbourne University) Heriot-Watt University, March 2010 Outline Definition

More information

Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems

Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems Corina Constantinescu and Enrique Thomann Abstract The classical result of Cramer-Lundberg states that if the rate

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

The method to find a basis of Euler-Cauchy equation by transforms

The method to find a basis of Euler-Cauchy equation by transforms Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 5 (2016), pp. 4159 4165 Research India Publications http://www.ripublication.com/gjpam.htm The method to find a basis of

More information

On continuous time contract theory

On continuous time contract theory Ecole Polytechnique, France Journée de rentrée du CMAP, 3 octobre, 218 Outline 1 2 Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs (Static) Principal-Agent Problem

More information

arxiv: v12 [math.na] 19 Feb 2015

arxiv: v12 [math.na] 19 Feb 2015 On explicit numerical schemes for the CIR process arxiv:145.7v1 [math.na] 19 Feb 15 Nikolaos Halidias Department of Mathematics University of the Aegean Karlovassi 83 Samos, Greece email: nikoshalidias@hotmail.com

More information

Lagrangian for Central Potentials

Lagrangian for Central Potentials Physics 411 Lecture 2 Lagrangian for Central Potentials Lecture 2 Physics 411 Classical Mechanics II August 29th 2007 Here we will review the Lagrange formulation in preparation for the study of the central

More information

Non-Differentiable Embedding of Lagrangian structures

Non-Differentiable Embedding of Lagrangian structures Non-Differentiable Embedding of Lagrangian structures Isabelle Greff Joint work with J. Cresson Université de Pau et des Pays de l Adour CNAM, Paris, April, 22nd 2010 Position of the problem 1. Example

More information

Optimal exit strategies for investment projects. 7th AMaMeF and Swissquote Conference

Optimal exit strategies for investment projects. 7th AMaMeF and Swissquote Conference Optimal exit strategies for investment projects Simone Scotti Université Paris Diderot Laboratoire de Probabilité et Modèles Aléatories Joint work with : Etienne Chevalier, Université d Evry Vathana Ly

More information

Exponential functionals of Lévy processes

Exponential functionals of Lévy processes Exponential functionals of Lévy processes Víctor Rivero Centro de Investigación en Matemáticas, México. 1/ 28 Outline of the talk Introduction Exponential functionals of spectrally positive Lévy processes

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION We will define local time for one-dimensional Brownian motion, and deduce some of its properties. We will then use the generalized Ray-Knight theorem proved in

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

Generalised Fractional-Black-Scholes Equation: pricing and hedging

Generalised Fractional-Black-Scholes Equation: pricing and hedging Generalised Fractional-Black-Scholes Equation: pricing and hedging Álvaro Cartea Birkbeck College, University of London April 2004 Outline Lévy processes Fractional calculus Fractional-Black-Scholes 1

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations. The Initial Value Problem. Linear variable coefficients equations. The Bernoulli equation: A nonlinear equation.

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Sample of Ph.D. Advisory Exam For MathFinance

Sample of Ph.D. Advisory Exam For MathFinance Sample of Ph.D. Advisory Exam For MathFinance Students who wish to enter the Ph.D. program of Mathematics of Finance are required to take the advisory exam. This exam consists of three major parts. The

More information

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Ram Sharan Adhikari Assistant Professor Of Mathematics Rogers State University Mathematical

More information

BIRKBECK (University of London) MATHEMATICAL AND NUMERICAL METHODS. Thursday, 29 May 2008, 10.00am-13.15pm (includes 15 minutes reading time).

BIRKBECK (University of London) MATHEMATICAL AND NUMERICAL METHODS. Thursday, 29 May 2008, 10.00am-13.15pm (includes 15 minutes reading time). BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING School of Economics, Mathematics, and Statistics MATHEMATICAL AND NUMERICAL METHODS ANSWERS EMMS011P 200804301248

More information

Modelling energy forward prices Representation of ambit fields

Modelling energy forward prices Representation of ambit fields Modelling energy forward prices Representation of ambit fields Fred Espen Benth Department of Mathematics University of Oslo, Norway In collaboration with Heidar Eyjolfsson, Barbara Rüdiger and Andre Süss

More information

Solutions of the Financial Risk Management Examination

Solutions of the Financial Risk Management Examination Solutions of the Financial Risk Management Examination Thierry Roncalli January 9 th 03 Remark The first five questions are corrected in TR-GDR and in the document of exercise solutions, which is available

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Rough Burgers-like equations with multiplicative noise

Rough Burgers-like equations with multiplicative noise Rough Burgers-like equations with multiplicative noise Martin Hairer Hendrik Weber Mathematics Institute University of Warwick Bielefeld, 3.11.21 Burgers-like equation Aim: Existence/Uniqueness for du

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information