Grünwald-type approximations and boundary conditions for one-sided fractional derivative operators

Size: px
Start display at page:

Download "Grünwald-type approximations and boundary conditions for one-sided fractional derivative operators"

Transcription

1 Grünwald-type approximations and boundary conditions for one-sided fractional derivative operators Haris Sankaranarayanan a tesis submitted for te degree of Doctor of Pilosopy at te University of Otago, Dunedin, New Zealand. October 31, 2014

2

3 Abstract Te focus of tis tesis is two-fold. Te first part investigates iger order numerical scemes for one-dimensional fractional-in-space partial differential equations in L 1 R. Te approximations for te space fractional derivative operators are constructed using a sifted Grünwald-Letnikov fractional difference formula. Rigorous error and stability analysis of te Grünwald-type numerical scemes for space-time discretisations of te associated Caucy problem are carried out using Fourier multiplier teory and semigroup teory. Te use of a transference principle facilitates te generalisation of te results from te L 1 -setting to any function space were te translation semi group is strongly continuous. Furtermore, te results extend to te case wen te fractional derivative operator is replaced by te fractional power of a semi group generator on an arbitrary Banac space. Te second part is dedicated to te study of certain fractional-in-space partial differential equations associated wittruncated Riemann-Liouville and first degree Caputo fractional derivative operators on Ω := [0,1]. Te boundary conditions encoded in te domains of te fractional derivative operators dictate te inclusion or exclusion of te end points of Ω. Elaborate tecnical constructions and detailed error analysis are carried out to sow convergence of Grünwald-type approximations to fractional derivative operators on X = C 0 Ω and L 1 [0,1]. Te wellposedness of te associated Caucy problem on X is establised using te approximation teory of semigroups. Te culmination of te tesis is te result wic sows convergence in te Skorood topology of te well understood stocastic processes associated wit Grünwald-type approximations to te processes governed by te corresponding fractional-in-space partial differential equations. iii

4

5 Acknowledgements I extend my deepest gratitude to my Matematics Gurus my supervisors, Dr. Boris Baeumer and Dr. Miály Kovács, for teir excellent tutelage over te last five years. I tank Boris for initiating and training me in te dark, magical art of problem solving, for teacing me to see te bigger picture and for is time, patience and energy. I tank Misi for enligtning me on abstract tecnical concepts, for teacing me to write wit surgical precision and for literally watcing over me as a big broter. I am also grateful to bot of tem for many lunc treats and for part of te financial assistance to attend te ANZIAM conference. I would like to tank my co-supervisor Prof. Jörg Frauendiener for is magnanimity and for is words of wisdom. I would also like to tank te Head of te Department, Prof. Ricard Barker as well as all te academic staff at te department for teir constant encouragement. I am especially grateful to Prof. Jon Clark and Dr. Austina Clark for giving me te privelage of lecturing te Modern Algebra course part-time. Special tanks to te Department Manager, Mrs. Lenette Grant for all te elp, including several tutoring opportunities over te last five years. I would like to acknowledge te PD scolarsip offered by te University of Otago and te financial assistances given by CSIRO, ANZIAM and NZ-ANZIAM to attend te ANZIAM conference. Special tanks to te wonderful support staff, Cris, Greg, Marguerite, and especially, Leanne for being a great listener, and for putting tings into perspective on several occasions. It is also a real pleasure to tank fellow PD student Aidin wo sared te teacing responsibilities wit me for tree consecutive Summer Scool Mat160 courses. I tank my v

6 current work mates, including Cris. S, Danie, Ilija, Leon, Paula, Ricard and Zara from Matematics, Adrian and wife Janet, Levi and Sam from Pysics as well as my past work mates, Cris. L, Fabien and wife Yuri and George and partner Kati, for teir camaraderie. I am extremely grateful to Rick and Nicola Commodore Motel, Dunedin for teir ospitality and generosity, and for te cozy room tat elped me rest and rejuvenate during te crucial, last one and alf years of my PD study. Special tanks to my Kiwi surrogate family, including Mark, Debbie and Bob, Anne and Derek, Jo and Tony, Mary Ann and Budge, and all my Kiwi friends, including Balakrisna, Juliana and Murali, and Daisy, Mundy, Cidleys, and not to forget big Gerry for many reminders of baby steps, 1 plus 1 equals 2. I tank Abdulmannan and family Momtaj, Hassan and Mridula for treating me as teir own. I also tank my dear friends, Dev and Anu, for always being tere for me. I am extremely grateful to my brave parents for believing in me, for encouraging me to return to studies and for supporting me every step of te way, including financially. I am eternally indebted to my younger broter Dr. Balaji and my sister-in-law Sripriya for teir love, affection and financial support, and most importantly, I congratulate tem on teir best result, little bundle of joy, Sanju. vi

7 Dedicated to my loving parents, Vasanta and Sanku. vii

8

9 Contents Introduction 1 1 Grünwald-type approximations of fractional derivative operators on te real line Fractional derivative operators on R Grünwald-type approximations Bound for multiplier norms Carlson-type inequality Carlson-type inequality for periodic multipliers Grünwald periodic multiplier operators Construction of iger order Grünwald-type approximations Consistency of iger order Grünwald-type approximations Semigroups generated by Grünwald-type approximations Semigroups generated by periodic multipliers approximating fractional derivative operators First-order Grünwald-type approximation Examples of second order stable Grünwald-type approximations Application to fractional powers of operators Numerical results Boundary conditions for fractional-in-space partial differential equations Extension of a finite state Markov process to a Feller process on [0,1] Construction of te transition operators One-sided fractional derivative operators wit different combinations of boundary conditions Fractional integral operators and fractional derivatives Fractional derivative operators on a bounded interval encoding various boundary conditions Properties of te one-sided fractional derivative operators on a bounded interval ix

10 4 Grünwald-type approximations for fractional derivative operators on a bounded interval Grünwald-type approximations for fractional derivative operators on C 0 Ω and L 1 [0,1] Adjoint formulation and boundary weigts Semigroups and processes associated wit Grünwald-type approximations and fractional derivative operators on X Examples of Grünwald scemes for Caucy problems on L 1 [0,1] Detailed proof of Proposition Construction of approximate power functions Proof of Proposition for te case X = C 0 Ω Proof of Proposition for te case X = L 1 [0,1] A Properties of Grünwald coefficients 191 B Reminder on function spaces, distributions and transforms 193 B.1 Function spaces B.2 Fourier and Laplace Transforms B.3 Distributions C Reminder on operator teory, semigroups and multipliers 199 C.1 Operator teory C.2 Semigroups C.3 Multipliers D MATLAB codes for Grünwald scemes 207 References 211 x

11 List of Tables 2.1 Maximum error beaviour for second and tird order Grünwald approximations Relations satisfied by te constants a,b,c,d for BC Constants r,s,t for ϕ given by Boundary conditions for C 0 Ω Boundary conditions for L 1 [0,1] Corresponding fractional derivative operators on C 0 Ω and L 1 [0,1] Boundary conditions and boundary weigts for L 1 [0,1] Corresponding fractional derivative operators on C 0 Ω and L 1 [0,1] Boundary conditions for C 0 Ω Corresponding fractional derivative operators on C 0 Ω and L 1 [0,1] Boundary conditions for L 1 [0,1] xi

12

13 List of Figures 2.1 L 1 -error for different initial conditions f i and a first and second order sceme. Note te less tan first order convergence for a bad initial condition; i.e. one tat is not in te domain of A. Also note te less tan second order convergence for a second order sceme but first order convergence for te first order sceme for an initial condition tat is in te domain of A but not in te domain of A Time evolution of te numerical solution to te Caucy problem associated wit Dc 1.5,DD and initial value u 0 given by Time evolution of te numerical solution to te Caucy problem associated wit Dc 1.5,DN and initial value u 0 given by Take note of te build up at te rigt boundary Time evolution of te numerical solution to te Caucy problem associated wit Dc 1.5,ND and initial value u 0 given by Time evolution of te numerical solution to te Caucy problem associated wit Dc 1.5,NN and initial value u 0 given by Time evolution of te numerical solution to te Caucy problem associated wit D 1.5,ND and initial value u 0 given by Time evolution of te numerical solution to te Caucy problem associated wit D 1.5,NN and initial value u 0 given by xiii

14

15 Introduction Te fundamentals of fractional calculus and teir applications ave been treated by several autors, see for example [43, 46, 51, 82, 84, 86, 90, 95] and te references terein. Even toug fractional derivatives ave existed as long as teir integer order counterparts only in recent decades ave fractional derivative models become exciting new tools in te study of practical problems in displines as diverse as pysics [13, 19, 20, 26, 71, 72, 73, 80, 81, 96, 110], finance [69, 89, 93], biology [5, 6] and ydrology [3, 15, 16, 17, 97, 98, 99]. Tis observation, tat fractional derivative models are becoming increasingly popular among te wider scientific community, is te main motivation to study numerical scemes for fractional partial differential equations. From a purely matematical perspective, fractional partial differential equations can be tougt of as generalizations of te corresponding classical partial differential equations. On occasions owever, fractional partial differential equations do arise naturally as better teoretical models for practical problems in diverse scientific disciplines. For instance, in geopysical sciences [99], te autors employ te Lévy-Gnedenko generalised central limit teorem [41] and fractional conservation of mass arguments [98, 107] to derive fractional-in-space as well as fractional-in-time advection-dispersion equations. According to te autors, tese fractional advection-dispersion equations provide better models for te motion of an ensemble of particles on Eart s surface as measured by te concentration or mass in space and time. In general, particle transport penomena may involve random states of motion as well as rest. Terefore, jump lengt and waiting time between motion of a particle can be viewed as random variables [15, 98, 99]. It is well known tat if te probability density function tat describes te jump lengt decays at least as fast as an exponential distribution, ten jump lengt distribution as finite mean and variance. Furter, assuming tat te waiting time distribution as finite mean, te concentration or mass in tis case may be adequately described by te classical advection-dispersion equation Fokker Planck equation. Te associated stocastic process, te so-called 1

16 Brownian motion wit drift, is governed by te classical advection-dispersion equation wose fundamental solution is te Gaussian density [41]. Te normal scaling of dispersion Fickian or Boltzmann scaling, described by te standard deviation, is proportional to t2. 1 Te term anomalous diffusion is given to diffusion penomena tat cannot be adequately described by te classical advection-dispersion equations. One suc scenario is wen jump lengt follows an infinite-variance distribution. In addition to infinitevariance jump lengt distribution, assuming a finite-mean waiting time distribution, te autors in [99] sow tat te associated stocastic process Lévy motion is Markovian and is governed by fractional-in-space advection-dispersion equation wose fundamental solution is a Lévy α-stable density. Te diffusion penomena is referred to as super-diffusion because of te faster tan normal t 1 2 scaling, as te scaling of dispersion in tis case is proportional to t 1 α were 1 < α < 2 is te order of te fractional-in-space derivative used in te model. Fractional-in-space advection-dispersion equations arise as natural models wen te velocity variations are eavy tailed. On te oter and, assuming infinite-mean waiting time distribution, te associated stocastic process Lévy motion subordinated to an inverse Lévy process is sown to be non-markovian and is governed by a fractional-in-time advection-dispersion equation wose fundamental solution is a subordinated Lévy α-stable density. Te diffusion penomena inerits te name sub-diffusion in tis case since te scaling of dispersion is proportional to t γ 2 were 0 < γ < 1 is te order of te fractional-in-time derivative used in te model. A compreensive review of random walk and oter teoretical models for anomalous sub-diffusion and super-diffusion as well as evidence of te occurence of anomalous dynamics in various fields suc as biology, geopysics, pysics and finance can be found in [80, 81]. Te connection of fractional calculus wit probability teory tat we ave briefly outlined above is interesting in its own rigt. Evidently, tis provides an insigt into te stocastic processes governed by fractional partial differential equations. More importantly, tis link also provides new tools from probability teory tat can be used in te searc for numerical solutions for fractional partial differential equations. For instance, Feller investigated te semigroups generated by a certain pseudo differential operator and identified te underlying stocastic processes [40]. As it turns out, tese processes are governed by a certain diffusion equation obtained by replacing te secondorder space derivative by te pseudo differential operator in te classical diffusion equation [44, 45, 94]. Te fundamental solutions of tis diffusion equation generate all 2

17 te Lévy stable densities wit index α 0,2]. In [44, 45], tis diffusion equation is revisited using a random walk model tat employs te Grünwald-Letnikov difference sceme were te autors refer to te equation as Lévy-Feller diffusion equation and te processes governed by tem as Lévy-Feller processes. Teoretical and numerical metods as well as connections wit stocastic processes for various types of fractional partial differential equations ave been investigated by several autors, see for example [3,7,9,28,70,71,72,74,79,97]andtereferencesterein. In[76], teautorsprovide an in-dept treatment on te connection of fractional calculus to stocastic processes from a probabilistic perspective. Inevitably, two crucial issues ave to be addressed in te study of fractional partial differential equations. Firstly, te existence and uniqueness of solutions; tat is, weter te associated Caucy problem is well-posed in te function space framework cosen for study. Secondly, te consistency and stability of numerical scemes used to solve te fractional partial differential equations. Te latter is particularly important since te inclusion of an external forcing function and/or te imposition of boundary conditions, especially in practical applications, could make te task of finding analytical solutions elusive [109]. Te well-posedness of te Caucy problem associated wit certain fractional-inspace partial differential equations on bounded domains in te L 2 -setting as been investigated by many autors. By constructing appropriate function spaces and demonstrating equivalence to fractional Sobolev spaces, variational solutions to te steady state fractional advection-dispersion equations on bounded domains Ω R n were investigated in [38, 39]. Tese autors employ te Lax-Milgram Lemma to sow te existence and uniqueness of solutions in L 2 Ω. Te autors in [34] study a very general class of non-local diffusion problems on bounded domains of R d using non-local vector calculus and non-local, non-linear conservation laws developed in [33, 35]. According to te autors, certain fractional derivative models for anomalous diffusion are special cases of teir non-local diffusion model. In particular, te autors claim tat te fractional Laplacian and te symmetric version wit α = 2s of te more general asymmetric fractional derivative operator of [70] are special cases of teir non-local operator. Moreover, tey sow te well-posedness of steady-state volumeconstrained diffusion problems in L 2 Ω, Ω R n. To our knowledge, te issue of te well-posedness of te Caucy problem associated wit fractional-in-space partial differential equations on bounded domains in function spaces oter tan L 2 Ω as not been completely resolved. 3

18 Several works ave addressed te need for numerical metods to solve different types of fractional partial differential equations. For instance, iger order linear multi-step metods to solve Abel-Volterra integral equations, of wic fractional differential equations form a sub-class [31], were made popular by [63] in te 1980s using convolution quadratures and fast fourier transforms [49]. Since ten, linear multi-step metods ave been used by many autors, see for example [61, 64, 65, 66], to numerically solve fractional integral equations and fractional partial differential equations. A review and some applications of tese metods can be found in [67]. Algoritms as well as te difficulties encountered wile implementing suc numerical scemes were discussed in [31, 32]. Matrix metods for approximating fractional integrals and derivatives ave been investigated in [87, 88]. In [109], a fractional weigted average finite difference metod along wit von Neumann stability analysis of te numerical scemes was carried out. An implicit numerical sceme for time fractional diffusion equation based on finite difference approximations was developed in [59]. In [62], te autors investigate computationally efficient numerical metods for fractional-in-space diffusion equation wit insulated ends obtained by replacing te second order space derivative in te classical diffusion equation by a Caputo fractional derivative of order 1 < α < 2. Tey use an explicit finite difference metod and te metod of lines to obtain numerical solutions. Stability and convergence of te explicit finite difference numerical metod along wit its scaling restriction were discussed. A similar metod was also used in [100] combined wit Grünwald-Letnikov difference sceme for space discretisation to solve a fractional Fokker-Planck equation. In [75, 77, 78, 101, 102], te autors develop a fractional Crank-Nicolson sceme using a sifted Grünwald formula to solve fractional-in-space partial differential equations. In very recent works [103, 112], a tird order numerical metod using a weigted and sifted Grünwald difference sceme for space fractional diffusion equations in one and two dimensions was developed. Te autors carry out te analysis of numerical stability and convergence wit respect to discrete L 2 -norm. Space fractional derivative operators are non-local. Tus, tey can be used to caracterise influences from a distance, for example super-diffusion penomena [99]. In tis tesis, we are particularly interested in fractional-in-space partial differential equations wic can be used to model suc non-local beaviour in space. Our numerical approximations for tespace fractional derivative operators are also constructed using a sifted Grünwald formula [44, 45, 77, 112] and so trougout tis tesis we refer to tem as Grünwald-type approximations. 4

19 In our study of fractional-in-space partial differential equations, we make an attempt to address te following fundamental issues tat we believe are lacking in te literature. Construction of iger order numerical approximations for fractional derivative operators in L 1 R and in oter function spaces. Stability and smooting properties of iger order numerical approximations tat yield optimal convergence rate wit minimal regularity of initial data for space-time discretisations of te abstract Caucy problem associated wit fractional derivative operators. Truncation of fractional derivative operators on a bounded interval Ω R for combinations of boundary conditions suc as Diriclet, Neumann etc. tat yield well-defined operators wit desirable properties. Te question of well-posedness of te abstract Caucy problems associated wit fractional derivative operators wose domains encode various boundary conditions in function spaces oter tan L 2 Ω, in particular, L 1 Ω and C 0 Ω. Construction of approximations for truncated fractional derivative operators wose associated stocastic processes can be easily identified and understood. Convergence of te stocastic processes associated wit te approximation operators to te corresponding stocastic processes associated wit te truncated fractional derivative operators. Tesis outline: In te first part of tis tesis, in Capters 1 and 2, we explore convergence wit error estimates for iger order Grünwald-type approximations of semigroups generated first by a fractional derivative operator on L 1 R and ten, using a transference principle, by fractional powers of group or semigroup generators on arbitrary Banac spaces. Te main motivation for te investigation of iger order scemes are te works of Meerscaert, Sceffler and Tadjeran [75, 77, 78, 101, 102]. In tese articles, te autors explored consistency and stability of numerical scemes for fractional-in-space partial differential equations using a Grünwald formula wit non-negative integer sift to approximate te fractional derivative operator. In particular, in [102], tey sowed consistency if te order of te spatial derivative is less or equal to 2. Tey obtained specific error term expansion for f C 4+n R, were n is te number of error terms, as 5

20 well as proved stability of teir fractional Crank-Nicolson sceme, using Gersgorin s Teorem to determine te spectrum of te Grünwald matrix. Ricardson extrapolation was ten employed to obtain second order convergence in space. Tis consistency result was extended for a Grünwald formula wit any sift p R in [4, Proposition 4.9] were te autors sowed tat for all f X α R := {f L 1 R : g L 1 R wit ĝk = ik α ˆfk,k R}, te first order Grünwald sceme A α 1 1,pfx = Γ α α m=0 Γm α fx m p 1 Γm+1 converges in L 1 R to te fractional derivative operator f α as 0+. Here ĝk = eikx gxdxdenotestefouriertransformofg L 1 Randforf X α R,f α = g iff ik α ˆfk = ĝk for all k R. In Section 1.5 we improve tis result furter and develop iger order Grünwald-type approximations Ãα. In Corollary we give a consistency error estimate of te form Ãα f f α C L1 n f α+n L1 R 2 R for an n-t order sceme. Using a Carlson-type inequality for periodic multipliers developed in Section Teorem we investigate te stability and smooting of Grünwald-type approximation scemes Ãα. Te main tool is Teorem wic gives a sufficient condition for multipliers associated wit difference scemes approximating te fractional derivative operator to lead to stable scemes wit desirable smooting. In particular, we sow in Proposition 2.1.2, tat stability for a numerical sceme using 1 to solve te Caucy problem associated wit fractional derivative operator f α were 2q 1 < α < 2q +1,q N can only be acieved for a unique sift p in te Grünwald formula. Tat is, it is necessary tat p = q for 1 q+1 A α,p to generate bounded semigroups on L 1 R were te bound is uniform in. Furtermore, in Teorem 2.1.6, we prove stability and smooting of a second order sceme. Developing te teory in L 1 allows in Section 2.2 te transference of te teory to fractional powers A α of te generator A of a strongly continuous semi-group G on a Banac space X,, noting tat fx m p in 1 will read as Gm pf [4]. Te abstract Grünwald approximations wit te optimal sifts generate analytic semigroups, uniformly in, as sown in Teorem Tis is te main property 6

21 needed in Corollary to sow tat te error between S α tf = e t 1q+1 A α f and a fully discrete approximation u n obtained via a Runge-Kutta metod wit stage order s, order r s+1, and an N +1 order Grünwald approximation is bounded by S α tf u n C n r f + N+1 log t AN+1 f, > 0, t = nτ. In error estimates, te smooting of te numerical sceme is used in an essential way to reduce te regularity requirements on te initial data. Furter, tis yields error estimates of te numerical approximation scemes applied to Caucy problem associated wit fractional derivative operators in spaces were te translation semigroup is strongly continuous, suc as L p R, 1 p <, BUCR, C 0 R, etc. Using te abstract setting we can also conclude tat te consistency error estimate 2 olds in tose spaces, wit te L 1 norm replaced by te appropriate norm. Section 2.3 marks te conclusion of te first part of tis tesis wit results of some numerical experiments, including a tird order sceme, tat igligt te efficiency of te iger order scemes as well as te sarpness of te error estimates depending on te smootness of te initial data. Te results from te first part of tis tesis ave been accepted for publication in Transactions of te American Matematical Society and available online [8]. Let us turn our attention to te second part of tis tesis. Te Fokker-Planck equation of a Lévy stable process on R is a fractional-in-space partial differential equation. Te space fractional derivative operator is non-local wit infinite reac. In te second part of tis tesis, in Capters 3 and 4, we investigate truncated Riemann- LiouvilleandfirstdegreeCaputofractionalderivativeoperatorsoforder1 < α < 2ona bounded interval, Ω := [0,1]. Te interval Ω may or may not contain its end points depending on te boundary conditions encoded by te domain of te truncated fractional derivative operator under consideration. We sow convergence in te Skorood topology of easily identifiable finite state sub-markov processes to a sub-markov process governed by te Fokker-Planck equation on Ω associated wit te truncated fractional derivative operators. Observe tat te fractional derivative operators tat we consider below on function spaces defined on te interval Ω are one-sided. Te approac employed in [34] applies only to te symmetric fractional derivative operators as mentioned earlier and terefore do not extend to one-sided fractional derivative operators. However, te boundary conditions tat we consider can be interpreted as special cases of te volume constraints employed in [34] and related works one-dimensional mass constraints. 7 α

22 Te stage is set in Section 3.1 were we discuss te general teoretical framework. Here we exploit te fact tat te convergence, uniformly for t [0,t 0 ], of Feller semigroups on C 0 Ω implies convergence of te corresponding processes in te Skorood topology. To do tis, we turn a finite state sub-markov processes into a Feller process by creating parallel copies of te finite state processes wose transition matrices interpolate continuously. Te main idea beind te construction of tese continuous interpolation matrices is te division of te interval [0,1] into n + 1 grids of equal lengt so tat te Feller process can jump between grids only in multiples of. Te transition operators on X = C 0 Ω or L 1 [0,1]. are constructed using tese interpolation matrices. Tese transition operators are ten employed in Capter 4 to construct te Grünwald-type approximations for te fractional derivative operators on X. In Section 4.3, we sow tat te Grünwald transition approximation operators are te generators of te backward or forward semigroups associated wit te extended finite state sub-markov processes and tus identify te processes associated wit te Grünwald approximation operators. Te central objects of study, te one-sided fractional derivative operators, are introduced in Section Te one-sided fractional derivative operators are denoted in general by A,BC : DA,BC X X wose domains DA,BC encode a particular combination of boundary conditions denoted by BC. Te boundary conditions tat we consider are Diriclet, Neumann and Neumann*, were te latter appears naturally in te adjoint formulation of te fractional derivative operators in L 1 [0,1] wit a rigt Neumann boundary condition. We consider functions of te form f = I α g +ap α +bp α 1 +cp α 2 +dp 0, g X 3 as candidates for te domain of te fractional derivative operators, were a,b,c,d R are determined by te boundary conditions and p β = xβ. Te crucial point to note Γβ+1 ere is te structure of te domains of te fractional derivative operators. Tat is, te domains are defined as te range of te corresponding fractional integral operators I α, supplemented by a linear combination of some particular power functions wit constant weigts tat encode te regularity as well as te boundary conditions BC satisfied by te functions in te domain. In Sections 3.4 and 4.1, well-posedness of te associated one-dimensional fractionalin-space partial differential equations is establised using te approximation teory of 8

23 semigroups [2, 37, 52, 85]. Tat is, we sow tat te fractional derivative operators A, BC generate strongly continuous contraction semigroups on X. To do tis, in Section 3.4, we sow tata, BC are densely defined, closed operators and tat rgλi A are dense in X for some λ > 0. To make use of te Lumer-Pillips Teorem we furter require tat te operators A, BC are dissipative wic is establised using te convergence property of te Grünwald-type approximations, Proposition TeGrünwald-typeapproximation operatorsg areconstructedincapter4using te general teory for numerical scemes developed in Sections 3.1 and 3.2. For te numerical sceme, te boundary conditions BC are encoded into te generic n n sifted Grünwald matrix were = 1, n N given by n+1 G n n = 1 α b l 1 G0 α 0 0. G1 α , 4 b l n 1 Gn 2 α G1 α G0 α b n b r n 1 b r 1 using te boundary weigts b l i,b r i and b n. Te n n sifted Grünwald matrices G n n play te role of te transition rate matrices of te underlying finite state sub-markov processes. In Section 4.2, we first discuss te adjoint formulation of te abstract Caucy problem on X associated wit te fractional derivative operators. In doing so, we list te corresponding fractional derivative operators on X tat are approximated by te Grünwald transition operators constructed using tese boundary weigts. Following tat we conjecture te pysical interpretation of te stocastic processes tat would give rise to tese different boundary conditions BC and discuss our reasons beind te coice of te boundary weigts b l i,b r i, and b n tat appear in te generic Grünwald matrix 4.1 in te L 1 [0,1] case. In Section 4.4 we provide some examples of numerical solutions to te Caucy problem associated wit te fractional derivative operators A,BC on L 1 [0,1] and te initial value u 0 L 1 [0,1]. In Section 4.3, we prove te key result, Proposition 4.3.2, tat te Grünwald transition operators converge to te respective fractional derivative operators on X. Tat is, for eac f DA,BC we sow tat tere exist sequences f X suc tat f f and G f Af in X for eac of te fractional derivative operators A,BC. Tis as it turns out involves detailed error analysis employing elaborate constructions of appoximations for te power functions p β tat appear in 3 above. Tis result is 9

24 essential firstly to sow tat te fractional derivative operators A, BC are dissipative. Using Proposition 4.3.2, we also conclude tat te semigroups generated by te operators A,BC are te strong and uniform for t in compact intervals limit of te semigroups generated by te Grünwald transition operators using te Trotter-Kato Teorem. As a consequence, te underlying Feller processes associated wit Grünwald approximations converge in te Skorood topology to te Feller processes governed by te corresponding fractional-in-space partial differential equations. Tis identifies te processes governed by te fractional-in-space partial differential equations wit boundary conditions BC as limits of processes wose boundary beaviour is perfectly understood. 10

25 Capter 1 Grünwald-type approximations of fractional derivative operators on te real line In tis capter we study Grünwald-type approximations for te fractional derivative operators on R. We explore convergence and conduct a detailed error analysis using Fourier multiplier teory. Following tat, combining Grünwald formulae wit different sifts and step sizes, iger order Grünwald-type approximations are constructed for te fractional derivative operators on R. We sow convergence of te iger order approximations to te fractional derivative operators wit optimal convergence rate under minimal regularity assumptions. 1.1 Fractional derivative operators on R Te error analysis of iger order Grünwald-type numerical approximations of fractional derivative operators on R is carried out using multiplier teory. To facilitate tis, we define te fractional derivatives of L 1 R-functions in te Fourier or Laplace space depending on te support of te function under consideration. To define te fractional derivative operator of order α R + using Fourier transform if f L 1 R and Laplace transform if f L 1 R +, let us begin wit te following two spaces. Definition Let α R + and z α := z α e iαargz be as in Remark B.3.4. Ten, we define te following two spaces: 1. X α R := {f L 1 R : g L 1 R wit ĝk = ik α ˆfk, k R}, 11

26 were ˆfk and ĝk denote te Fourier transforms of f and g, respectively, given by B X α R + := {f L 1 R + : g L 1 R + wit ĝz = z α ˆfz, Rez 0}, were ˆfz and ĝz denote te Laplace transforms of f and g, respectively, given by B.6. Here is te formal definition of te fractional derivative operator on R tat we use in tis tesis. Definition For f X α R, if g L 1 R and ik α ˆfk = ĝk, k R, ten we define f α := g. Alongsimilarlinesforf X α R +, wedefinef α := g, ifg L 1 R + and z α ˆfz = ĝz for Rez 0. To keep te notation simple, we denote te norms in bot tese spaces by f α, tat is, we set f α := f α, for f X L1 R αr and f α := f α, for f X L1 R + αr To connect te above definition of fractional derivatives on R wit te standard definitions of fractional derivatives found in te literature, we list te definitions of te Riemann-Liouville fractional integrals and derivatives. Definition Let α > 0 and f L 1 R, ten te so called left-sided Riemann- Liouville fractional integral if a = 0 or Liouville fractional integral if a = of order α, is defined by ai α xfx := x a x s α 1 fs ds, x > a Γα were te lower limit of te integral a R is fixed or a =, wile te upper limit x R is variable, see [86, p. 65] and [95, p. 33 and 94]. 12

27 Tis definition of fractional integral is well-defined for any piecewise continous function f L 1 a,b, owever, for our purposes we take L 1 R as te domain of definition. Definition For α > 0, let n = α denote te least integer greater tan α, ten te so called Riemann-Liouville fractional derivative, D α : DD α L 1 R is defined by D α fx := D n I n α x fx wit domain DD α := { f L 1 R : I n α x f W n,1 R }, were D n denotes te integer order derivative of order n on R wit respect to variable upper limit of te fractional integral and te Sobolev space W n,1 R is given in Definition B.1.1. Remark Let f DD α, ten D α fk = ik α ˆfk [95, p ]. Tus, f α = D α f a.e.; tat is, te function f α defined uniquely in Definition is equal to te Riemann-Liouville fractional derivative D α f given by almost everywere by te uniqueness of te Fourier transform of L 1 R-functions. 1.2 Grünwald-type approximations In te Grünwald-Letnikov approac to fractional calculus, te fractional derivative of arbitrary order α > 0 is defined as te limit of te corresponding fractional difference quotient [86, 95], n adxfx α = lim α 0 mfx m n=x a m=0g α, 1.2 were a and x are te lower and upper terminals, respectively and Gm α = 1 m α m are given by A.1. Podlubny [86, p.63] demonstrates te equivalence of te Riemann- Liouville and te Grünwald-Letnikov definitions of te fractional derivative under te assumption tat f is m+1-times differentiable were α < m+1. Tus, in numerical scemes, it is natural to use te Grünwald-Letnikov formula 1.2 wit a fixed step size to approximate te fractional derivative operator. Here is te formal definition of te sifted Grünwald formula tat we use to approximate te fractional derivative operator on R, also see [44], [77], [105]. 13

28 Definition Let f L 1 R and > 0, ten te p-sifted Grünwald formula is given by A α,pfx := 1 α Gmfx m p, α 1.3 m=0 were te sift p R and te properties of te Grünwald coefficients, Gm α = 1 m α m can be found in Appendix A. Observe te sift p used in te argument of te function f compared to 1.2 above. Meerscaert et al. in [77] used tis Grünwald formula, a modified version of 1.2, wit a non-negative integer sift p, to numerically approximate te Riemann-Liouville fractional derivative. Te autors also proved stability of teir numerical sceme for space-fractional advection dispersion equation wit 1 < α < 2, using te Grünwald formula for space discretisation wit sift p = 1 and te implicit Euler metod for time discretisation. In te same article in Remark 2.5, and in [102] in Remark 3.2, te autors mention tat te Grünwald formula wit no sift or any sift p yields first order consistency of numerical scemes for fractional-in-space partial differential equations. However, tey attribute te best performance of te numerical scemes to te optimal sift p obtained by minimising p α. In [44], te autors refer to te 2 optimal sift as a clever sift using wic yields a consistent approximation for te Riemann-Liouville fractional derivative for sufficiently smoot functions. We sow in Capter 2, tat more is true of tese remarks, tat in fact te numerical scemes using te Grünwald formula wit integer sift are stable if and only if te sift p is optimal. Remark We make a clarification of te convention tat we adopt at tis juncture. WenweapplytesiftedGrünwaldformula1.3toafunctionf L 1 R +, wealways assume implicitly tat f is extended to L 1 R by setting fx = 0 for x < 0. To keep matters simple, we will also refer to tis extended function as f. In te case wen te sift p > 0 we regard A α,p as an operator on L 1R. However, in te case wen p 0, wit tis convention, one can verify tat te support of A α,p f is contained in R+ and ence A α,p can be regarded as an operator on L 1R +. Indeed, for p 0 if x < 0, ten for all m N, x m p x+p x < 0 wic, in view of our convention, implies tat fx m p = 0 and ence A α,pfx = 0. Te following result of Tadjeran et al. [102], tat te numerical scemes tat employ te sifted Grünwald formula yields second order consistency is our main motivation to explore iger order scemes. Let te Sobolev space W 1,3+n R be given by Definition B.1.1 and 1 < α < 2. Ten, for f W 1,3+n R, te autors sowed tat te error term expansion for te numerical approximation of te Riemann-Liouville fractional 14

29 derivative of order α by te non-negative integer sifted Grünwald formula is given by n 1 A α,pfx D α fx = al D α+l fx l +O n, l=1 were te constants a l are independent of f, and x. In te same paper, te autors proved stability of teir fractional Crank-Nicolson sceme by determining te spectrum of te Grünwald matrix associated wit te sifted Grünwald formula using Gersgorin s Teorem. Moreover, teir fractional Crank-Nicolson sceme was sown to be consistent wit a second order in time and first order in space local truncation errors. Furtermore, tey obtained a second order local truncation error in space employing te Ricardson extrapolation metod. Tis result tat te Grünwald approximation for te fractional derivative is consistent was furter refined by Baeumer et. al. in [4, Proposition 4.9] to all f X α R wit any sift p R were X α is given in Definition 1.1.1, tat is, A α,p f Dα f in L 1 R as 0+. A proof for te unsifted case, p = 0 wit α > 0 and f X α R + can be found in [106, Teorem 13]. We generalise tese results in Teorem under minimal regularity assumptions. Tat is, for f X α+β R te convergence rate of te first order Grünwald-type approximation for te fractional derivative operator in L 1 R can be furter fine-tuned to te order β, 0 < β 1 as 0+. If p 0, ten te same convergence rate olds in L 1 R + for f X α+β R +. Following tat, in Section 1.5, we construct iger-order Grünwald-type approximations for te fractional derivative operator on R, by combining Grünwald formulae wit different sifts p and accuracy suc tat te lower order error terms cancel out. We ten conduct a detailed error analysis using Fourier multipliers and conclude tis capter wit te main result, Corollary on te consistency of te iger order scemes. To begin wit, we sow tat te sifted Grünwald formula given in Definition 1.2.1, maps L 1 R into L 1 R and derive an explicit formula for its Fourier transform. Lemma Let f L 1 R, α R +, p R, > 0 be fixed, and te sifted Grünwald formula A α,p be given by 1.3, ten A α,pf L 1 R. Moreover, its Fourier transform is given by A α,p fk = ω α,p ik f α k, 1 e αe were ω α,p z = z zp. z 15

30 Proof. Take note tat te series m=0 Gα m is absolutely convergent, see A.10. Tus, te iterated integral m=0 R G α mfx m p dx Gm f α L1 R < m=0 and te use of Fubini s teorem [92, p. 141], is justified. Hence, A α,p f = 1 L 1 G α R R mfx m p α dx m=0 1 G α m fx m p dx α 1 α m=0 R Gm f α L1 R <. m=0 Terefore, te Fourier transform of te sifted Grünwald formula exists and using Fubini s teorem once again, we ave A α,p fk = α m=0 G α m R e ikx fx m pdx α = α 1 m e ikm p ˆfk m m=0 Te Fourier transform of te Grünwald formula can be written in te following product form using te Binomial series A.4, A α,p fk = α α 1 m e ikm p ˆfk m m=0 = α e ikp 1 e ik α ˆfk 1 e = α ik α ik α e ikp ˆfk ik = ω α,p ik ik α ˆfk = ω α,p ik f α k, 1.4 were we ave used Definition in te last line and introduce te special function αe ω α,p z = zp. 1 e z z Remark Let α R + suc tat 2q 1 < α < 2q +1 were q N and let ψz = 1 q+1 α e pz 1 e z α

31 Note tat te second line of 1.4 above sows tat for any f L 1 R te Grünwald formula 1.3 can be expressed in te multiplier notation of Appendix C.3 as A α,p = T 1 q+1 ψ α,,p were te Grünwald multiplier is given by ψ α,,p k := ψik = 1 q+1 α e ikp 1 e ik α = 1 q+1 ω α,p ik ik α. 1.6 Tis fact tat te Grünwald formula can be viewed as a multiplier operator naturally leads us in Section 1.3 to study inequalities tat estimate multiplier norms. Remark Te Grünwald multiplier in Remark above, involves te function ω α,p. In te error analysis of te Grünwald scemes, as we will see later, te function ω α,p : C C, were α R + and p R, plays a very important role. Hence, for easy reference we give it a special name, omega function, 1 e z α ω α,p z := e zp z and study tis function in detail in Section Bound for multiplier norms In tis section we study Carlson-type inequalities tat bound L 1 Fourier multiplier norms. We refer to Appendix C.3 for te definition and results relating to L 1 - multipliers. Tese inequalities are not only crucial in our error analysis, but also important in teir own rigt. Firstly, tey prove to be particulary useful in scenarios were only te multipliers are known explicitly wile te corresponding measures even wen tey exist may not be known. Secondly, tese Carlson-type inequalities elp bound multiplier operator norms by solely exploiting te properties of te multipliers and as a consequence elp to sow tat, in fact, te multipliers under consideration are L 1 -multipliers. Tirdly, tese inequalities elp estimate te L 1 -norms of functions, defined as te inverse Fourier transforms of functions in L r for 1 < r 2 troug te L r -norms of te Fourier transform and its derivative. Lastly, as we will see in te applications in Capter 2, it turns out tat it is essential to consider L r -spaces for r 2. In some situations te Carlson-type inequality, given in Proposition below, is not directly applicable. One suc scenario is wen te decay of te multiplier at infinity 17

32 is insufficient for it to be in L r but its derivative as more tan necessary decay to be in L r. In tis situation, we employ a partition of unity, and derive a similar result, tereby enancing te reac of te Carlson-type inequality. We do tis in Section 1.3.1, were we study inequalities for multipliers wic along wit teir generalised first derivatives belong to L r R, for 1 < r 2. Anoter scenario were te Carlsontype inequality cannot be applied is for periodic multipliers. In Section 1.3.2, we study similar inequalities for periodic multipliers Carlson-type inequality Te first inequality tat we consider is a special case of a more general Carlson-type inequality, see [60, Teorem 5.10, p.107]. We give a simple proof ere to keep our discussions self-contained. Te case r = 2 is usually referred to in te literature as Carlson-Beurling Inequality, and can be found in [1, p.429] and [18, 24, 36]. Let W r,1 R, r 1, denote te Sobolev space of L r R-functions given in Definition B.1.1 and FL 1 denote te ring of Fourier transforms of L 1 -functions as in Remark B.3.2. Te following result yields a sarp bound for te L 1 -multiplier operator norm. Proposition Carlson-type inequality. If ψ W r,1 R, 1 < r 2, ten tere exists ξ L 1 suc tat ˆξ = ψ; tat is, ψ FL 1. Moreover, tere exists a constant Cr > 0, independent of ξ and ψ, suc tat were 1 r + 1 s = 1. ξ L1 Cr ψ 1 s Lr ψ 1 r Lr, Proof. Let ψ W r,1 R, 1 < r 2 and set ψ k := ψ k, k R. Ten, define te function ξ := 2π ψ 1 L s R, were = 1, see Remark B.2.2. First, note tat r s ξ L1 = 2π ψ 1 = L1 1 2π ˆψ and ˆψ x = ixˆψx. L1 Moreover, recall te Hausdorff-Young-Titcmars inequality given by B.1 ˆψ 2π 1 1 s ψ Lr,ψ L r, 1 r 2, Ls r + 1 s = 1. If ψ 0 tere is noting to prove. So let us assume tat ψ 0, ten using Hölder s ψ Lr inequality in te second line, B.1 in te tird and setting v = we ave r 1 1/r ψ Lr ξ L1 = 1 ˆψ = 1 ˆψx dx+ 1 2π L1 2π x v x >v x xˆψx dx 21 r v 1 r ˆψ +v 1 s ˆψ r 1 1/r 2π Ls Ls 18

33 2 1 r 2π 1 s 1 v 1 r ψ Lr +v 1 s ψ Lr r 1 1/r = 2 π 1 rr 1 1 r 2 ψ 1 s L r ψ 1 r Lr. Terfore, ξ L 1 and so ˆξ exists. Tus, ψk = 1 ψ ˆ k = ˆξk for almost all k R by te inversion formula for te Fourier transform. Since, ψ and ˆξ are continuous, tis olds for all k R. Remark In fact, te preceding proof sows tat ψ is an L 1 -multiplier and te Carlson-type inquality can be rewritten in multiplier notation of Appendix C.3 as were Cr is independent of ψ. T ψ BL1 = ξ L1 Cr ψ 1 s Lr ψ 1 r Lr, In some cases, te multiplier as insufficient decay to be in L r wile its generalised derivative migt ave more tan necessary decay to be in L r. In suc scenarios, partition of unity turns out to be an excellent tool to bound te multiplier norm, see [21, 22, 50]. Te following result is a version of Carlson-type inequality employing a partition of unity. Corollary Let ψ : R C and θ j be suc tat j Z θ jx = 1 for all x R. If θ j ψ W r,1 R, 1 < r 2, for all j and j θ jψ 1 s Lr θ j ψ 1 r Lr <, were 1 r + 1 s = 1, ten ψ FL 1 ; tat is, tere exists ξ L 1 R and a constant Cr independent of ξ and ψ, suc tat ˆξ = ψ and 2π ξ L1 Cr j θ j ψ 1 s Lr θ j ψ 1 r Lr. Proof. By design, ψx = j θ jxψx for almost all x. Let ξ j L 1 R be suc tat ˆξ j = θ j ψ by Proposition By assumption, te partial sums n n j j L1 j= nξ L 1 j= n ξ Cr θ j ψ 1 s Lr θ j ψ 1 r Lr <. j Tus, te series j ξ j converges to some ξ L 1 and ξ L1 Cr j θ j ψ 1 s Lr θ j ψ 1 r Lr. Hence, te use of Fubini s teorem is justified and ˆξ = j ˆξ j = ψ. 19

34 1.3.2 Carlson-type inequality for periodic multipliers For periodic multipliers a Carlson-type inequality is not directly applicable as tese are not Fourier transforms of L 1 -functions. In [22] a suitable smoot cut-off function η wit compact support was used were η = 1 in a neigborood of [ π,π], to estimate te multiplier norm of a periodic multiplier ψ by te non-periodic one ηψ. For te multiplier norm of ηψ te above Carlson-type inequality can be ten used. However, we prove a result similar to Proposition for periodic multipliers wic along wit teirderivativesavelocall r bounds. Tismakesteintroductionofacut-offfunction superfluous and ence simplifies te tecnicalities in later estimates. Let W r,1 per[ π, π] below denote te Sobolev space of 2π-periodic functions as in Definition B.1.1. Teorem Let ψ W r,1 per[ π,π], 1 < r 2, ten ψ is an L 1 -multiplier and tere is C > 0, independent of ψ, suc tat T ψ BL1 a 0 +Cr ψ 1 s Lr[ π,π] ψ 1 r Lr[ π,π], were = 1 and a r s 0 = 1 π ψxdx, denotes te 2π π 0t Fourier coefficient of ψ. Proof. Since ψ L r [ π,π], it follows using Hölder s inequality tat ψ L 1 [ π,π] and so we can define te k t Fourier coefficient of ψ, a k = 1 2π π π e ikx ψxdx, k Z. First, note tat a 0 1 π ψx dx < and using integration by parts and te 2π π fact tat ψ is absolutely continuous, we ave tat ika k are te Fourier coefficients of ψ. Next, recall te Hausdorff-Young inequality for Fourier series, see [23, p. 177], k= a k s 1 s and Bellman s inequality, see [14] and [60, p. 25], αβ+α β b k Cα,β k=1 2π 1 r ψ Lr[ π,π], 1 < r 2, 1 r + 1 s = 1 k=1 b α k α 1 k β bk β, α,β > 1, b k 0, k N. k=1 On setting, α = β = s and b k = a k, we ave 1 a k Cr a k s s 2 k=1 k=1 k=1 1 s s 1 s ika k s Cr ψ 1 s Lr[ π,π] ψ 1 r. Lr[ π,π] 20

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

Analytic Functions. Differentiable Functions of a Complex Variable

Analytic Functions. Differentiable Functions of a Complex Variable Analytic Functions Differentiable Functions of a Complex Variable In tis capter, we sall generalize te ideas for polynomials power series of a complex variable we developed in te previous capter to general

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

A Finite Element Primer

A Finite Element Primer A Finite Element Primer David J. Silvester Scool of Matematics, University of Mancester d.silvester@mancester.ac.uk. Version.3 updated 4 October Contents A Model Diffusion Problem.................... x.

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

MATH745 Fall MATH745 Fall

MATH745 Fall MATH745 Fall MATH745 Fall 5 MATH745 Fall 5 INTRODUCTION WELCOME TO MATH 745 TOPICS IN NUMERICAL ANALYSIS Instructor: Dr Bartosz Protas Department of Matematics & Statistics Email: bprotas@mcmasterca Office HH 36, Ext

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems

Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems Applied Matematics, 06, 7, 74-8 ttp://wwwscirporg/journal/am ISSN Online: 5-7393 ISSN Print: 5-7385 Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

Numerical Solution to Parabolic PDE Using Implicit Finite Difference Approach

Numerical Solution to Parabolic PDE Using Implicit Finite Difference Approach Numerical Solution to arabolic DE Using Implicit Finite Difference Approac Jon Amoa-Mensa, Francis Oene Boateng, Kwame Bonsu Department of Matematics and Statistics, Sunyani Tecnical University, Sunyani,

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

A SHORT INTRODUCTION TO BANACH LATTICES AND

A SHORT INTRODUCTION TO BANACH LATTICES AND CHAPTER A SHORT INTRODUCTION TO BANACH LATTICES AND POSITIVE OPERATORS In tis capter we give a brief introduction to Banac lattices and positive operators. Most results of tis capter can be found, e.g.,

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

The Laplace equation, cylindrically or spherically symmetric case

The Laplace equation, cylindrically or spherically symmetric case Numerisce Metoden II, 7 4, und Übungen, 7 5 Course Notes, Summer Term 7 Some material and exercises Te Laplace equation, cylindrically or sperically symmetric case Electric and gravitational potential,

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

Superconvergence of energy-conserving discontinuous Galerkin methods for. linear hyperbolic equations. Abstract

Superconvergence of energy-conserving discontinuous Galerkin methods for. linear hyperbolic equations. Abstract Superconvergence of energy-conserving discontinuous Galerkin metods for linear yperbolic equations Yong Liu, Ci-Wang Su and Mengping Zang 3 Abstract In tis paper, we study superconvergence properties of

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

ch (for some fixed positive number c) reaching c

ch (for some fixed positive number c) reaching c GSTF Journal of Matematics Statistics and Operations Researc (JMSOR) Vol. No. September 05 DOI 0.60/s4086-05-000-z Nonlinear Piecewise-defined Difference Equations wit Reciprocal and Cubic Terms Ramadan

More information

Semigroups of Operators

Semigroups of Operators Lecture 11 Semigroups of Operators In tis Lecture we gater a few notions on one-parameter semigroups of linear operators, confining to te essential tools tat are needed in te sequel. As usual, X is a real

More information

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households Volume 29, Issue 3 Existence of competitive equilibrium in economies wit multi-member ouseolds Noriisa Sato Graduate Scool of Economics, Waseda University Abstract Tis paper focuses on te existence of

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

Topics in Generalized Differentiation

Topics in Generalized Differentiation Topics in Generalized Differentiation J. Marsall As Abstract Te course will be built around tree topics: ) Prove te almost everywere equivalence of te L p n-t symmetric quantum derivative and te L p Peano

More information

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Opuscula Matematica Vol. 26 No. 3 26 Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Abstract. In tis work a new numerical metod is constructed for time-integrating

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS. L. Trautmann, R. Rabenstein

THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS. L. Trautmann, R. Rabenstein Worksop on Transforms and Filter Banks (WTFB),Brandenburg, Germany, Marc 999 THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS L. Trautmann, R. Rabenstein Lerstul

More information

Financial Econometrics Prof. Massimo Guidolin

Financial Econometrics Prof. Massimo Guidolin CLEFIN A.A. 2010/2011 Financial Econometrics Prof. Massimo Guidolin A Quick Review of Basic Estimation Metods 1. Were te OLS World Ends... Consider two time series 1: = { 1 2 } and 1: = { 1 2 }. At tis

More information

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY APPLICATIONES MATHEMATICAE 36, (29), pp. 2 Zbigniew Ciesielski (Sopot) Ryszard Zieliński (Warszawa) POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY Abstract. Dvoretzky

More information

An approximation method using approximate approximations

An approximation method using approximate approximations Applicable Analysis: An International Journal Vol. 00, No. 00, September 2005, 1 13 An approximation metod using approximate approximations FRANK MÜLLER and WERNER VARNHORN, University of Kassel, Germany,

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

Stationary Gaussian Markov Processes As Limits of Stationary Autoregressive Time Series

Stationary Gaussian Markov Processes As Limits of Stationary Autoregressive Time Series Stationary Gaussian Markov Processes As Limits of Stationary Autoregressive Time Series Lawrence D. Brown, Pilip A. Ernst, Larry Sepp, and Robert Wolpert August 27, 2015 Abstract We consider te class,

More information

arxiv:math/ v1 [math.ca] 1 Oct 2003

arxiv:math/ v1 [math.ca] 1 Oct 2003 arxiv:mat/0310017v1 [mat.ca] 1 Oct 2003 Cange of Variable for Multi-dimensional Integral 4 Marc 2003 Isidore Fleiscer Abstract Te cange of variable teorem is proved under te sole ypotesis of differentiability

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Matematics, Vol.4, No.3, 6, 4 44. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS Guang-wei Yuan Xu-deng Hang Laboratory of Computational Pysics,

More information

Discrete Monogenic Functions in Image processing

Discrete Monogenic Functions in Image processing Discrete Function Teory Discrete Monogenic Functions in Image processing U. Käler CIDMA and Departamento de Matemática Universidade de Aveiro ukaeler@ua.pt MOIMA Scloss Herrenausen Hannover, June 20-24,

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

MANY scientific and engineering problems can be

MANY scientific and engineering problems can be A Domain Decomposition Metod using Elliptical Arc Artificial Boundary for Exterior Problems Yajun Cen, and Qikui Du Abstract In tis paper, a Diriclet-Neumann alternating metod using elliptical arc artificial

More information

arxiv: v1 [math.na] 28 Apr 2017

arxiv: v1 [math.na] 28 Apr 2017 THE SCOTT-VOGELIUS FINITE ELEMENTS REVISITED JOHNNY GUZMÁN AND L RIDGWAY SCOTT arxiv:170500020v1 [matna] 28 Apr 2017 Abstract We prove tat te Scott-Vogelius finite elements are inf-sup stable on sape-regular

More information

CONVERGENCE OF AN IMPLICIT FINITE ELEMENT METHOD FOR THE LANDAU-LIFSHITZ-GILBERT EQUATION

CONVERGENCE OF AN IMPLICIT FINITE ELEMENT METHOD FOR THE LANDAU-LIFSHITZ-GILBERT EQUATION CONVERGENCE OF AN IMPLICIT FINITE ELEMENT METHOD FOR THE LANDAU-LIFSHITZ-GILBERT EQUATION SÖREN BARTELS AND ANDREAS PROHL Abstract. Te Landau-Lifsitz-Gilbert equation describes dynamics of ferromagnetism,

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Strongly continuous semigroups

Strongly continuous semigroups Capter 2 Strongly continuous semigroups Te main application of te teory developed in tis capter is related to PDE systems. Tese systems can provide te strong continuity properties only. 2.1 Closed operators

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

A CLASS OF EVEN DEGREE SPLINES OBTAINED THROUGH A MINIMUM CONDITION

A CLASS OF EVEN DEGREE SPLINES OBTAINED THROUGH A MINIMUM CONDITION STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume XLVIII, Number 3, September 2003 A CLASS OF EVEN DEGREE SPLINES OBTAINED THROUGH A MINIMUM CONDITION GH. MICULA, E. SANTI, AND M. G. CIMORONI Dedicated to

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Functions of the Complex Variable z

Functions of the Complex Variable z Capter 2 Functions of te Complex Variable z Introduction We wis to examine te notion of a function of z were z is a complex variable. To be sure, a complex variable can be viewed as noting but a pair of

More information

Chapter 1. Density Estimation

Chapter 1. Density Estimation Capter 1 Density Estimation Let X 1, X,..., X n be observations from a density f X x. Te aim is to use only tis data to obtain an estimate ˆf X x of f X x. Properties of f f X x x, Parametric metods f

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

1. Introduction. Consider a semilinear parabolic equation in the form

1. Introduction. Consider a semilinear parabolic equation in the form A POSTERIORI ERROR ESTIMATION FOR PARABOLIC PROBLEMS USING ELLIPTIC RECONSTRUCTIONS. I: BACKWARD-EULER AND CRANK-NICOLSON METHODS NATALIA KOPTEVA AND TORSTEN LINSS Abstract. A semilinear second-order parabolic

More information

The Priestley-Chao Estimator

The Priestley-Chao Estimator Te Priestley-Cao Estimator In tis section we will consider te Pristley-Cao estimator of te unknown regression function. It is assumed tat we ave a sample of observations (Y i, x i ), i = 1,..., n wic are

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System

Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System Discontinuous Galerkin Metods for Relativistic Vlasov-Maxwell System He Yang and Fengyan Li December 1, 16 Abstract e relativistic Vlasov-Maxwell (RVM) system is a kinetic model tat describes te dynamics

More information

On the best approximation of function classes from values on a uniform grid in the real line

On the best approximation of function classes from values on a uniform grid in the real line Proceedings of te 5t WSEAS Int Conf on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 006 459 On te best approximation of function classes from values on

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

CS522 - Partial Di erential Equations

CS522 - Partial Di erential Equations CS5 - Partial Di erential Equations Tibor Jánosi April 5, 5 Numerical Di erentiation In principle, di erentiation is a simple operation. Indeed, given a function speci ed as a closed-form formula, its

More information

Finite Difference Method

Finite Difference Method Capter 8 Finite Difference Metod 81 2nd order linear pde in two variables General 2nd order linear pde in two variables is given in te following form: L[u] = Au xx +2Bu xy +Cu yy +Du x +Eu y +Fu = G According

More information

Discretization of Multipole Sources in a Finite Difference. Setting for Wave Propagation Problems

Discretization of Multipole Sources in a Finite Difference. Setting for Wave Propagation Problems Discretization of Multipole Sources in a Finite Difference Setting for Wave Propagation Problems Mario J. Bencomo 1 and William Symes 2 1 Institute for Computational and Experimental Researc in Matematics,

More information

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER*

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER* EO BOUNDS FO THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BADLEY J. LUCIE* Abstract. Te expected error in L ) attimet for Glimm s sceme wen applied to a scalar conservation law is bounded by + 2 ) ) /2 T

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Bootstrap confidence intervals in nonparametric regression without an additive model

Bootstrap confidence intervals in nonparametric regression without an additive model Bootstrap confidence intervals in nonparametric regression witout an additive model Dimitris N. Politis Abstract Te problem of confidence interval construction in nonparametric regression via te bootstrap

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

MIXED DISCONTINUOUS GALERKIN APPROXIMATION OF THE MAXWELL OPERATOR. SIAM J. Numer. Anal., Vol. 42 (2004), pp

MIXED DISCONTINUOUS GALERKIN APPROXIMATION OF THE MAXWELL OPERATOR. SIAM J. Numer. Anal., Vol. 42 (2004), pp MIXED DISCONTINUOUS GALERIN APPROXIMATION OF THE MAXWELL OPERATOR PAUL HOUSTON, ILARIA PERUGIA, AND DOMINI SCHÖTZAU SIAM J. Numer. Anal., Vol. 4 (004), pp. 434 459 Abstract. We introduce and analyze a

More information

Some Applications of Fractional Step Runge-Kutta Methods

Some Applications of Fractional Step Runge-Kutta Methods Some Applications of Fractional Step Runge-Kutta Metods JORGE, J.C., PORTERO, L. Dpto. de Matematica e Informatica Universidad Publica de Navarra Campus Arrosadia, s/n 3006 Pamplona Navarra SPAIN Abstract:

More information

APPLICATION OF A DIRAC DELTA DIS-INTEGRATION TECHNIQUE TO THE STATISTICS OF ORBITING OBJECTS

APPLICATION OF A DIRAC DELTA DIS-INTEGRATION TECHNIQUE TO THE STATISTICS OF ORBITING OBJECTS APPLICATION OF A DIRAC DELTA DIS-INTEGRATION TECHNIQUE TO THE STATISTICS OF ORBITING OBJECTS Dario Izzo Advanced Concepts Team, ESTEC, AG Noordwijk, Te Neterlands ABSTRACT In many problems related to te

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Fractional Derivatives as Binomial Limits

Fractional Derivatives as Binomial Limits Fractional Derivatives as Binomial Limits Researc Question: Can te limit form of te iger-order derivative be extended to fractional orders? (atematics) Word Count: 669 words Contents - IRODUCIO... Error!

More information

A SYMMETRIC NODAL CONSERVATIVE FINITE ELEMENT METHOD FOR THE DARCY EQUATION

A SYMMETRIC NODAL CONSERVATIVE FINITE ELEMENT METHOD FOR THE DARCY EQUATION A SYMMETRIC NODAL CONSERVATIVE FINITE ELEMENT METHOD FOR THE DARCY EQUATION GABRIEL R. BARRENECHEA, LEOPOLDO P. FRANCA 1 2, AND FRÉDÉRIC VALENTIN Abstract. Tis work introduces and analyzes novel stable

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Reflection Symmetries of q-bernoulli Polynomials

Reflection Symmetries of q-bernoulli Polynomials Journal of Nonlinear Matematical Pysics Volume 1, Supplement 1 005, 41 4 Birtday Issue Reflection Symmetries of q-bernoulli Polynomials Boris A KUPERSHMIDT Te University of Tennessee Space Institute Tullaoma,

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Matematics 94 (6) 75 96 Contents lists available at ScienceDirect Journal of Computational and Applied Matematics journal omepage: www.elsevier.com/locate/cam Smootness-Increasing

More information

EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS

EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS Statistica Sinica 24 2014, 395-414 doi:ttp://dx.doi.org/10.5705/ss.2012.064 EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS Jun Sao 1,2 and Seng Wang 3 1 East Cina Normal University,

More information

Numerical analysis of a free piston problem

Numerical analysis of a free piston problem MATHEMATICAL COMMUNICATIONS 573 Mat. Commun., Vol. 15, No. 2, pp. 573-585 (2010) Numerical analysis of a free piston problem Boris Mua 1 and Zvonimir Tutek 1, 1 Department of Matematics, University of

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information