Pattern Recognition. Approximating class densities, Bayesian classifier, Errors in Biometric Systems

Size: px
Start display at page:

Download "Pattern Recognition. Approximating class densities, Bayesian classifier, Errors in Biometric Systems"

Transcription

1 htt://.cubs.buffalo.edu attern Recognton Aromatng class denstes, Bayesan classfer, Errors n Bometrc Systems B. W. Slverman, Densty estmaton for statstcs and data analyss. London: Chaman and Hall, 986. htt://.acsu.buffalo.edu/~tulyakov/aers/tulyakov_009_cybersecurty_bometrcs.df

2 htt://.cubs.buffalo.edu Bayesan classfcaton Suose e have classes and e kno robablty densty functons of ther feature vectors. Ho some ne attern should be classfed? Bayes classfcaton rule: classfy to the class hch has bggest osteror robablty >? : osteror Usng Bayes formula, e can rerte classfcaton rule: > lkelhood? : ror

3 htt://.cubs.buffalo.edu Estmatng robablty densty functon. arametrc df estmaton: model unknon robablty densty functon of class by some arametrc functon ; θ and determne arameters based on tranng samles. Eamle: Gaussan functon ; µ Non-arametrc df estmaton:. Hstogram. K nearest neghbor 3. Kernel methods arzen kernels or ndos π N ˆ ϕ N N h h 4. Other methods estmatng cumulatve dstrbuton functon frst, SVM densty estmaton, etc. l / e µ s the number of tranng samles

4 htt://.cubs.buffalo.edu Estmatng kernel dth Non-arametrc df estmaton: Fed kernels: N ˆ ϕ Adatve kernels: or h h N ˆ ϕ N h h N ˆ ϕ N h h N ˆ ϕ

5 htt://.cubs.buffalo.edu Estmatng kernel dth Recall, e used mamum lkelhood method for arametrc df estmaton: ma θ ˆ X ; θ ma θ ˆ N,,..., N θ ma ˆ k ; θ θ k Can e use same method for estmatng the kernel dth? h ˆ No, the ma s not achevable: ma h ma h N k N k ˆ k f h 0 ; h N ϕ k N h h

6 htt://.cubs.buffalo.edu Estmatng kernel dth Soluton: searate model data kernel centers from testng data - cross-valdaton technque N k h h k h N ma ϕ ˆ k h k h h N

7 htt://.cubs.buffalo.edu Estmatng kernel dth Tred mamum lkelhood cross-valdaton and stll dverges? N k h k h k h N ma ϕ Ths mght haen f data s somehat dscrete: ˆ Soluton - truly searate model data from testng data: N k k k h h h N ma ϕ

8 htt://.cubs.buffalo.edu Eamles of df estmaton arzen-ndo kernel estmates of a unvarate normal densty usng dfferent ndo dths and numbers of samles. DHS Heurstc method of dth calculaton: h h n n

9 htt://.cubs.buffalo.edu Eamles of df estmaton arzen-ndo kernel estmates of a bmodal densty usng dfferent ndo dths and numbers of samles.

10 htt://.cubs.buffalo.edu Eamles of df estmaton arzen-ndo kernel estmates of a bvarate normal densty usng dfferent ndo dths and numbers of samles.

11 htt://.cubs.buffalo.edu Error n df estmaton ˆ Dscreancy beteen true densty and ts estmaton : ˆ MSE ˆ E{ ˆ } - Mean Square Error MSE ˆ E{ ˆ } MISE ˆ [ ] { Eˆ} { Eˆ} + + E{ ˆ } { Eˆ} [ ] Eˆ + [ E{ Eˆ ˆ} ] E{ ˆ } d - Mean Integrated Square Error E } E + } Eectatons are { ˆ E{ ˆ} + { ˆ ˆ taken over the set of ossble aromatons or over the sets of tranng samles

12 htt://.cubs.buffalo.edu Bas and varance of estmaton error [ ] Eˆ + [ E{ Eˆ ˆ} ] MSE ˆ ˆ Eˆ Bas Varance Eˆ - Average aromaton y E ˆ K y dy h h Bas s the dfference beteen true densty and average aromaton Varance s the dfference beteen average aromaton and ndvdual aromatons Smaller kernel dth reduces bas, but ncreases varance.

13 htt://.cubs.buffalo.edu Bas and varance of estmaton error If some assumtons on the true densty are made e.g. then t s ossble to analytcally fnd the kernel dth hch gves smallest Slverman arzen: h ot { } / 5 { } / 5 / 5 ϕ t dt d /5 k n Otmal kernel dth gets smaller hen the number of tranng samles ncreases. For otmal kernel dth also decreases: MISE ˆ d < MISE ˆ n MISE ~ C ϕ { } / 5 4 / 5 d n Note, that s unknon. Above formulas are useful for theory, but not for ractcal alcatons. For multvarate df aromaton: MISE 4/4+ d The erformance decreases eonentally hen the number of dmensons ncreases ~ n

14 htt://.cubs.buffalo.edu Bayesan classfcaton Bayes classfcaton rule: classfy to the class hch has bggest osteror robablty >? : Bayes classfcaton rule mnmzes the total robablty of msclassfcaton. Cost of errors. Errors haen hen samles of class are ncorrectly classfed to belong to class, and samles of class are classfed to belong to class. The cost of makng these errors can be dfferent : λ - the cost of msclassfyng samles of class λ - the cost of msclassfyng samles of class

15 htt://.cubs.buffalo.edu Total cost or rsk of classfcaton Classfcaton algorthm slts feature sace nto to decson regons: R R R - samles n ths regon are classfed as beng n class R - samles n ths regon are classfed as beng n class d - the roorton of samles of class beng classfed as class d - the roorton of samles of class beng classfed as class d R R R d - the roorton of all nut samles beng class but classfed as beng n class - the roorton of all nut samles beng class but classfed as beng n class Cost λ + d λ d R - total cost

16 htt://.cubs.buffalo.edu Mnmzng total cost of classfcaton Snce and cover hole feature sace R R + R R d d Thus + } { d d Cost λ λ Cost s mnmzed f ncludes only onts here + + } { R R R d d d Cost λ λ λ λ λ R 0 < λ λ

17 htt://.cubs.buffalo.edu Bayesan classfcaton Bayesan classfer s an otmal classfer mnmzng total classfcaton cost. Such classfer s ossble only f e have full knoledge about class dstrbutons. If then classfy as class. λ λ > If then classfy as class. λ λ Alternatvely, assumng non-zero terms, the class assgnment s based on testng hether or λ λ λ λ > Decson surface searates to decson regons. λ λ - lkelhood rato λ λ < > - lkelhood rato test

18 htt://.cubs.buffalo.edu erformance of Bayesan classfcaton Denote: t λ λ - decson threshold t > t t R - decson regon of class for threshold t > t t R - decson regon of class for threshold t t t R - decson regon of class for threshold t R d t MR - msclassfcaton rate for class and threshold t t R d t MR - msclassfcaton rate for class and threshold t

19 htt://.cubs.buffalo.edu erformance of Bayesan classfcaton MR t MR t and comletely characterze the erformance of a Bayesan classfer λ,λ For a gven msclassfcaton costs and ror class robabltes e fnd λ, t λ Then the msclassfcaton cost s Cost λ MR t + λ MR t

20 htt://.cubs.buffalo.edu ROC of a Bayesan classfcaton MR and MR are used only th the the same. t t t Thus the arameter s not mortant and the erformance of a Bayesan classfer can be characterzed only by the relatonshs beteen and. MR MR t t t MR Eamle of an otmal Bayesan ROC curve and some non-otmal classfer s ROC curve. 0 MR MR MR For a gven the of a non otmal classfer should be bgger; otherse non-otmal classfer ould outerform otmal.

21 htt://.cubs.buffalo.edu Bometrc Alcaton Tyes Verfcaton System : Clam s made enrollee dentty User s bometrc s matched only th stored bometrc of clamed enrollee The decson to accet clam s made usng only one matchng score Identfcaton System :N No clam about dentty s made User s bometrc s matched th stored bometrcs of all enrolled ersons The hghest matchng score determnes the most robable enrollee The decson about accetng dentfcaton attemt s made based on the matchng score for that enrollee and otonally usng other matchng scores too Screenng Matchng aganst a atch lst Ooste of verfcaton

22 htt://.cubs.buffalo.edu erformance of Verfcaton System For bometrc matchers erson dentty verfcaton e dstngush to classes: Genune erson s clamed dentty s correct Imostor - erson s clamed dentty s n correct The decson for genune class s to accet, and the decson for the mostor class s to reject. The decson s usually done based on a sngle matchng score of nut bometrc th the enrolled bometrc temlate of clamed dentty erson. Instead of otmal > < θ use > < θ If s monotonous, these decsons are equvalent. Instead of MR t and MR t use FAR t m d - false accet rate for threshold t > t FRR t gen d - false reject rate for threshold t < t

23 htt://.cubs.buffalo.edu Errors n Verfcaton Systems Each verfcaton attemt has to ossbltes:. Genune event - nut bometrcs and stored bometrcs from clamed dentty belong to the same erson.. Imostor event - nut bometrcs s dfferent from clamed dentty bometrcs. The scores roduced by matchng algorthm ll have dstrbutons: gen s s m s s genune mostor event event

24 htt://.cubs.buffalo.edu Errors n Verfcaton Systems FAR and FRR are determned by the decson rule accet or reject results of recognton. Usually FAR and FRR are defned usng some threshold: s FAR θ s ds > θ θ m Also called: False Match Rate FMR mostor event θ FRR θ s ds s < θ gen genune Also called: False Non-Match Rate FNMR event

25 htt://.cubs.buffalo.edu Errors n Verfcaton Systems

26 htt://.cubs.buffalo.edu erformance of Bometrc Matchers.5 m robablty FAR t FRRt gen t 3 Scores FRRt FARt

27 htt://.cubs.buffalo.edu ROC Curve FAR θ FRRθ ROC curve connects and curves. Note that they both use same θ at the same tme, so e are able to construct such lot.

28 htt://.cubs.buffalo.edu Tyes of ROC Curve log FAR θ Takng and log FRR θ nstead of FARθ and FRRθ s reasonable f they are small.

29 htt://.cubs.buffalo.edu Tyes of ROC Curve

30 htt://.cubs.buffalo.edu Usng ROC Curve

31 htt://.cubs.buffalo.edu Comarng ROC Curves

32 htt://.cubs.buffalo.edu Comarng ROC Curves Area under ROC curve - FRR vs FAR reresents the robablty that random genune score s hgher than random mostor score.

33 htt://.cubs.buffalo.edu Comarng ROC Curves Comare match and non-match score denstes by d-rme method: µ µ d σ m m + n σ n

34 htt://.cubs.buffalo.edu Comarng ROC Curves EER FRR θ FAR θ FRR θ FAR θ Equal Error Rate EER: at such as θ Mnmum Total Error Rate TER: TER mn FRR θ + θ FAR θ

35 htt://.cubs.buffalo.edu Trade-offs Selecton of the oeratng ont n a artcular alcaton s a trade-off beteen securty and convenence.

36 htt://.cubs.buffalo.edu Estmatng FAR and FRR In contrast to estmatng df, FAR and FRR are easly estmated: FAR t > t m d { { > t, s s mostor mostor } } FRR t < t gen d { { < t, s s genune genune } } Tyes of ROC curves: { FRR t, FAR t} < t< { FAR t, gen FRR t + m FAR t} {log FRR t, log FAR t} < t< < t<

37 htt://.cubs.buffalo.edu Usng FAR and FRR In Bayesan frameork e ant to mnmze total cost: Cost C FA mostor s > θ mostor C FA + C m FA FR genune FAR θ + C s < θ genune FR gen FRR θ θ C, C, mostor, genune Correct settng of n verfcaton alcaton requres estmatng

38 Eamle htt://.cubs.buffalo.edu Consder the roblem of deloyng bometrc matcher for an amusement ark admsson C C FA m FR gen $0 % Cost $ 99% C cost of accetng mostor to the ark - robablty of mostor attemts - cost of rejectng genune user - robablty of genune attemts FA m FAR θ + FAR θ +.99 FAR θ +.99 C FR FRR θ gen FRR θ FRR θ

39 htt://.cubs.buffalo.edu Face matcher C better mnmzes cost Cost. FAR θ +.99 FRR θ

40 htt://.cubs.buffalo.edu m 0% If e had more mostor attemts, say, then matcher r ould get loer cost Cost FAR θ +.9 FRR θ

41 htt://.cubs.buffalo.edu Errors n Identfcaton Systems N eole are enrolled n the database. The recognton algorthm erforms N matchngs th outut scores: s > s >... > s N the scores are ordered by magntude, but not by eole d The decson algorthm usually consdered: Accet class f s > θ and θ > s >... > Reject otherse s N

42 htt://.cubs.buffalo.edu Errors n Identfcaton Systems Other tyes of decsons nvolve selectng a subset of matched classes: Threshold based: Rank based: s > s >... > s > θ k -select all classes bgger than threshold -select k classes th best scores Hybrd: -select based on threshold, f not successful select k classes based on rank

43 htt://.cubs.buffalo.edu FNMR and FMR n Identfcaton Systems FNMR False non-match rate: FNMR θ FRR θ gen s ds s < θ FMR False match rate: θ genune FMR θ ma s s < θ corresond s to all N -mostor event s s > θ corresond s to all N -mostor event < θ corresond s to one mostor event θ m > θ corresond s to one mostor event s ds FAR θ N

44 htt://.cubs.buffalo.edu FMR for dfferent N 4 3 robablty Scores

45 htt://.cubs.buffalo.edu Errors n Identfcaton Systems FMR and FNMR mght not adequately descrbe the erformance of dentfcaton systems - closed set / oen set dentfcaton - rejectng all dentfcaton results mght be a correct choce - errors are connected: mostor mght be a to choce, but genune s also hgher than the threshold Score belongng to dfferent classes are usually deendent, so FMR can not be effectvely estmated by means of FAR Stll no good standard for measurng dentfcaton system erformance ests

46 htt://.cubs.buffalo.edu Investgatng valdty of..d. assumton Eamle: Identfcaton system th classes genune and mostor Scenaro : CorrIdent< Scenaro : CorrIdent Deendence of scores nfluences erformance n dentfcaton systems

Machine Learning. Classification. Theory of Classification and Nonparametric Classifier. Representing data: Hypothesis (classifier) Eric Xing

Machine Learning. Classification. Theory of Classification and Nonparametric Classifier. Representing data: Hypothesis (classifier) Eric Xing Machne Learnng 0-70/5 70/5-78, 78, Fall 008 Theory of Classfcaton and Nonarametrc Classfer Erc ng Lecture, Setember 0, 008 Readng: Cha.,5 CB and handouts Classfcaton Reresentng data: M K Hyothess classfer

More information

Classification Bayesian Classifiers

Classification Bayesian Classifiers lassfcaton Bayesan lassfers Jeff Howbert Introducton to Machne Learnng Wnter 2014 1 Bayesan classfcaton A robablstc framework for solvng classfcaton roblems. Used where class assgnment s not determnstc,.e.

More information

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the ermsson of the authors and the ublsher Chater

More information

Naïve Bayes Classifier

Naïve Bayes Classifier 9/8/07 MIST.6060 Busness Intellgence and Data Mnng Naïve Bayes Classfer Termnology Predctors: the attrbutes (varables) whose values are used for redcton and classfcaton. Predctors are also called nut varables,

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 3.

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Bayesian Decision Theory

Bayesian Decision Theory No.4 Bayesan Decson Theory Hu Jang Deartment of Electrcal Engneerng and Comuter Scence Lassonde School of Engneerng York Unversty, Toronto, Canada Outlne attern Classfcaton roblems Bayesan Decson Theory

More information

Pattern Classification (II) 杜俊

Pattern Classification (II) 杜俊 attern lassfcaton II 杜俊 junu@ustc.eu.cn Revew roalty & Statstcs Bayes theorem Ranom varales: screte vs. contnuous roalty struton: DF an DF Statstcs: mean, varance, moment arameter estmaton: MLE Informaton

More information

Support Vector Machines CS434

Support Vector Machines CS434 Support Vector Machnes CS434 Lnear Separators Many lnear separators exst that perfectly classfy all tranng examples Whch of the lnear separators s the best? Intuton of Margn Consder ponts A, B, and C We

More information

Iterative Methods for Searching Optimal Classifier Combination Function

Iterative Methods for Searching Optimal Classifier Combination Function htt://www.cub.buffalo.edu Iteratve Method for Searchng Otmal Clafer Combnaton Functon Sergey Tulyakov Chaohong Wu Venu Govndaraju Unverty at Buffalo Identfcaton ytem: Alce Bob htt://www.cub.buffalo.edu

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

Algorithms for factoring

Algorithms for factoring CSA E0 235: Crytograhy Arl 9,2015 Instructor: Arta Patra Algorthms for factorng Submtted by: Jay Oza, Nranjan Sngh Introducton Factorsaton of large ntegers has been a wdely studed toc manly because of

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

Confidence intervals for weighted polynomial calibrations

Confidence intervals for weighted polynomial calibrations Confdence ntervals for weghted olynomal calbratons Sergey Maltsev, Amersand Ltd., Moscow, Russa; ur Kalambet, Amersand Internatonal, Inc., Beachwood, OH e-mal: kalambet@amersand-ntl.com htt://www.chromandsec.com

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Hopfield Training Rules 1 N

Hopfield Training Rules 1 N Hopfeld Tranng Rules To memorse a sngle pattern Suppose e set the eghts thus - = p p here, s the eght beteen nodes & s the number of nodes n the netor p s the value requred for the -th node What ll the

More information

Mixture of Gaussians Expectation Maximization (EM) Part 2

Mixture of Gaussians Expectation Maximization (EM) Part 2 Mture of Gaussans Eectaton Mamaton EM Part 2 Most of the sldes are due to Chrstoher Bsho BCS Summer School Eeter 2003. The rest of the sldes are based on lecture notes by A. Ng Lmtatons of K-means Hard

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

The big picture. Outline

The big picture. Outline The bg pcture Vncent Claveau IRISA - CNRS, sldes from E. Kjak INSA Rennes Notatons classes: C = {ω = 1,.., C} tranng set S of sze m, composed of m ponts (x, ω ) per class ω representaton space: R d (=

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Bayesian classification CISC 5800 Professor Daniel Leeds

Bayesian classification CISC 5800 Professor Daniel Leeds Tran Test Introducton to classfers Bayesan classfcaton CISC 58 Professor Danel Leeds Goal: learn functon C to maxmze correct labels (Y) based on features (X) lon: 6 wolf: monkey: 4 broker: analyst: dvdend:

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one)

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one) Why Bayesan? 3. Bayes and Normal Models Alex M. Martnez alex@ece.osu.edu Handouts Handoutsfor forece ECE874 874Sp Sp007 If all our research (n PR was to dsappear and you could only save one theory, whch

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

15-381: Artificial Intelligence. Regression and cross validation

15-381: Artificial Intelligence. Regression and cross validation 15-381: Artfcal Intellgence Regresson and cross valdaton Where e are Inputs Densty Estmator Probablty Inputs Classfer Predct category Inputs Regressor Predct real no. Today Lnear regresson Gven an nput

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng robablstc Classfer Gven an nstance, hat does a probablstc classfer do dfferentl compared to, sa, perceptron? It does not drectl predct Instead,

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Bayesian networks for scenario analysis of nuclear waste repositories

Bayesian networks for scenario analysis of nuclear waste repositories Bayesan networks for scenaro analyss of nuclear waste reostores Edoardo Toson ab Aht Salo a Enrco Zo bc a. Systems Analyss Laboratory Det of Mathematcs and Systems Analyss - Aalto Unversty b. Laboratory

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009 A utoral on Data Reducton Lnear Dscrmnant Analss (LDA) hreen Elhaban and Al A Farag Unverst of Lousvlle, CVIP Lab eptember 009 Outlne LDA objectve Recall PCA No LDA LDA o Classes Counter eample LDA C Classes

More information

THERMODYNAMICS. Temperature

THERMODYNAMICS. Temperature HERMODYNMICS hermodynamcs s the henomenologcal scence whch descrbes the behavor of macroscoc objects n terms of a small number of macroscoc arameters. s an examle, to descrbe a gas n terms of volume ressure

More information

Lecture Nov

Lecture Nov Lecture 18 Nov 07 2008 Revew Clusterng Groupng smlar obects nto clusters Herarchcal clusterng Agglomeratve approach (HAC: teratvely merge smlar clusters Dfferent lnkage algorthms for computng dstances

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Logistic regression with one predictor. STK4900/ Lecture 7. Program

Logistic regression with one predictor. STK4900/ Lecture 7. Program Logstc regresson wth one redctor STK49/99 - Lecture 7 Program. Logstc regresson wth one redctor 2. Maxmum lkelhood estmaton 3. Logstc regresson wth several redctors 4. Devance and lkelhood rato tests 5.

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

A total variation approach

A total variation approach Denosng n dgtal radograhy: A total varaton aroach I. Froso M. Lucchese. A. Borghese htt://as-lab.ds.unm.t / 46 I. Froso, M. Lucchese,. A. Borghese Images are corruted by nose ) When measurement of some

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Classification (klasifikácia) Feedforward Multi-Layer Perceptron (Dopredná viacvrstvová sieť) 14/11/2016. Perceptron (Frank Rosenblatt, 1957)

Classification (klasifikácia) Feedforward Multi-Layer Perceptron (Dopredná viacvrstvová sieť) 14/11/2016. Perceptron (Frank Rosenblatt, 1957) 4//06 IAI: Lecture 09 Feedforard Mult-Layer Percetron (Doredná vacvrstvová seť) Lubca Benuskova AIMA 3rd ed. Ch. 8.6.4 8.7.5 Classfcaton (klasfkáca) In machne learnng and statstcs, classfcaton s the roblem

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng 2 Logstc Regresson Gven tranng set D stc regresson learns the condtonal dstrbuton We ll assume onl to classes and a parametrc form for here s

More information

Mixture o f of Gaussian Gaussian clustering Nov

Mixture o f of Gaussian Gaussian clustering Nov Mture of Gaussan clusterng Nov 11 2009 Soft vs hard lusterng Kmeans performs Hard clusterng: Data pont s determnstcally assgned to one and only one cluster But n realty clusters may overlap Soft-clusterng:

More information

Machine Learning for Signal Processing Linear Gaussian Models

Machine Learning for Signal Processing Linear Gaussian Models Machne Learnng for Sgnal rocessng Lnear Gaussan Models lass 2. 2 Nov 203 Instructor: Bhsha Raj 2 Nov 203 755/8797 HW3 s up. Admnstrva rojects please send us an update 2 Nov 203 755/8797 2 Recap: MA stmators

More information

SMALL AREA ESTIMATES FROM THE AMERICAN COMMUNITY SURVEY USING A HOUSING UNIT MODEL

SMALL AREA ESTIMATES FROM THE AMERICAN COMMUNITY SURVEY USING A HOUSING UNIT MODEL SMALL AREA ESTIMATES FROM THE AMERICAN COMMUNITY SURVEY USING A HOUSING UNIT MODEL Nanak Chand and Donald Malec U.S. Bureau of the Census Abstract The Amercan Communty Survey (ACS) s desgned to, ultmately,

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Hidden Markov Model Cheat Sheet

Hidden Markov Model Cheat Sheet Hdden Markov Model Cheat Sheet (GIT ID: dc2f391536d67ed5847290d5250d4baae103487e) Ths document s a cheat sheet on Hdden Markov Models (HMMs). It resembles lecture notes, excet that t cuts to the chase

More information

Outline. EM Algorithm and its Applications. K-Means Classifier. K-Means Classifier (Cont.) Introduction of EM K-Means EM EM Applications.

Outline. EM Algorithm and its Applications. K-Means Classifier. K-Means Classifier (Cont.) Introduction of EM K-Means EM EM Applications. EM Algorthm and ts Alcatons Y L Deartment of omuter Scence and Engneerng Unversty of Washngton utlne Introducton of EM K-Means EM EM Alcatons Image Segmentaton usng EM bect lass Recognton n BIR olor lusterng

More information

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD Lnear dscrmnants Nuno Vasconcelos ECE Department UCSD Classfcaton a classfcaton problem as to tpes of varables e.g. X - vector of observatons features n te orld Y - state class of te orld X R 2 fever blood

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Unified Subspace Analysis for Face Recognition

Unified Subspace Analysis for Face Recognition Unfed Subspace Analyss for Face Recognton Xaogang Wang and Xaoou Tang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, Hong Kong {xgwang, xtang}@e.cuhk.edu.hk Abstract PCA, LDA

More information

Learning with Maximum Likelihood

Learning with Maximum Likelihood Learnng wth Mamum Lelhood Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm,

More information

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1 Problem Set 4 Suggested Solutons Problem (A) The market demand functon s the soluton to the followng utlty-maxmzaton roblem (UMP): The Lagrangean: ( x, x, x ) = + max U x, x, x x x x st.. x + x + x y x,

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

+, where 0 x N - n. k k

+, where 0 x N - n. k k CO 745, Mdterm Len Cabrera. A multle choce eam has questons, each of whch has ossble answers. A student nows the correct answer to n of these questons. For the remanng - n questons, he checs the answers

More information

Intro to Visual Recognition

Intro to Visual Recognition CS 2770: Computer Vson Intro to Vsual Recognton Prof. Adrana Kovashka Unversty of Pttsburgh February 13, 2018 Plan for today What s recognton? a.k.a. classfcaton, categorzaton Support vector machnes Separable

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Web-Mining Agents Probabilistic Information Retrieval

Web-Mining Agents Probabilistic Information Retrieval Web-Mnng Agents Probablstc Informaton etreval Prof. Dr. alf Möller Unverstät zu Lübeck Insttut für Informatonssysteme Karsten Martny Übungen Acknowledgements Sldes taken from: Introducton to Informaton

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN S. Chtwong, S. Wtthayapradt, S. Intajag, and F. Cheevasuvt Faculty of Engneerng, Kng Mongkut s Insttute of Technology

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

Comparing two Quantiles: the Burr Type X and Weibull Cases

Comparing two Quantiles: the Burr Type X and Weibull Cases IOSR Journal of Mathematcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X. Volume, Issue 5 Ver. VII (Se. - Oct.06), PP 8-40 www.osrjournals.org Comarng two Quantles: the Burr Tye X and Webull Cases Mohammed

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Classification learning II

Classification learning II Lecture 8 Classfcaton learnng II Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Logstc regresson model Defnes a lnear decson boundar Dscrmnant functons: g g g g here g z / e z f, g g - s a logstc functon

More information

Lecture 20: Hypothesis testing

Lecture 20: Hypothesis testing Lecture : Hpothess testng Much of statstcs nvolves hpothess testng compare a new nterestng hpothess, H (the Alternatve hpothess to the borng, old, well-known case, H (the Null Hpothess or, decde whether

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them?

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them? Image classfcaton Gven te bag-of-features representatons of mages from dfferent classes ow do we learn a model for dstngusng tem? Classfers Learn a decson rule assgnng bag-offeatures representatons of

More information

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) Maxmum Lkelhood Estmaton (MLE) Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 01 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

EE513 Audio Signals and Systems. Statistical Pattern Classification Kevin D. Donohue Electrical and Computer Engineering University of Kentucky

EE513 Audio Signals and Systems. Statistical Pattern Classification Kevin D. Donohue Electrical and Computer Engineering University of Kentucky EE53 Audo Sgnals and Systes Statstcal Pattern Classfcaton Kevn D. Donohue Electrcal and Couter Engneerng Unversty of Kentucy Interretaton of Audtory Scenes Huan erceton and cognton greatly eceeds any couter-based

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Michael Batty. Alan Wilson Plenary Session Entropy, Complexity, & Information in Spatial Analysis

Michael Batty. Alan Wilson Plenary Session Entropy, Complexity, & Information in Spatial Analysis Alan Wlson Plenary Sesson Entroy, Comlexty, & Informaton n Satal Analyss Mchael Batty m.batty@ucl.ac.uk @jmchaelbatty htt://www.comlexcty.nfo/ htt://www.satalcomlexty.nfo/ for Advanced Satal Analyss CentreCentre

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information