IOE 611/Math 663: Nonlinear Programming

Size: px
Start display at page:

Download "IOE 611/Math 663: Nonlinear Programming"

Transcription

1 1. Introduction I course logistics I mathematical optimization I least-squares and linear programming I convex optimization I example I course goals and topics I nonlinear optimization I brief history of convex optimization IOE 611: Nonlinear Programming, Fall Introduction Page 1 1 IOE 611/Math 663: Nonlinear Programming I Lectures: Tue and Thu, 12:00 1:20 PM, 1005 Dow I Instructors: Marina A. Epelman and Yiling Zhang (GSI); O ce hours: as announced on Canvas, and by appointment I Textbook: Convex Optimization by Stephen Boyd and Lieven Vandenberghe I Unrestricted resources (excluding assignments, exams, solutions, and grades) and calendar are at www-personal.umich.edu/~mepelman/teaching/ioe611/ Everything else, plus announcements, on Canvas I Required background: Working knowledge of linear algebra and analysis (review Appendix A of the book). Also, a level of mathematical maturity and willingness to program in Matlab. Exposure to numerical computing, optimization, and its application fields is helpful but not required. Please read syllabus for complete course policies IOE 611: Nonlinear Programming, Fall Introduction Page 1 2

2 Course Logistics I Lectures: I Slides posted prior to lectures I In class, combination of slides (bring a copy, preferably one you can write on) and board writing (take notes!, photographing the board is strongly discouraged) I Problem sets weekly or so, include some computer modeling and programming I Not graded, discussed in weekly review sessions (times TBD via online survey) I Crucial in preparation for... I Four takehome exams (20%, 20%, 30%, 30%) I Written solutions must be typed, L A TEX highly recommended I Computer code, when appropriate, uploaded to Canvas I For each exam, choose 60 consecutive hours within pre-announced week-long period IOE 611: Nonlinear Programming, Fall Introduction Page 1 3 Mathematical optimization (mathematical) optimization problem minimize f 0 (x) subject to f i (x) apple b i, i =1,...,m I x =(x 1,...,x n ): optimization variables (or decision variables) I f 0 : R n! R: objective function I f i : R n! R, i =1,...,m: constraint functions optimal solution x? has smallest value of f 0 among all vectors that are feasible, i.e., satisfy the constraints IOE 611: Nonlinear Programming, Fall Introduction Page 1 4

3 Examples portfolio optimization: looking for a best way to invest in a set of n assets I variables: amounts invested in di erent assets I constraints: budget, max./min. investment per asset, minimum return I objective: risk device sizing in electronic circuits: choosing the width and length of devices in a circuit I variables: device widths and lengths I constraints: manufacturing limits, timing requirements, maximum area I objective: power consumption data fitting: from a family of potential models, find a model that best fits observed data and prior information I variables: model parameters I constraints: prior information, parameter limits I objective: measure of misfit or prediction error IOE 611: Nonlinear Programming, Fall Introduction Page 1 5 Solving optimization problems solution method I A solution method for a class of problems is an analytical solution or an algorithm that computes the solution (to a given accuracy), given an instance of a problem from the class. general optimization problem I very di cult to solve I methods involve some compromise, e.g., very long computation time, or not always finding the solution exceptions: certain problem classes can be solved e reliably I least-squares problems I linear programming problems I convex optimization problems ciently and IOE 611: Nonlinear Programming, Fall Introduction Page 1 6

4 Least-squares minimize kax bk 2 2 A 2 R k n, k n, rank(a) =n solving least-squares problems I analytical solution: x? =(A T A) 1 A T b I reliable and e cient algorithms and software I computation time proportional to n 2 k;lessifstructured I a mature technology using least-squares I least-squares problems are easy to recognize I a few standard techniques increase flexibility (e.g., including weights, adding regularization terms) IOE 611: Nonlinear Programming, Fall Introduction Page 1 7 Linear programming minimize c T x subject to ai T x apple b i, i =1,...,m solving linear programs I no analytical formula for solution I reliable and e cient algorithms and software I computation time in practice proportional to n 2 m if m n; less with structure I a mature technology using linear programming I not as easy to recognize as least-squares problems I a few standard tricks used to convert problems into linear programs (e.g., problems involving `1- or`1-norms, convex piecewise-linear functions) IOE 611: Nonlinear Programming, Fall Introduction Page 1 8

5 Convex optimization problem minimize f 0 (x) subject to f i (x) apple b i, i =1,...,m I objective and constraint functions are convex: for i =0, 1,...,m, f i ( x + y) apple f i (x)+ f i (y) for any x, y 2 R n and any 0, 0 such that + =1 I includes least-squares problems and linear programs as special cases IOE 611: Nonlinear Programming, Fall Introduction Page 1 9 Convex optimization problem solving convex optimization problems I no analytical solution I reliable and e cient algorithms I computation time (roughly) proportional to max{n 3, n 2 m, F }, where F is cost of evaluating f i s and their first and second derivatives I almost a technology using convex optimization I often di cult to recognize I many tricks for transforming problems into convex form I surprisingly many problems can be solved via convex optimization IOE 611: Nonlinear Programming, Fall Introduction Page 1 10

6 Example m lamps illuminating n (small, flat) patches s lamp power p j θ kj r kj illumination I k intensity I k at patch k depends linearly on lamp powers p j : mx 2 I k = a kj p j, a kj = rkj max{cos kj, 0} j=1 problem: achieve desired illumination I des with bounded lamp powers minimize max k=1,...,n log I k log I des = f 0 (I ) subject to I k = P m j=1 a kjp j, k =1,...,n 0 apple p j apple p max, j =1,...,m IOE 611: Nonlinear Programming, Fall Introduction Page 1 11 How to solve? (using techniques we know, or ad hoc approaches) 1. use uniform power: p j = p, varyp 2. use least-squares: minimize P n k=1 (I k I des ) 2 round p j if p j > p max or p j < 0 3. use weighted least-squares: P minimize n k=1 (I k I des ) 2 + P m j=1 w j(p j p max /2) 2 iteratively adjust weights w j until 0 apple p j apple p max 4. use linear programming: minimize max k=1,...,n I k I des subject to 0 apple p j apple p max, j =1,...,m which can be solved via linear programming of course these are approximate (suboptimal) solutions IOE 611: Nonlinear Programming, Fall Introduction Page 1 12

7 5. use convex optimization: problem is equivalent to minimize f0 (I )=max k=1,...,n h(i k /I des ) subject to I k = P m j=1 a kjp j, k =1,...,n 0 apple p j apple p max, j =1,...,m with h(u) =max{u, 1/u} } 5 4 h(u) 3 2 nts u f 0 is convex because maximum of convex functions is convex exact solution obtained with e ort modest factor least-squares e ort IOE 611: Nonlinear Programming, Fall Introduction Page 1 13 additional constraints: does adding (1) or (2) below complicate the problem? 1. no more than half of total power is in any 10 lamps 2. no more than half of the lamps are on (p j > 0) I answer: I moral: (untrained) intuition doesn t always work; without the proper background very easy problems can appear quite similar to very di cult problems IOE 611: Nonlinear Programming, Fall Introduction Page 1 14

8 Course goals and topics goals 1. recognize/formulate problems (such as the illumination problem) as convex optimization problems 2. develop code for problems of moderate size (e.g., 1000 lamps, 5000 patches) 3. characterize optimal solution (optimal power distribution), give limits of performance, etc. topics 1. convex sets, functions, optimization problems 2. examples and applications 3. algorithms IOE 611: Nonlinear Programming, Fall Introduction Page 1 15 Nonlinear optimization traditional techniques for general nonconvex problems involve compromises local optimization methods (nonlinear programming) I find a point that minimizes f 0 among feasible points near it, useful if goal is to find a good point I fast, can handle large problems I require initial guess I provide no information about distance to (global) optimum global optimization methods I find the (global) solution I worst-case complexity grows exponentially with problem size these algorithms are often based on solving convex subproblems IOE 611: Nonlinear Programming, Fall Introduction Page 1 16

9 Brief history of convex optimization theory (convex analysis): algorithms I 1947: simplex algorithm for linear programming (Dantzig) I 1960s: early interior-point methods (Fiacco & McCormick, Dikin,... ) I 1970s: ellipsoid method and other subgradient methods I 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984) I late 1980s now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994) I mid 1990s now: accelerated first order methods for large-scale and non-smooth convex optimization (Nesterov 2005) applications I before 1990: mostly in operations research; few in engineering I since 1990: many new applications in engineering (control, signal processing, communications, circuit design,... ); new problem classes (semidefinite and second-order cone programming, robust optimization) IOE 611: Nonlinear Programming, Fall Introduction Page 1 17

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction ESE 605 Modern Convex Optimization mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

Introduction to Convex Optimization

Introduction to Convex Optimization Introduction to Convex Optimization Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Optimization

More information

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis Dimensioning II Department of Electronics Communications Engineering Tampere University of Technology, Tampere, Finl January 29, 2014 1 2 3

More information

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine CS295: Convex Optimization Xiaohui Xie Department of Computer Science University of California, Irvine Course information Prerequisites: multivariate calculus and linear algebra Textbook: Convex Optimization

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Lecture 1: Introduction

Lecture 1: Introduction EE 227A: Convex Optimization and Applications January 17 Lecture 1: Introduction Lecturer: Anh Pham Reading assignment: Chapter 1 of BV 1. Course outline and organization Course web page: http://www.eecs.berkeley.edu/~elghaoui/teaching/ee227a/

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Convex Optimization & Machine Learning. Introduction to Optimization

Convex Optimization & Machine Learning. Introduction to Optimization Convex Optimization & Machine Learning Introduction to Optimization mcuturi@i.kyoto-u.ac.jp CO&ML 1 Why do we need optimization in machine learning We want to find the best possible decision w.r.t. a problem

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p Convex Optimization in Electrical Engineering Stephen Boyd and Lieven Vandenberghe EE Dept., Stanford ISL EE370 Seminar, 2/9/96 1 Main idea many electrical engineering design problems can be cast as convex

More information

FINANCIAL OPTIMIZATION

FINANCIAL OPTIMIZATION FINANCIAL OPTIMIZATION Lecture 1: General Principles and Analytic Optimization Philip H. Dybvig Washington University Saint Louis, Missouri Copyright c Philip H. Dybvig 2008 Choose x R N to minimize f(x)

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Lecture 9 Sequential unconstrained minimization

Lecture 9 Sequential unconstrained minimization S. Boyd EE364 Lecture 9 Sequential unconstrained minimization brief history of SUMT & IP methods logarithmic barrier function central path UMT & SUMT complexity analysis feasibility phase generalized inequalities

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 22: Linear Programming Revisited Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/ School

More information

IOE510/MATH561/OMS518: Linear Programming I

IOE510/MATH561/OMS518: Linear Programming I IOE510/MATH561/OMS518: Linear Programming I Lectures: Mondays and Wednesdays, 9:00-10:30 AM, IOE 1680 Instructor: Prof. Marina A. Epelman GSI: Katharina Ley Office hours: See CTools for most current info

More information

Advances in Convex Optimization: Theory, Algorithms, and Applications

Advances in Convex Optimization: Theory, Algorithms, and Applications Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne

More information

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4 Wim Kloet 1 Lecture 1 TOPICS Administration - course web page - contact details Course materials - text book - iclicker - syllabus Course Components

More information

CS 598 Statistical Reinforcement Learning. Nan Jiang

CS 598 Statistical Reinforcement Learning. Nan Jiang CS 598 Statistical Reinforcement Learning Nan Jiang Overview What s this course about? A grad-level seminar course on theory of RL 3 What s this course about? A grad-level seminar course on theory of RL

More information

CSCI 5654 (Linear Programming, Fall 2013) CSCI 5654: Linear Programming. Notes. Lecture-1. August 29, Notes

CSCI 5654 (Linear Programming, Fall 2013) CSCI 5654: Linear Programming. Notes. Lecture-1. August 29, Notes CSCI 5654 (Linear Programming, Fall 2013) Lecture-1 August 29, 2013 Lecture 1 Slide# 1 CSCI 5654: Linear Programming Instructor: Sriram Sankaranarayanan. Meeting times: Tuesday-Thursday, 12:30-1:45 p.m.

More information

IE598 Big Data Optimization Introduction

IE598 Big Data Optimization Introduction IE598 Big Data Optimization Introduction Instructor: Niao He Jan 17, 2018 1 A little about me Assistant Professor, ISE & CSL UIUC, 2016 Ph.D. in Operations Research, M.S. in Computational Sci. & Eng. Georgia

More information

Linear-Quadratic Optimal Control: Full-State Feedback

Linear-Quadratic Optimal Control: Full-State Feedback Chapter 4 Linear-Quadratic Optimal Control: Full-State Feedback 1 Linear quadratic optimization is a basic method for designing controllers for linear (and often nonlinear) dynamical systems and is actually

More information

Lecture 15: October 15

Lecture 15: October 15 10-725: Optimization Fall 2012 Lecturer: Barnabas Poczos Lecture 15: October 15 Scribes: Christian Kroer, Fanyi Xiao Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 4: Introduction to Interior Point Methods Dianne P. O Leary c 2008 Interior Point Methods We ll discuss

More information

MATH 345 Differential Equations

MATH 345 Differential Equations MATH 345 Differential Equations Spring 2018 Instructor: Time: Dr. Manuela Girotti; office: Weber 223C email: manuela.girotti@colostate.edu Mon-Tue-Wed-Fri 1:00pm-1:50pm Location: Engineering E 206 Office

More information

CHEE 3321 (Required) Analytical Methods for Chemical Engineers

CHEE 3321 (Required) Analytical Methods for Chemical Engineers CHEE 3321 (Required) Analytical Methods for Chemical Engineers Catalog Data: Cr. 3. (3-0). Prerequisites: MATH 2433 or equivalent with consent of instructor. Linear algebra, analytical methods for solving

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Math 70 and 95 Master Syllabus Beginning and Intermediate Algebra, 5th ed., Miller, O Neill, Hyde with ALEKS.

Math 70 and 95 Master Syllabus Beginning and Intermediate Algebra, 5th ed., Miller, O Neill, Hyde with ALEKS. Math 70 and 95 Master Syllabus 2017-2018 Course Coordinator: Tammy Nezol (tnezol@uoregon.edu) Textbook and ALEKS: Beginning and Intermediate Algebra, 5th ed., Miller, O Neill, Hyde with ALEKS. We have

More information

Who should take this course? Required Text. Course Information. How to succeed in this course

Who should take this course? Required Text. Course Information. How to succeed in this course ASTR 1040 Accel Intro Astronomy 2: Stars & Galaxies Spring 2008 Prof. Juri Toomre TA: Kyle Augustson TR 11am, Duane G-131 G + M recitations (E-126: 9am, 10am) Lecture 1 15 Jan 08 Detailed course syllabus

More information

ORF 363/COS 323 Final Exam, Fall 2015

ORF 363/COS 323 Final Exam, Fall 2015 Name: Princeton University ORF 363/COS 323 Final Exam, Fall 2015 January 13, 2016 Instructor: AIs: A.A. Ahmadi G. Hall, H. Hao, J. Ye, Z. Zhu 1. Please write out and sign the following pledge on top of

More information

Lecture 1 Introduction

Lecture 1 Introduction L. Vandenberghe EE236A (Fall 2013-14) Lecture 1 Introduction course overview linear optimization examples history approximate syllabus basic definitions linear optimization in vector and matrix notation

More information

ME451 Kinematics and Dynamics of Machine Systems

ME451 Kinematics and Dynamics of Machine Systems ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics Newmark Integration Formula [not in the textbook] December 9, 2014 Dan Negrut ME451, Fall 2014 University of Wisconsin-Madison

More information

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex Optimization in Convex and Control Theory System Stephen Boyd Engineering Department Electrical University Stanford 3rd SIAM Conf. Control & Applications 1 Basic idea Many problems arising in system and

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

Distributionally Robust Convex Optimization

Distributionally Robust Convex Optimization Submitted to Operations Research manuscript OPRE-2013-02-060 Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However,

More information

Who should take this course? How to succeed in this course. Course Information

Who should take this course? How to succeed in this course. Course Information ASTR 1040 Accel Intro Astronomy 2: Stars & Galaxies Spring 2011 Prof. Juri Toomre TA: Nicholas Nelson TR 9:30am, Duane G-125 G + M recitations (E-126: 9am, 10am, noon) Lecture 1 12 Jan 2010 Detailed course

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

More information

An interior-point trust-region polynomial algorithm for convex programming

An interior-point trust-region polynomial algorithm for convex programming An interior-point trust-region polynomial algorithm for convex programming Ye LU and Ya-xiang YUAN Abstract. An interior-point trust-region algorithm is proposed for minimization of a convex quadratic

More information

Chemistry 883 Computational Quantum Chemistry

Chemistry 883 Computational Quantum Chemistry Chemistry 883 Computational Quantum Chemistry Instructor Contact Information Professor Benjamin G. Levine levine@chemistry.msu.edu 215 Chemistry Building 517-353-1113 Office Hours Tuesday 9:00-11:00 am

More information

Introduction. Outline. EE3321 Electromagnetic Field Theory. Welcome! About this class Rules and syllabus Let s get started! 9/19/2018. E t.

Introduction. Outline. EE3321 Electromagnetic Field Theory. Welcome! About this class Rules and syllabus Let s get started! 9/19/2018. E t. D v B 0 B E t D H J t D B E H Introduction EE3321 Electromagnetic Field Theory Outline Welcome! About this class Rules and syllabus Let s get started! Slide 2 1 Welcome Course Information http://emlab.utep.edu/ee3321emf.htm

More information

Optimeringslära för F (SF1811) / Optimization (SF1841)

Optimeringslära för F (SF1811) / Optimization (SF1841) Optimeringslära för F (SF1811) / Optimization (SF1841) 1. Information about the course 2. Examples of optimization problems 3. Introduction to linear programming Introduction - Per Enqvist 1 Linear programming

More information

Course: Math 111 Pre-Calculus Summer 2016

Course: Math 111 Pre-Calculus Summer 2016 Course: Math 111 Pre-Calculus Summer 2016 Text: Instructor: Office Hours: Email: Fundamentals of Pre-calculus 2 nd edition, by M. Dugopolski, Pearson Publishing (Custom Edition for URI or Standard Edition)

More information

San José State University Aerospace Engineering Department AE138: Vector Based Dynamics for Aerospace Applications Fall 2018

San José State University Aerospace Engineering Department AE138: Vector Based Dynamics for Aerospace Applications Fall 2018 San José State University Aerospace Engineering Department AE138: Vector Based Dynamics for Aerospace Applications Fall 2018 Instructor: Office Location: Email: Office Hours: Class Days/Time: Prerequisite:

More information

and to estimate the quality of feasible solutions I A new way to derive dual bounds:

and to estimate the quality of feasible solutions I A new way to derive dual bounds: Lagrangian Relaxations and Duality I Recall: I Relaxations provide dual bounds for the problem I So do feasible solutions of dual problems I Having tight dual bounds is important in algorithms (B&B), and

More information

CPSC 340: Machine Learning and Data Mining. Gradient Descent Fall 2016

CPSC 340: Machine Learning and Data Mining. Gradient Descent Fall 2016 CPSC 340: Machine Learning and Data Mining Gradient Descent Fall 2016 Admin Assignment 1: Marks up this weekend on UBC Connect. Assignment 2: 3 late days to hand it in Monday. Assignment 3: Due Wednesday

More information

Convex Optimization. Lieven Vandenberghe Electrical Engineering Department, UCLA. Joint work with Stephen Boyd, Stanford University

Convex Optimization. Lieven Vandenberghe Electrical Engineering Department, UCLA. Joint work with Stephen Boyd, Stanford University Convex Optimization Lieven Vandenberghe Electrical Engineering Department, UCLA Joint work with Stephen Boyd, Stanford University Ph.D. School in Optimization in Computer Vision DTU, May 19, 2008 Introduction

More information

Phys 631 Mathematical Methods of Theoretical Physics Fall 2018

Phys 631 Mathematical Methods of Theoretical Physics Fall 2018 Phys 631 Mathematical Methods of Theoretical Physics Fall 2018 Course information (updated November 10th) Instructor: Joaquín E. Drut. Email: drut at email.unc.edu. Office: Phillips 296 Where and When:

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Dr. Soeren Prell A417 Zaffarano Hall Office Hours: by appointment (just send me a brief )

Dr. Soeren Prell A417 Zaffarano Hall Office Hours: by appointment (just send me a brief  ) Dr. Soeren Prell A417 Zaffarano Hall 294-3853 prell@iastate.edu Office Hours: by appointment (just send me a brief email) Today s Topics: Course structure Mathematical Concepts (Giancoli 1:1-8) Units and

More information

6.079/6.975 S. Boyd & P. Parrilo December 10 11, Final exam

6.079/6.975 S. Boyd & P. Parrilo December 10 11, Final exam 6.079/6.975 S. Boyd & P. Parrilo December 10 11, 2009. Final exam This is a 24 hour take-home final exam. Please turn it in to Professor Stephen Boyd, (Stata Center), on Friday December 11, at 5PM (or

More information

Primal-Dual Interior-Point Methods. Javier Peña Convex Optimization /36-725

Primal-Dual Interior-Point Methods. Javier Peña Convex Optimization /36-725 Primal-Dual Interior-Point Methods Javier Peña Convex Optimization 10-725/36-725 Last time: duality revisited Consider the problem min x subject to f(x) Ax = b h(x) 0 Lagrangian L(x, u, v) = f(x) + u T

More information

From Convex Optimization to Linear Matrix Inequalities

From Convex Optimization to Linear Matrix Inequalities Dep. of Information Engineering University of Pisa (Italy) From Convex Optimization to Linear Matrix Inequalities eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain

More information

MATH 122 SYLLBAUS HARVARD UNIVERSITY MATH DEPARTMENT, FALL 2014

MATH 122 SYLLBAUS HARVARD UNIVERSITY MATH DEPARTMENT, FALL 2014 MATH 122 SYLLBAUS HARVARD UNIVERSITY MATH DEPARTMENT, FALL 2014 INSTRUCTOR: HIRO LEE TANAKA UPDATED THURSDAY, SEPTEMBER 4, 2014 Location: Harvard Hall 102 E-mail: hirohirohiro@gmail.com Class Meeting Time:

More information

Interior Point Methods for Mathematical Programming

Interior Point Methods for Mathematical Programming Interior Point Methods for Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Florianópolis, Brazil EURO - 2013 Roma Our heroes Cauchy Newton Lagrange Early results Unconstrained

More information

Today: Linear Programming

Today: Linear Programming Today: Linear Programming COSC 581, Algorithms March 27, 2014 Many of these slides are adapted from several online sources Today s class: Chapter 29.1 Reading Assignments Reading assignment for next Thursday

More information

Lecture: Smoothing.

Lecture: Smoothing. Lecture: Smoothing http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Smoothing 2/26 introduction smoothing via conjugate

More information

ORF 363/COS 323 Final Exam, Fall 2016

ORF 363/COS 323 Final Exam, Fall 2016 Name: Princeton University Instructor: A.A. Ahmadi ORF 363/COS 323 Final Exam, Fall 2016 January 18, 2017 AIs: B. El Khadir, G. Hall, Z. Li, K. Wang, J. Ye, J. Zhang 1. Please write out and sign the following

More information

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

The Ellipsoid Algorithm

The Ellipsoid Algorithm The Ellipsoid Algorithm John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA 9 February 2018 Mitchell The Ellipsoid Algorithm 1 / 28 Introduction Outline 1 Introduction 2 Assumptions

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Linear Classifiers: predictions Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due Friday of next

More information

NEW RIVER COMMUNITY COLLEGE DUBLIN, VIRGINIA COURSE PLAN

NEW RIVER COMMUNITY COLLEGE DUBLIN, VIRGINIA COURSE PLAN NEW RIVER COMMUNITY COLLEGE DUBLIN, VIRGINIA COURSE PLAN Course Number and Title: MTH 279 Ordinary Differential Equations Prepared by: Mathematics Department (Date) Approved by: (Dean) (Date) I. Course

More information

Math 1190/01 Calculus I Fall 2007

Math 1190/01 Calculus I Fall 2007 Math 1190/01 Calculus I Fall 2007 Instructor: Dr. Sean Ellermeyer, SC 24, (770) 423-6129 (Math dept: (770) 423-6327), email: sellerme@kennesaw.edu, Web Site: http://math.kennesaw.edu/~sellerme. Time and

More information

2018 SPRING PHYS 8011 Classical mechanics I (as of Apr. 19/2018) The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary. A FRIENDLY REMINDER:

More information

Oracle Complexity of Second-Order Methods for Smooth Convex Optimization

Oracle Complexity of Second-Order Methods for Smooth Convex Optimization racle Complexity of Second-rder Methods for Smooth Convex ptimization Yossi Arjevani had Shamir Ron Shiff Weizmann Institute of Science Rehovot 7610001 Israel Abstract yossi.arjevani@weizmann.ac.il ohad.shamir@weizmann.ac.il

More information

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming January 26, 2018 1 / 38 Liability/asset cash-flow matching problem Recall the formulation of the problem: max w c 1 + p 1 e 1 = 150

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS COLLEGE ALGEBRA MATH 1130 Class Hours: 3.0 Credit Hours: 3.0 Laboratory Hours: 0.0 Date Revised: Fall 2017 Catalog Course Description: This course is

More information

Astronomy 001 Online SP16 Syllabus (Section 8187)

Astronomy 001 Online SP16 Syllabus (Section 8187) Astronomy 001 Online SP16 Syllabus (Section 8187) Instructor: Elizabeth Bell Email (best way to contact me): bellea@wlac.edu Classroom: online Office Hours: online by appointment Prerequisite: None REQUIRED:

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

Optimization Methods in Finance

Optimization Methods in Finance Optimization Methods in Finance 1 PART 1 WELCOME 2 Welcome! My name is Friedrich Eisenbrand Assistants of the course: Thomas Rothvoß, Nicolai Hähnle How to contact me: Come to see me during office ours:

More information

ORF 363/COS 323 Final Exam, Fall 2018

ORF 363/COS 323 Final Exam, Fall 2018 Name: Princeton University ORF 363/COS 323 Final Exam, Fall 2018 January 16, 2018 Instructor: A.A. Ahmadi AIs: Dibek, Duan, Gong, Khadir, Mirabelli, Pumir, Tang, Yu, Zhang 1. Please write out and sign

More information

Math 410 Linear Algebra Summer Session American River College

Math 410 Linear Algebra Summer Session American River College Course Information Instructor: Kristin Lui Email: luik@arc.losrios.edu Office Hours: By appointment Location: Liberal Arts 163 ARC Main Campus Meet Times: Tuesday/Thursday 6:30 pm 9:40 pm Dates: June 16,

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

Lecture 6 Simplex method for linear programming

Lecture 6 Simplex method for linear programming Lecture 6 Simplex method for linear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E.

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E. Stephen Boyd (E. Feron :::) System Analysis and Synthesis Control Linear Matrix Inequalities via Engineering Department, Stanford University Electrical June 1993 ACC, 1 linear matrix inequalities (LMIs)

More information

Linear Algebra. Instructor: Justin Ryan

Linear Algebra. Instructor: Justin Ryan Linear Algebra Instructor: Justin Ryan ryan@math.wichita.edu Department of Mathematics, Statistics, and Physics Wichita State University Wichita, Kansas Summer 2014 DRAFT 3 June 2014 Preface These lecture

More information

ORF 523 Final Exam, Spring 2016

ORF 523 Final Exam, Spring 2016 Name: Princeton University ORF 523 Final Exam, Spring 2016 Thursday, May 5, 9am, to Tuesday, May 10, 11am Instructor: A.A. Ahmadi AI: G. Hall 1. Please write out and sign the following pledge on top of

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

Math 273a: Optimization

Math 273a: Optimization Math 273a: Optimization Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com What is mathematical optimization? Optimization models the goal of solving a problem

More information

Sparse PCA with applications in finance

Sparse PCA with applications in finance Sparse PCA with applications in finance A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon 1 Introduction

More information

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software and Second-Order Cone Program () and Algorithms for Optimization Software Jared Erickson JaredErickson2012@u.northwestern.edu Robert 4er@northwestern.edu Northwestern University INFORMS Annual Meeting,

More information

Lecture Note 1: Introduction to optimization. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 1: Introduction to optimization. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 1: Introduction to optimization Xiaoqun Zhang Shanghai Jiao Tong University Last updated: September 23, 2017 1.1 Introduction 1. Optimization is an important tool in daily life, business and

More information

Welcome to Math 102 Section 102

Welcome to Math 102 Section 102 Welcome to Math 102 Section 102 Mingfeng Qiu Sep. 5, 2018 Math 102: Announcements Instructor: Mingfeng Qiu Email: mqiu@math.ubc.ca Course webpage: https://canvas.ubc.ca Check the calendar!!! Sectional

More information

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #2. Introduction to Sequences

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #2. Introduction to Sequences 1 MATH 137 : Calculus 1 for Honours Mathematics Online Assignment #2 Introduction to Sequences Due by 9:00 pm on WEDNESDAY, September 19, 2018 Instructions: Weight: 2% This assignment covers the topics

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Lecturer: Xiaodi Wu Reading Assignment: Course Website; KLM 1.1-1.2, 2.1-2.6. Welcome to CMSC/PHYS 457: Introduction to Quantum Computing Welcome to CMSC/PHYS 457: Introduction

More information

Linear Programming: Simplex

Linear Programming: Simplex Linear Programming: Simplex Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016

More information

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL 2018. MWF 2:00pm - 2:50pm MTH 0407 Instructor: M. Machedon Office: MTH 3311 e-mail: mxm@math.umd.edu Required text: Evans, Partial Differential Equations second

More information

Convex Optimization in Communications and Signal Processing

Convex Optimization in Communications and Signal Processing Convex Optimization in Communications and Signal Processing Prof. Dr.-Ing. Wolfgang Gerstacker 1 University of Erlangen-Nürnberg Institute for Digital Communications National Technical University of Ukraine,

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

with Binary Decision Diagrams Integer Programming J. N. Hooker Tarik Hadzic IT University of Copenhagen Carnegie Mellon University ICS 2007, January

with Binary Decision Diagrams Integer Programming J. N. Hooker Tarik Hadzic IT University of Copenhagen Carnegie Mellon University ICS 2007, January Integer Programming with Binary Decision Diagrams Tarik Hadzic IT University of Copenhagen J. N. Hooker Carnegie Mellon University ICS 2007, January Integer Programming with BDDs Goal: Use binary decision

More information

Handout 8: Dealing with Data Uncertainty

Handout 8: Dealing with Data Uncertainty MFE 5100: Optimization 2015 16 First Term Handout 8: Dealing with Data Uncertainty Instructor: Anthony Man Cho So December 1, 2015 1 Introduction Conic linear programming CLP, and in particular, semidefinite

More information

Department of Mechanical Engineering MECH 221 (with MECH 224 & MATH 255) Engineering Science I

Department of Mechanical Engineering MECH 221 (with MECH 224 & MATH 255) Engineering Science I Department of Mechanical Engineering MECH 221 (with MECH 224 & MATH 255) Engineering Science I Calendar Description: Rigid body kinetics and kinematics, basic electrical circuits, work and power, stress

More information

Advanced linear programming

Advanced linear programming Advanced linear programming http://www.staff.science.uu.nl/~akker103/alp/ Chapter 10: Integer linear programming models Marjan van den Akker 1 Intro. Marjan van den Akker Master Mathematics TU/e PhD Mathematics

More information

Lecture 25: Subgradient Method and Bundle Methods April 24

Lecture 25: Subgradient Method and Bundle Methods April 24 IE 51: Convex Optimization Spring 017, UIUC Lecture 5: Subgradient Method and Bundle Methods April 4 Instructor: Niao He Scribe: Shuanglong Wang Courtesy warning: hese notes do not necessarily cover everything

More information