Relating Translational and Rotational Variables

Size: px
Start display at page:

Download "Relating Translational and Rotational Variables"

Transcription

1

2

3 Relating Translational and Rotational Variables Rotational position and distance moved s = θ r (only radian units) Rotational and translational speed d s v = dt v = ω r = ds dt = d θ dt r Relating period and rotational speed T = πr v ωt = π = π ω units of time (s) [ distance = rate time]

4 Relating Translational and Rotational Variables acceleration is a little tricky Rotational and translational acceleration a) from v = ω r dv dt = d ω r dt a t = d ω r = α r dt from change in angular speed tangential acceleration b) from before we know there s also a radial component a r = v r = ω r radial acceleration c) must combine two distinct a tot = a r + a rotational accelerations t = ω r + αr

5 Relating Translational and Rotational Variables Rotational position and distance moved s = θ r (only radian units) Rotational and translational speed v = d r dt = ds dt = d θ dt r v = ω r Rotational and translational acceleration a t = d ω r = α r tangential acceleration dt a r = v r = ω r a tot = a r + a t = ω r + αr radial acceleration v = ω r a t = α r a r = ω ω r ( ) a tot = a t + a r

6 θ (t) ( θ 1 ) Δ θ = θ s = θ r ω (t) = d θ (t) dt v = d θ dt r = ω r v = ω r α (t) = d ω (t) dt = d θ (t) dt a tot = a r + a t = ω r + αr a tot = a t + a r = a r ω ω r a t = α r ( ) Rotational Kinematics: ( ONLY IF α = constant) ω = ω 0 + αt θ = θ + ω 0 t + 1 αt

7 Example #1 A beetle rides the rim of a rotating merry-go-round. If the angular speed of the system is constant, does the beetle have a) radial acceleration and b) tangential acceleration? a tot = a r + a t If ω = constant, α = 0 = ω r + 0 a tot = ω r( ˆ r ) only radial If the angular speed is decreasing at a constant rate, does the beetle have a) radial acceleration and b) tangential acceleration? If α = neg constant, v r ˆ ω = ω 0 + αt a r a tot = a r + a t = ω r + αr a tot = a t + a r a tot = ((ω 0 + αt) r) + ( αr) both radial and tangential a tot a t

8 Checkpoint #1 A ladybug sits at the outer edge of a merry-goround, and a gentleman bug sits halfway between her and the axis of rotation. The merry-go-round makes a complete revolution once each second. The gentleman bug s angular speed is 1. half the ladybug s.. the same as the ladybug s. 3. twice the ladybug s. 4. impossible to determine

9 Checkpoint # A ladybug sits at the outer edge of a merrygo-round, that is turning and speeding up. At the instant shown in the figure, the tangential component of the ladybug s (Cartesian) acceleration is: 1. In the +x direction. In the - x direction 3. In the +y direction 4. In the - y direction 5. In the +z direction 6. In the - z direction 7. zero

10 Checkpoint#3 A ladybug sits at the outer edge of a merry-goround that is turning and is slowing down. The vector expressing her angular velocity is 1. In the +x direction. In the - x direction 3. In the +y direction 4. In the - y direction 5. In the +z direction 6. In the - z direction 7. zero

11 Problem 10 7: The wheel in the picture has a radius of 30cm and is rota6ng at.5rev/sec. I want to shoot a 0 cm long arrow parallel to the axle without hi?ng an spokes. (a) What is the minimum speed? (b) Does it mager where between the axle and rim of the wheel you aim? If so what is the best posi6on. The arrow must pass through the wheel in less time than it takes for the next spoke to rotate Δt= 1 8 rev.5rev / s = 0.05s (a) The minimum speed is v mn = 0cm 0.05s = 400cm / s = 4m / s (b) No there is no dependence upon the radial position.

12 Problem 10 30: Wheel A of radius r A =10 cm is coupled by belt B to wheel C of radius r C =5 cm. The angular speed of wheel A is increased from rest at a constant rate of 1.6 rad/s. Find the 6me needed for wheel C to reach an angular speed of 100 rev/min. If the belt does not slip the tangential acceleration of each wheel is the same. r A α A = r C α C α C = r A r C α A = 0.64rad / s The angular velocity of C is. ω C = α C t so t= ω C α C = ω Cr C r A α A with ω= 100rev/sec t=16s c

13 TRANSLATION Review: Newton s nd Law Kinetic energy of Rotation F net a proportionality is inertia, m constant of an object energy associated with state of translational motion KE trans = 1 mv motion of particles with same v mass is translational inertia What about rotation? What is energy associated with state of rotational motion? KE system = rotational inertia (moment of inertia) about some axis of rotation 1 m v i i ( ) 1 = m ωr i i = 1 m [ ( i r i )]ω I where v i = ωr i trans rot All particles have same ω Energy of rotational motion KE rot = 1 Iω [ KE trans = 1 ] mv

14 Moment of Inertia I For a discrete number of particles distributed about an axis of rotation I m i r i all mass units of kg m Simple example: 4 I = m i r i = m 1 r 1 + m r + m r + m 1 r 1 i=1 = m 1 r 1 + m r what about other axis? - Rotational inertia (moment of inertia) only valid about some axis of rotation. - For arbitrary shape, each different axis has a different moment of inertia. - I relates how the mass of a rotating body is distributed about a given axis. - r is perpendicular distance from mass to axis of rotation

15 Moment of inertia: comparison I 1 = m i r i = (5 kg)( m) + (7 kg)( m) = 5 kgm I = (5 kg)(0.5 m) + (7 kg)(4.5 m) ( ) kgm = 144 kgm = Note: 5 kg mass contributes <1% of total - mass close to axis of rotation contributes little to total moment of inertia. If rigid body = few particles I = m i r i If rigid body = too-many-to-count particles Sum Integral

16 Moment of inertia: continuum mass I = m i r i r dm with ρ = m V I = ρ r dv Example: moment of inertia of thin rod with perpendicular rotation through center I = r dm = ρ r dv where dv = area dx = A dx I = ρa r dx r = x in this case L x + L + L I = ρa x dx - L = ρa 1 + ( 3 ) L x3 - L = ρa( 1 ( L3 ) 1 ( L3 )) I = m V A L3 1 = 1 1 m A A L L 3 ( ) = 1 1 ml INDEPENDENT OF AREA

17 Some Rotational Inertias EACH OF THESE Rotational Inertias GO THROUGH THE Center of Mass!

18 10-7: Parallel-Axis Theorem If h is a perpendicular distance between a given axis and the axis through the center of mass (these two axes being parallel). Then the rota6onal iner6a I about the given axis is I = I COM + Mh Proof: ( ) I= r dm = { x a ( ) }dm + y b ( )dm a x dm I = x + y b ydm + a + b I = I COM h M COM ( ) dm

19 Example #1 Moment of Iner4a: Look at the drawing of the simple rod of length L. (a) What is I through an axis parallel to the rod? (b) What is I through an axis perpendicular to the rod through the CM? (c) What is I for an axis at the end but perpendicular to the rod? (a) I through the axis parallel to the rod. (b) I through the axis perpendicular to the rod. I= mr for a solid cylinder R 0, I 0 I= ml 1 from table (C) I through the axis perpendicular to the rod at the end. I= ml 1 + mh = 4mL 3

20 Example #: Moment of inertia of a Pencil It depends on where the rotation axis is considered I = 1 3 ML I = 1 1 ML I = 1 MR I = kg m I = kg m I = kg m Consider a 0g pencil 15cm long and 1cm wide somewhat like MASS, you can feel the difference in the rotational inertia

21 Example #3 A bicycle wheel has a radius of 0.33m and a rim of mass 1. kg. The wheel has 50 spokes, each with a mass 10g. What is the moment of inertial about axis of rotation? What is moment of inertia about COM? I tot,com = I rim,center + 50I spoke What is I spoke (parallel-axis)? Ispoke = Irod.com + Mh = 1 1 ML + M ( 1 L ) = 1 3 ML = kg 3 ( )( 0.33m) kg m Putting together I tot,com = I rim,center + 50I spoke = M wheel R + 50I spoke = ( 1.kg) ( 0.33m) + 50( kg m ) = 0.149kg m

22 Example #4 What is the kinetic energy of the earth s rotation about its axis? Energy of rotational motion is found from: KE rot = 1 Iω What is earth s moment of inertia, I? Iearth = Isphere = 5 Mr = kg 5 ( )( m) kg m What is earth s angular velocity, ω? From T = π ω Now plug- n-chug: KE rot = kg m rad /s ω = π radians day = π ( ) = rad /s ( ) = J

ω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r

ω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r θ (t) ( θ 1 ) Δ θ = θ 2 s = θ r ω (t) = d θ (t) dt v = d θ dt r = ω r v = ω r α (t) = d ω (t) dt = d 2 θ (t) dt 2 a tot 2 = a r 2 + a t 2 = ω 2 r 2 + αr 2 a tot = a t + a r = a r ω ω r a t = α r ( ) Rota%onal

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

More information

Version 001 Unit 1 Rotational Kinematics baker (BC303) 1. The linear speed is

Version 001 Unit 1 Rotational Kinematics baker (BC303) 1. The linear speed is Version 001 Unit 1 Rotational Kinematics baker (BC303) 1 This print-out should have 0 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Angular

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P Equilibrium when: F net = F i τ net = τ i a = 0 = α dp = 0 = d L = ma = d P = 0 = I α = d L = 0 P = constant L = constant F x = 0 τ i = 0 F y = 0 F z = 0 Static Equilibrium when: P = 0 L = 0 v com = 0

More information

Chapter 10: Rotation

Chapter 10: Rotation Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

Fundamentals Physics. Chapter 10 Rotation

Fundamentals Physics. Chapter 10 Rotation Fundamentals Physics Tenth Edition Halliday Chapter 10 Rotation 10-1 Rotational Variables (1 of 15) Learning Objectives 10.01 Identify that if all parts of a body rotate around a fixed axis locked together,

More information

Angular Displacement (θ)

Angular Displacement (θ) Rotational Motion Angular Displacement, Velocity, Acceleration Rotation w/constant angular acceleration Linear vs. Angular Kinematics Rotational Energy Parallel Axis Thm. Angular Displacement (θ) Angular

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Lecture 7 Chapter 10,11

Lecture 7 Chapter 10,11 Lecture 7 Chapter 10,11 Rotation, Inertia, Rolling, Torque, and Angular momentum Demo Demos Summary of Concepts to Cover from chapter 10 Rotation Rotating cylinder with string wrapped around it: example

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Angular Motion, General Notes

Angular Motion, General Notes Angular Motion, General Notes! When a rigid object rotates about a fixed axis in a given time interval, every portion on the object rotates through the same angle in a given time interval and has the same

More information

Chapter 10: Rotation. Chapter 10: Rotation

Chapter 10: Rotation. Chapter 10: Rotation Chapter 10: Rotation Change in Syllabus: Only Chapter 10 problems (CH10: 04, 27, 67) are due on Thursday, Oct. 14. The Chapter 11 problems (Ch11: 06, 37, 50) will be due on Thursday, Oct. 21 in addition

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

14. Rotational Kinematics and Moment of Inertia

14. Rotational Kinematics and Moment of Inertia 14. Rotational Kinematics and Moment of nertia A) Overview n this unit we will introduce rotational motion. n particular, we will introduce the angular kinematic variables that are used to describe the

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

If rigid body = few particles I = m i. If rigid body = too-many-to-count particles I = I COM. KE rot. = 1 2 Iω 2

If rigid body = few particles I = m i. If rigid body = too-many-to-count particles I = I COM. KE rot. = 1 2 Iω 2 2 If rigid body = few particles I = m i r i If rigid body = too-many-to-count particles Sum Integral Parallel Axis Theorem I = I COM + Mh 2 Energy of rota,onal mo,on KE rot = 1 2 Iω 2 [ KE trans = 1 2

More information

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A. Chapter 9 [ Edit ] Chapter 9 Overview Summary View Diagnostics View Print View with Answers Due: 11:59pm on Sunday, October 30, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Unit 8 Notetaking Guide Torque and Rotational Motion

Unit 8 Notetaking Guide Torque and Rotational Motion Unit 8 Notetaking Guide Torque and Rotational Motion Rotational Motion Until now, we have been concerned mainly with translational motion. We discussed the kinematics and dynamics of translational motion

More information

Chapter 10.A. Rotation of Rigid Bodies

Chapter 10.A. Rotation of Rigid Bodies Chapter 10.A Rotation of Rigid Bodies P. Lam 7_23_2018 Learning Goals for Chapter 10.1 Understand the equations govern rotational kinematics, and know how to apply them. Understand the physical meanings

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today:

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today: Physics 121. March 18, 2008. Physics 121. March 18, 2008. Course Information Topics to be discussed today: Variables used to describe rotational motion The equations of motion for rotational motion Course

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Connection between angular and linear speed

Connection between angular and linear speed Connection between angular and linear speed If a point-like object is in motion on a circular path of radius R at an instantaneous speed v, then its instantaneous angular speed ω is v = ω R Example: A

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Angular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter

Angular Displacement. θ i. 1rev = 360 = 2π rads. = angular displacement Δθ = θ f. π = circumference. diameter Rotational Motion Angular Displacement π = circumference diameter π = circumference 2 radius circumference = 2πr Arc length s = rθ, (where θ in radians) θ 1rev = 360 = 2π rads Δθ = θ f θ i = "angular displacement"

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Physics 201, Lecture 18

Physics 201, Lecture 18 q q Physics 01, Lecture 18 Rotational Dynamics Torque Exercises and Applications Rolling Motion Today s Topics Review Angular Velocity And Angular Acceleration q Angular Velocity (ω) describes how fast

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics Lecture 17 Chapter 10 Physics I 04.0.014 otational Motion Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

I 2 comω 2 + Rolling translational+rotational. a com. L sinθ = h. 1 tot. smooth rolling a com =αr & v com =ωr

I 2 comω 2 + Rolling translational+rotational. a com. L sinθ = h. 1 tot. smooth rolling a com =αr & v com =ωr Rolling translational+rotational smooth rolling a com =αr & v com =ωr Equations of motion from: - Force/torque -> a and α - Energy -> v and ω 1 I 2 comω 2 + 1 Mv 2 = KE 2 com tot a com KE tot = KE trans

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation Physics 01, Lecture 17 Today s Topics q Rotation of Rigid Object About A Fixed Axis (Chap. 10.1-10.4) n Motion of Extend Object n Rotational Kinematics: n Angular Velocity n Angular Acceleration q Kinetic

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1

University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 Name: Date: 1. For a wheel spinning on an axis through its center, the ratio of the radial acceleration of a point on

More information

Chapter 9 Rotation of Rigid Bodies

Chapter 9 Rotation of Rigid Bodies Chapter 9 Rotation of Rigid Bodies 1 Angular Velocity and Acceleration θ = s r (angular displacement) The natural units of θ is radians. Angular Velocity 1 rad = 360o 2π = 57.3o Usually we pick the z-axis

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

a +3bt 2 4ct 3) =6bt 12ct 2. dt 2. (a) The second hand of the smoothly running watch turns through 2π radians during 60 s. Thus,

a +3bt 2 4ct 3) =6bt 12ct 2. dt 2. (a) The second hand of the smoothly running watch turns through 2π radians during 60 s. Thus, 1. a) Eq. 11-6 leads to ω d at + bt 3 ct 4) a +3bt 4ct 3. dt b) And Eq. 11-8 gives α d a +3bt 4ct 3) 6bt 1ct. dt. a) The second hand of the smoothly running watch turns through π radians during 60 s. Thus,

More information

APC PHYSICS CHAPTER 11 Mr. Holl Rotation

APC PHYSICS CHAPTER 11 Mr. Holl Rotation APC PHYSICS CHAPTER 11 Mr. Holl Rotation Student Notes 11-1 Translation and Rotation All of the motion we have studied to this point was linear or translational. Rotational motion is the study of spinning

More information

Rotation. EMU Physics Department. Ali ÖVGÜN.

Rotation. EMU Physics Department. Ali ÖVGÜN. Rotation Ali ÖVGÜN EMU Physics Department www.aovgun.com Rotational Motion Angular Position and Radians Angular Velocity Angular Acceleration Rigid Object under Constant Angular Acceleration Angular and

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

Physics 141 Rotational Motion 1 Page 1. Rotational Motion 1. We're going to turn this team around 360 degrees.! Jason Kidd

Physics 141 Rotational Motion 1 Page 1. Rotational Motion 1. We're going to turn this team around 360 degrees.! Jason Kidd Physics 141 Rotational Motion 1 Page 1 Rotational Motion 1 We're going to turn this team around 360 degrees.! Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid

More information

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL MECHANICAL AND STRUCTURAL ENGINEERING C105 TUTORIAL 13 - MOMENT OF INERTIA

ENGINEERING COUNCIL CERTIFICATE LEVEL MECHANICAL AND STRUCTURAL ENGINEERING C105 TUTORIAL 13 - MOMENT OF INERTIA ENGINEERING COUNCIL CERTIFICATE LEVEL MECHANICAL AND STRUCTURAL ENGINEERING C15 TUTORIAL 1 - MOMENT OF INERTIA This tutorial covers essential material for this exam. On completion of this tutorial you

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

AP Physics 1: Rotational Motion & Dynamics: Problem Set

AP Physics 1: Rotational Motion & Dynamics: Problem Set AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are

More information

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall 2009 ROTATION. Lectures Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 1-3A Fall 009 ROTATION Lectures 16-17 Chapter 10 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 10 Rotation In this chapter we will study the rotational motion of rigid bodies

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N Practice Exam #3 1. A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d = 0.9 m, and each ball has a mass m = 0.5 kg. At this instant, there are two forces

More information

Work - kinetic energy theorem for rotational motion *

Work - kinetic energy theorem for rotational motion * OpenStax-CNX module: m14307 1 Work - kinetic energy theorem for rotational motion * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0

More information

Topic 1: Newtonian Mechanics Energy & Momentum

Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

More information

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information

Rolling, Torque, Angular Momentum

Rolling, Torque, Angular Momentum Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a

More information

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Monday Ch 9 examples Rota:on of a rigid body Torque and angular accelera:on Today Solving problems with torque Work and power with torque Angular momentum

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017 Physics of Rotation Physics 109, Introduction To Physics Fall 017 Outline Next two lab periods Rolling without slipping Angular Momentum Comparison with Translation New Rotational Terms Rotational and

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

Quiz Number 4 PHYSICS April 17, 2009

Quiz Number 4 PHYSICS April 17, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

TORQUE. Chapter 10 pages College Physics OpenStax Rice University AP College board Approved.

TORQUE. Chapter 10 pages College Physics OpenStax Rice University AP College board Approved. TORQUE Chapter 10 pages 343-384 College Physics OpenStax Rice University AP College board Approved. 1 SECTION 10.1 PAGE 344; ANGULAR ACCELERATION ω = Δθ Δt Where ω is velocity relative to an angle, Δθ

More information

Position: Angular position =! = s r. Displacement: Angular displacement =!" = " 2

Position: Angular position =! = s r. Displacement: Angular displacement =! =  2 Chapter 11 Rotation Perfectly Rigid Objects fixed shape throughout motion Rotation of rigid bodies about a fixed axis of rotation. In pure rotational motion: every point on the body moves in a circle who

More information