Shai Avidan Tel Aviv University

Size: px
Start display at page:

Download "Shai Avidan Tel Aviv University"

Transcription

1 Image Editing in the Gradient Domain Shai Avidan Tel Aviv Universit

2 Slide Credits (partial list) Rick Szeliski Steve Seitz Alosha Eros Yacov Hel-Or Marc Levo Bill Freeman Fredo Durand Slvain Paris

3

4 Image Composition Source Images Target Image

5 Basics Images as scalar ields R -> R

6 Vector Field A vector unction G: R R Each point (,) is associated with a vector (u,v) G(,)[ u(,), v(,) ]

7 Gradient Field Partial derivatives o scalar ield Direction Maimum rate o change o scalar ield Magnitude Rate o change Not all vector ields are gradients o an image. Onl i the are curl-ree (a.k.a conservative) What s the dierence between D and D Gradient ield? I(, ) I I {, I }

8 Continues v.s. Discrete Continues case derivative Discrete case Finite dierences I I [ 0 ] I [ 0 ] T I Image I(,) I I

9 Interpolation S :a closed subset o Ω :a closed subset o S, with boundar I * : known scalar unction over S \ Ω : unknown scalar unction over Ω R Ω

10 Intuition hole illing D: D:

11 Membrane Interpolation Solve the ollowing minimization problem: min Ω Subject to Dirichlet boundar conditions: * Ω Ω Variational Methods to the Rescue! Calculus: When we want to minimize g() over the space o real values We derive and set g ()0 What s the derivative o a unction? Variational Methods: Epress our problem as an energ minimization over a space o unctions

12 D Derivative: ( ) Derivative Deinition lim ε 0 ( ε ) ( ) Multidimensional derivative or some direction vector w r r r r ( ) ( εw) ( ) Dr w lim ε 0 ε ε We want to minimize ( ) d with ( ) a and ( ) b Assume we have a solution and tr to deine some notion o D derivative wrt to a D parameter ε in a given direction o unctional space: For a perturbation unction η() that also respects boundar conditions (i.e. η(_)η(_) 0) and a scalar ε the integral ( ( ) εη ( ) ) d should be bigger than alone

13 Calculus o Variations Lets open the parenthesis: ( ) εη ( ) ( ) ε η ( ) d The third term is alwas positive and is negligible when ε is going to zero. So derive the rest with respect to ε and set to zero: η ( ) ( ) d 0 Integrate b parts: η ( ) ( ) d [ η( ) ( ) ] η ( ) ( ) b Where: [ ( ) g( ) ] ( b) g( b) ( a) g( a) And since η(_)η(_) 0 then the epression in the squared brackets is equal to zero a d And we are let with: η ( ) ( ) d 0 But since this must be true or ever η, it holds that () 0 everwhere.

14 Intuition The min o is the slove integrated over the interval Locall, i the second derivative was not zero, this would mean that the First derivative is varing which is bad since we want to be minimized Recap: We start with the unctional we need to minimize Introduce the perturbation unction Use Calculus o variation Set to zero Integrate b parts And obtain the solution.

15 Euler-Lagrange Equation A undamental equation o calculus o variations, that states that i J is deined b an integral o the orm Equation () J F (,, ) d Then J has stationar value i the ollowing dierential equation is satisied Equation () F d d F 0 Recall, we want to solve the ollowing minimization problem: min Ω Subject to Dirichlet boundar conditions: * Ω Ω

16 Membrane Interpolation ( ) our case : In F 0 becomes: equation () Then F d d F d d F ( ) ( ) ( ) 0 d d d d F d d d d d d F d d F 0 we get the Laplacian: and

17 Smooth image completion Euler - Lagrange: arg min Ω s. t. Ω * Ω The minimum is achieved when: 0 over Ω s. t. Ω * Ω

18 Discrete Approimation (Membrane interpolation) Ω Ω Ω *.. over 0 s t,,,,, ( ) 0 4,,,,,,,,,,,,

19 Discrete Approimation b Each, is an unknown variable i, there are N unknown (the piel values) This reduces to a sparse linear sstem o equations: We have A_ * I 0 A_ * I 0 A_boundar * I boundar so We can combine all and get A b Gradient constraints Boundar conditions

20 What s in the picture?

21 What s in the picture?

22 What s in the picture?

23 Editing in Gradient Domain Given vector ield G(u(,),v(,)) (pasted gradient) in a bounded region Ω. Find the values o in Ω that optimize: min Ω G with Ω Ω * I * G(u,v) Ω

24 Intuition - What i G is null? min Ω with Ω Ω D: D:

25 D case What i G is not null? Seamlessl paste onto - Add a linear unction so that the boundar condition is respected - Gradient error is equall distributed all over Ω in order to respect the boundar condition

26 D case From Perez et al. 003

27 D case From Perez et al. 003

28 D case

29 Poisson Equation ( ) ( ) our case : In G G G F 0 F d d F d d F G G d d F d d G G d d F d d divg G G G G 0 : we get and

30 Discrete Approimation (Poisson Cloning) Ω Ω Ω *.. s t divg over,,,,, ( ) 0 4,,,,,,,,,,,, ( ) ( ) ( ) ( ),,,, G G G G G G divg

31 Alternative Derivation (discrete notation) v u I D D D [ ]* 0 * I D I Let D - Toeplitz matri

32 min I D D u I v ( ) ( ) v u I T T T T D D D D D D Normal equation: ( ) v u I T T T T D D D D D D [ ] [ ]* 0 * 0, lip D Note T

33 Numerical Solution Discretize Laplacian T T D D D D [ ] Sparse Toeplitz Matri

34 ( T T ) T T D D D D I D u D v Comments: A is a sparse. A is smmetric and can be inverted. I Ω is rectangular A is a Toeplitz matri. Size o A is NN. Impractical to orm or store A. Impractical to invert A A I b

35 Iterative Solution: Conjugate Gradient Solves a linear sstem Ab (in our case I) A is square, smmetric, positive semi-deinite. Advantages: Fast! No need to store A but calculating A In our case A can be calculated using a single convolution. Can deal with constraints.

36 Conjugate Gradient as a minimization problem Minimizes And since A is smmetric

37 Steepest Descent Method Pick gradient direction r(i) Gradient direction Find optimum along this direction (i)αr(i) Energ along the gradient

38 Behavior o gradient descent Zigzag or goes straight depending i we re luck Ends up doing multiple steps in the same direction

39 For each step i: Conjugate gradient Take the residual d(i)b-a(i) ( -gradient) Make it A-orthogonal to the previous ones Find minimum along this direction Needs at most N iterations. Matlab command: cgs(a,b) A can be a unction handle aun such that aun() returns A*

40 Solving Poisson equation with boundar conditions Deine a circumscribing square ΠΩ Ω* Let Ω Π denotes the edited image area. Let Ω* Π-Ω denotes the surrounding area. ( T T ) ( T T D D D D D D D D ) S Ω Ω I s.t. I T Ω Ω S T * Ω S Ω Ω

41 T T k ( ) Ω Ω I I k AI U Ω * Ω S T ( ) * Ω Ω T S k b U cgs(a,b) The above requirements can be epressed as a linear set o equations: S Ω [ ] [ ] b AI T S D D D D I I D D D D T T T T Ω Ω Ω Ω

42 Image stitching

43 Gradient Domain Composition

44 Cut Paste & Paste in Gradient Domain

45

46 Another eample

47 Transparent Cloning I I S Ω Ω S TΩ I ma S, T Ω Ω ( ) Ω Ω Ω

48 Transparent Cloning

49 Another eample

50 Another eample

51 Changing local illumination

52 Deect concealment

53 High Dnamic Range Compression Small eposure: Dark inside

54 High Dnamic Range Compression Large eposure: Outside Saturated

55 Manipulate gradients α is set to 0. o average gradient magnitude β is set between 0.8 and 0.9 Where the gradient is given b:

56 High Dnamic Range Compression Desired Image

57 High Dnamic Range Compression Short Eposure Sotware Tone Mapping Long Eposure

58 Shadow Removal

59 ColorGre Algorithm Optimization: iµ min Σ Σ ( (g i - g j ) - δ i,j ) i ji-µ I δ ij L then ideal image is g Otherwise, selectivel modulated b C ij

60 Results Original Photoshop Gre ColorGre ColorGre Color

61 Original PhotoshopGre ColorGreColor

62 Original PhotoshopGre ColorGre

63 Original PhotoshopGre ColorGre

Gradient-domain image processing

Gradient-domain image processing Gradient-domain image processing http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 10 Course announcements Homework 3 is out. - (Much) smaller

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b). 8. THEOREM I the partial derivatives and eist near (a b) and are continuous at (a b) then is dierentiable at (a b). For a dierentiable unction o two variables z= ( ) we deine the dierentials d and d to

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

Super-Resolution. Shai Avidan Tel-Aviv University

Super-Resolution. Shai Avidan Tel-Aviv University Super-Resolution Shai Avidan Tel-Aviv University Slide Credits (partial list) Ric Szelisi Steve Seitz Alyosha Efros Yacov Hel-Or Yossi Rubner Mii Elad Marc Levoy Bill Freeman Fredo Durand Sylvain Paris

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

A Simple Explanation of the Sobolev Gradient Method

A Simple Explanation of the Sobolev Gradient Method A Simple Explanation o the Sobolev Gradient Method R. J. Renka July 3, 2006 Abstract We have observed that the term Sobolev gradient is used more oten than it is understood. Also, the term is oten used

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

MATH1901 Differential Calculus (Advanced)

MATH1901 Differential Calculus (Advanced) MATH1901 Dierential Calculus (Advanced) Capter 3: Functions Deinitions : A B A and B are sets assigns to eac element in A eactl one element in B A is te domain o te unction B is te codomain o te unction

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

A NOVEL METHOD OF INTERPOLATION AND EXTRAPOLATION OF FUNCTIONS BY A LINEAR INITIAL VALUE PROBLEM

A NOVEL METHOD OF INTERPOLATION AND EXTRAPOLATION OF FUNCTIONS BY A LINEAR INITIAL VALUE PROBLEM A OVEL METHOD OF ITERPOLATIO AD EXTRAPOLATIO OF FUCTIOS BY A LIEAR IITIAL VALUE PROBLEM Michael Shatalov Sensor Science and Technolog o CSIR Manuacturing and Materials, P.O.Bo 395, Pretoria, CSIR and Department

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Reresher Course in Mathematics September 3 Lecture 5 Unconstraine Optimization an Quaratic Forms Francesco Feri We consier the unconstraine optimization or the case o unctions

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 151014 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter 1-6 in Duda and Hart: Pattern Classification 151014 INF 4300 1 Introduction to classification One of the most challenging

More information

EDGES AND CONTOURS(1)

EDGES AND CONTOURS(1) KOM31 Image Processing in Industrial Sstems Dr Muharrem Mercimek 1 EDGES AND CONTOURS1) KOM31 Image Processing in Industrial Sstems Some o the contents are adopted rom R. C. Gonzalez, R. E. Woods, Digital

More information

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016 Optical flow Subhransu Maji CMPSC 670: Computer Vision October 20, 2016 Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes CMPSC 670 2 Motion and perceptual organization Sometimes,

More information

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is:

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is: Noll 3 CT Notes : Page Compute Tomograph Notes Part Challenges with Projection X-ra Sstems The equation that governs the image intensit in projection imaging is: z I I ep µ z Projection -ra sstems are

More information

This is a problem of calculus of variations with an equality constraint. This problem is similar to the problem of minimizing a function

This is a problem of calculus of variations with an equality constraint. This problem is similar to the problem of minimizing a function 3-7 ISOPERIMETRIC PROBLEMS Isoperimetric implies constant perimeter. This is a problem of calculus of variations ith an equalit constraint in the integral form. ( V ) d ; W G( ) d This problem is similar

More information

Vector Calculus Review

Vector Calculus Review Course Instructor Dr. Ramond C. Rumpf Office: A-337 Phone: (915) 747-6958 E-Mail: rcrumpf@utep.edu Vector Calculus Review EE3321 Electromagnetic Field Theor Outline Mathematical Preliminaries Phasors,

More information

Mathematical Preliminaries. Developed for the Members of Azera Global By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

Mathematical Preliminaries. Developed for the Members of Azera Global By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. Mathematical Preliminaries Developed or the Members o Azera Global B: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. Outline Chapter One, Sets: Slides: 3-27 Chapter Two, Introduction to unctions: Slides: 28-36

More information

Today. Introduction to optimization Definition and motivation 1-dimensional methods. Multi-dimensional methods. General strategies, value-only methods

Today. Introduction to optimization Definition and motivation 1-dimensional methods. Multi-dimensional methods. General strategies, value-only methods Optimization Last time Root inding: deinition, motivation Algorithms: Bisection, alse position, secant, Newton-Raphson Convergence & tradeos Eample applications o Newton s method Root inding in > 1 dimension

More information

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters 1 Lecture Outline Basics o Spatial Filtering Smoothing Spatial Filters Averaging ilters Order-Statistics ilters Sharpening Spatial Filters Laplacian ilters High-boost ilters Gradient Masks Combining Spatial

More information

Chapter Adequacy of Solutions

Chapter Adequacy of Solutions Chapter 04.09 dequac of Solutions fter reading this chapter, ou should be able to: 1. know the difference between ill-conditioned and well-conditioned sstems of equations,. define the norm of a matri,

More information

Handout for Adequacy of Solutions Chapter SET ONE The solution to Make a small change in the right hand side vector of the equations

Handout for Adequacy of Solutions Chapter SET ONE The solution to Make a small change in the right hand side vector of the equations Handout for dequac of Solutions Chapter 04.07 SET ONE The solution to 7.999 4 3.999 Make a small change in the right hand side vector of the equations 7.998 4.00 3.999 4.000 3.999 Make a small change in

More information

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1 MEAN VALUE THEOREM Section 3. Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:16 AM 3.: Mean Value Theorem 1 ACTIVITY A. Draw a curve (x) on a separate sheet o paper within a deined closed

More information

Vector Basics. Lecture 1 Vector Basics

Vector Basics. Lecture 1 Vector Basics Lecture 1 Vector Basics Vector Basics We will be using vectors a lot in this course. Remember that vectors have both magnitude and direction e.g. a, You should know how to find the components of a vector

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation The Stress Equilibrium Equation As we mentioned in Chapter 2, using the Galerkin formulation and a choice of shape functions, we can derive a discretized form of most differential equations. In Structural

More information

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool Outline Camera calibration Camera projection models Camera calibration i Nonlinear least square methods A camera calibration tool Applications Digital Visual Effects Yung-Yu Chuang with slides b Richard

More information

Unconstrained Multivariate Optimization

Unconstrained Multivariate Optimization Unconstrained Multivariate Optimization Multivariate optimization means optimization of a scalar function of a several variables: and has the general form: y = () min ( ) where () is a nonlinear scalar-valued

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

Equation of a Line. Equation of a Line

Equation of a Line. Equation of a Line = m + b slope -intercept This is called the slope-intercept form. 3 = m + b This is called the slope-intercept form. = 5 + 10 = 10 + 5 P = -0.2Q + 100 4 Page 2 = m + b -intercept b -intercept = point where

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Segmentation Dr. D. J. Jackson Lecture 6- Image segmentation Segmentation divides an image into its constituent parts or objects Level of subdivision depends

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

CAP 5415 Computer Vision

CAP 5415 Computer Vision CAP 545 Computer Vision Dr. Mubarak Sa Univ. o Central Florida Filtering Lecture-2 Contents Filtering/Smooting/Removing Noise Convolution/Correlation Image Derivatives Histogram Some Matlab Functions General

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

Geometric Modeling Summer Semester 2010 Mathematical Tools (1)

Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Recap: Linear Algebra Today... Topics: Mathematical Background Linear algebra Analysis & differential geometry Numerical techniques Geometric

More information

Higher order method for non linear equations resolution: application to mobile robot control

Higher order method for non linear equations resolution: application to mobile robot control Higher order method for non linear equations resolution: application to mobile robot control Aldo Balestrino and Lucia Pallottino Abstract In this paper a novel higher order method for the resolution of

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Calculus of Several Variables (TEN A), (TEN 1)

Calculus of Several Variables (TEN A), (TEN 1) Famil name: First name: I number: KTH Campus Haninge EXAMINATION Jan 6 Time: 8.5-.5 Calculus o Several Variables TEN A TEN Course: Transorm Methods and Calculus o Several Variables 6H79 Ten Ten A Lecturer

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

z-axis SUBMITTED BY: Ms. Harjeet Kaur Associate Professor Department of Mathematics PGGCG 11, Chandigarh y-axis x-axis

z-axis SUBMITTED BY: Ms. Harjeet Kaur Associate Professor Department of Mathematics PGGCG 11, Chandigarh y-axis x-axis z-ais - - SUBMITTED BY: - -ais - - - - - - -ais Ms. Harjeet Kaur Associate Proessor Department o Mathematics PGGCG Chandigarh CONTENTS: Function o two variables: Deinition Domain Geometrical illustration

More information

Fast Local Laplacian Filters: Theory and Applications

Fast Local Laplacian Filters: Theory and Applications Fast Local Laplacian Filters: Theory and Applications Mathieu Aubry (INRIA, ENPC), Sylvain Paris (Adobe), Sam Hasinoff (Google), Jan Kautz (UCL), and Frédo Durand (MIT) Input Unsharp Mask, not edge-aware

More information

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is:

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is: Noll 6 CT Notes : Page Compute Tomograph Notes Part Challenges with Projection X-ra Sstems The equation that governs the image intensit in projection imaging is: z I I ep μ z Projection -ra sstems are

More information

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 60: Numerical Methods Lecture 7 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Drawback in Elimination Methods There are various drawbacks

More information

Random walks and anisotropic interpolation on graphs. Filip Malmberg

Random walks and anisotropic interpolation on graphs. Filip Malmberg Random walks and anisotropic interpolation on graphs. Filip Malmberg Interpolation of missing data Assume that we have a graph where we have defined some (real) values for a subset of the nodes, and that

More information

The spatial frequency domain

The spatial frequency domain The spatial frequenc /3/5 wk9-a- Recall: plane wave propagation λ z= θ path dela increases linearl with E ep i2π sinθ + λ z i2π cosθ λ z plane of observation /3/5 wk9-a-2 Spatial frequenc angle of propagation?

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag.

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag. San Francisco State University Math Review Notes Michael Bar Sets A set is any collection of elements Eamples: a A {,,4,6,8,} - the set of even numbers between zero and b B { red, white, bule} - the set

More information

Implicit Second Derivative Hybrid Linear Multistep Method with Nested Predictors for Ordinary Differential Equations

Implicit Second Derivative Hybrid Linear Multistep Method with Nested Predictors for Ordinary Differential Equations American Scientiic Research Journal or Engineering, Technolog, and Sciences (ASRJETS) ISSN (Print) -44, ISSN (Online) -44 Global Societ o Scientiic Research and Researchers http://asretsournal.org/ Implicit

More information

Tangent Line Approximations

Tangent Line Approximations 60_009.qd //0 :8 PM Page SECTION.9 Dierentials Section.9 EXPLORATION Tangent Line Approimation Use a graphing utilit to graph. In the same viewing window, graph the tangent line to the graph o at the point,.

More information

The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative,

The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative, Module 16 : Line Integrals, Conservative fields Green's Theorem and applications Lecture 47 : Fundamental Theorems of Calculus for Line integrals [Section 47.1] Objectives In this section you will learn

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method Hung M Phan UMass Lowell April 13, 2017 Throughout, A R n n is symmetric and positive definite, and b R n 1 Steepest Descent Method We present the steepest descent method for

More information

Lecture 7: The wave equation: higher dimensional case

Lecture 7: The wave equation: higher dimensional case Lecture 7: The wave equation: higher dimensional case Some auxiliary facts The co area formula. Let be a bounded domain and be a function of class. Denote by : the level set of. Let be any integrable function.

More information

Kazhdan, Bolitho and Hoppe. Poisson Surface Reconstruction 3/3

Kazhdan, Bolitho and Hoppe. Poisson Surface Reconstruction 3/3 Kazhdan, Bolitho and Hoppe Poisson Surface Reconstruction 3/3 Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Recap of differential operators (in 3D) ( x y z) Gradient (of scalar-valued function):

More information

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n Grade (MCV4UE) - AP Calculus Etended Page o A unction o n-variales is a real-valued unction... n whose domain D is a set o n-tuples... n in which... n is deined. The range o is the set o all values...

More information

Review: critical point or equivalently f a,

Review: critical point or equivalently f a, Review: a b f f a b f a b critical point or equivalentl f a, b A point, is called a of if,, 0 A local ma or local min must be a critical point (but not conversel) 0 D iscriminant (or Hessian) f f D f f

More information

CISE-301: Numerical Methods Topic 1:

CISE-301: Numerical Methods Topic 1: CISE-3: Numerical Methods Topic : Introduction to Numerical Methods and Taylor Series Lectures -4: KFUPM Term 9 Section 8 CISE3_Topic KFUPM - T9 - Section 8 Lecture Introduction to Numerical Methods What

More information

Lecture 16 February 25, 2016

Lecture 16 February 25, 2016 MTH 262/CME 372: pplied Fourier nalysis and Winter 2016 Elements of Modern Signal Processing Lecture 16 February 25, 2016 Prof. Emmanuel Candes Scribe: Carlos. Sing-Long, Edited by E. Bates 1 Outline genda:

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

APPM 2350 Section Exam points Wednesday October 24, 6:00pm 7:30pm, 2018

APPM 2350 Section Exam points Wednesday October 24, 6:00pm 7:30pm, 2018 APPM 250 Section Eam 2 40 points Wednesda October 24, 6:00pm 7:0pm, 208 ON THE FRONT OF YOUR BLUEBOOK write: () our name, (2) our student ID number, () lecture section/time (4) our instructor s name, (5)

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

2D Wavelets. Gloria Menegaz 1

2D Wavelets. Gloria Menegaz 1 D Wavelets Gloria Menegaz Topics Basic issues Separable spaces and bases Separable wavelet bases D DWT Fast D DWT Lifting steps scheme JPEG000 Wavelet packets Advanced concepts Overcomplete bases Discrete

More information

Chapter 6 2D Elements Plate Elements

Chapter 6 2D Elements Plate Elements Institute of Structural Engineering Page 1 Chapter 6 2D Elements Plate Elements Method of Finite Elements I Institute of Structural Engineering Page 2 Continuum Elements Plane Stress Plane Strain Toda

More information

CAP 5415 Computer Vision Fall 2011

CAP 5415 Computer Vision Fall 2011 CAP 545 Computer Vision Fall 2 Dr. Mubarak Sa Univ. o Central Florida www.cs.uc.edu/~vision/courses/cap545/all22 Oice 247-F HEC Filtering Lecture-2 General Binary Gray Scale Color Binary Images Y Row X

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

INF Anne Solberg One of the most challenging topics in image analysis is recognizing a specific object in an image.

INF Anne Solberg One of the most challenging topics in image analysis is recognizing a specific object in an image. INF 4300 700 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter -6 6inDuda and Hart: attern Classification 303 INF 4300 Introduction to classification One of the most challenging

More information

Computational Methods for Domains with! Complex Boundaries-I!

Computational Methods for Domains with! Complex Boundaries-I! http://www.nd.edu/~gtrggva/cfd-course/ Computational Methods or Domains with Comple Boundaries-I Grétar Trggvason Spring For most engineering problems it is necessar to deal with comple geometries, consisting

More information

Optical Flow, KLT Feature Tracker.

Optical Flow, KLT Feature Tracker. Optical Flow, KL Feature racker E-mail: hogijung@hanang.ac.kr Motion in Computer Vision Motion Structure rom motion Detection/segmentation with direction [1] E-mail: hogijung@hanang.ac.kr Motion Field.s..

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv Universit, 2013/14 Analsis-III,IV 53 4 Inverse function theorem 4a What is the problem................ 53 4b Simple observations before the theorem..... 54 4c The theorem.....................

More information

The Plane Stress Problem

The Plane Stress Problem 14 The Plane Stress Problem IFEM Ch 14 Slide 1 Plate in Plane Stress Thickness dimension or transverse dimension z Top surface Inplane dimensions: in, plane IFEM Ch 14 Slide 2 Mathematical Idealization

More information

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence Chapter 6 Nonlinear Equations 6. The Problem of Nonlinear Root-finding In this module we consider the problem of using numerical techniques to find the roots of nonlinear equations, f () =. Initially we

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numerical Methods or Engineering Design and Optimization Xin Li Department o ECE Carnegie Mellon University Pittsburgh, PA 53 Slide Overview Linear Regression Ordinary least-squares regression Minima

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

HOMEWORK 10 SOLUTIONS

HOMEWORK 10 SOLUTIONS HOMEWORK 10 SOLUTIONS MATH 170A Problem 0.1. Watkins 8.3.10 Solution. The k-th error is e (k) = G k e (0). As discussed before, that means that e (k+j) ρ(g) k, i.e., the norm of the error is approximately

More information

General solution of the Inhomogeneous Div-Curl system and Consequences

General solution of the Inhomogeneous Div-Curl system and Consequences General solution o the Inhomogeneous Div-Curl system and Consequences Briceyda Berenice Delgado López Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional March 07 2017 CINVESTAV

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

Broken Extremals. Variational Methods & Optimal Control lecture 20. Broken extremals. Broken extremals

Broken Extremals. Variational Methods & Optimal Control lecture 20. Broken extremals. Broken extremals Broken etremals Variational Methods & Optimal Control lecture 2 Matthew Roughan Discipline of Applied Mathematics School of Mathematical Sciences Universit of Adelaide

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Lecture 16: October 22

Lecture 16: October 22 0-725/36-725: Conve Optimization Fall 208 Lecturer: Ryan Tibshirani Lecture 6: October 22 Scribes: Nic Dalmasso, Alan Mishler, Benja LeRoy Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1)

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1) ChE 342 Vectors 1 VECTORS u u i k j u u Basic Definitions Figure 1 Vectors have magnitude and direction: u = i u + j u + k u (1) i = [1,0,0] j = [0,1,0] (2) k = [0,0,1] i, j, and k are mutuall orthogonal.

More information

Chapter 3: Image Enhancement in the. Office room : 841

Chapter 3: Image Enhancement in the.   Office room : 841 Chapter 3: Image Enhancement in the Spatial Domain Lecturer: Jianbing Shen Email : shenjianbing@bit.edu.cn Oice room : 841 http://cs.bit.edu.cn/shenjianbing cn/shenjianbing Principle Objective o Enhancement

More information

Get Solution of These Packages & Learn by Video Tutorials on Matrices

Get Solution of These Packages & Learn by Video Tutorials on  Matrices FEE Download Stud Package from website: wwwtekoclassescom & wwwmathsbsuhagcom Get Solution of These Packages & Learn b Video Tutorials on wwwmathsbsuhagcom Matrices An rectangular arrangement of numbers

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

Math 5630: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 2019

Math 5630: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 2019 Math 563: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 219 hroughout, A R n n is symmetric and positive definite, and b R n. 1 Steepest Descent Method We present the steepest descent

More information

Boundary-Fitted Coordinates!

Boundary-Fitted Coordinates! Computational Fluid Dnamics http:wwwndedu~gtrggvacfdcourse Computational Fluid Dnamics Computational Methods or Domains with Comple BoundariesI Grétar Trggvason Spring For most engineering problems it

More information

In the index (pages ), reduce all page numbers by 2.

In the index (pages ), reduce all page numbers by 2. Errata or Nilpotence and periodicity in stable homotopy theory (Annals O Mathematics Study No. 28, Princeton University Press, 992) by Douglas C. Ravenel, July 2, 997, edition. Most o these were ound by

More information

INF Introduction to classifiction Anne Solberg

INF Introduction to classifiction Anne Solberg INF 4300 8.09.17 Introduction to classifiction Anne Solberg anne@ifi.uio.no Introduction to classification Based on handout from Pattern Recognition b Theodoridis, available after the lecture INF 4300

More information