How should we go about modeling this? Model parameters? Time Substitution rate Can we observe time or subst. rate? What can we observe?


 Ross Bryant
 2 years ago
 Views:
Transcription
1 How should we go about modeling this? gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG Model parameters? Time Substitution rate Can we observe time or subst. rate? What can we observe? 1
2 Maximum likelihood estimation First 32 nucleotides of the ψηglobin gene of gorilla and orangutan: gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG logl maximum likelihood estimate (MLE) of v is v plot of loglikelihood as a function of branch length v Knowing that v = rate time, Why does the curve drop as you move left of the MLE? Why does the curve drop as you move right of the MLE? 2
3 What does this mean? Why is this number negative? From A C G T JC69 rate matrix 3 3 To A C G T 3 1 parameter: α 3 Jukes, T. H., and C. R. Cantor Evolution of protein molecules. Pages in H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York. 3
4 Equilibrium Frequencies A sequence consisting only of A... C T G A Perfume bottle broken, and perfume quickly fills the room 4
5 Equilibrium Frequencies If all doors are suddenly opened, perfume will spread by diffusion to the other rooms... C T G A The instant the doors open, the rate away from A is 3α (i.e. rate = 3α) 5
6 Equilibrium Frequencies C T G A Sequence now contains a few Cs, Gs, and Ts... AATAAAAAAAAAAAA AAAACAAAAAATAAA AAAAAAACGAAGAAA AAATAAAAAAAAAAA As perfume spreads by diffusion, the difference in concentration among rooms decreases... 6
7 Equilibrium Frequencies C T G A Sequence contains a mixture of about equal quantities A, C, G and T CAGAATCGAGCAGCT TGACTACGTCATGTG GTTGCGCCGCAACGC CATATACCGCCGACT AGTTTGAGGGCGGTT AGGGCTCGGTTCGTA CATCGTATAAACATT After a long time, equilibrium (=stationarity) is achieved. 7
8 Stationarity Assumed Models assume stationarity, which means that the state frequencies do not change across the tree Models assume that substitution process has reached equilibrium by this point 8
9 From 2 parameters: α β To A C G T K80 (or K2P) rate matrix A C G T transition rate transversion rate Kimura, M A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:
10 K80 rate matrix (looks different, but actually the same) 2 parameters: κ β A C G T A C G T ( + 2) ( + 2) ( + 2) ( + 2) All I ve done is define κ to be the transition/transversion rate ratio = Note: the K80 model is identical to the JC69 model if κ = 1 (α = β) 10
11 Likelihood Surface when K80 true K80 model (entire 2d space) Based on simulated data: sequence length = 500 sites true branch length = 0.15 true kappa = 5.0 JC69 model (just this 1d line) apple (trs/trv rate ratio) (branch length) 11
12 Likelihood Surface when JC true Based on simulated data: sequence length = 500 sites true branch length = 0.15 true kappa = 1.0 K80 model (entire 2d space) JC69 model (just this 1d line) apple (trs/trv rate ratio) (branch length) 12
13 F81 rate matrix 4 parameters: µ πa πc πg A C G T A C G T µ(1 A ) C µ G µ T µ A µ µ(1 C ) G µ T µ A µ C µ µ(1 G ) T µ A µ C µ G µ µ(1 T ) Note: the F81 model is identical to the JC69 model if all base frequencies are equal Felsenstein, J Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:
14 A C G T HKY85 rate matrix A C G T C G T A G T A C T A C G 5 parameters: κ β πa πc πg A dash means equal to negative sum of other elements on the same row Note: the HKY85 model is identical to the F81 model if κ = 1. If, in addition, all base frequencies are equal, it is identical to JC69. Hasegawa, M., H. Kishino, and T. Yano Dating of the humanape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 21:
15 A C G T GTR rate matrix A C G T C aµ G bµ T cµ A aµ G dµ T eµ A bµ C dµ T fµ A cµ C eµ G fµ 9 parameters: π A π C π G a b c d e µ Identical to the F81 model if a = b = c = d = e = f = 1. If, in addition, all the base frequencies are equal, GTR is identical to JC69. If a = c = d = f = β and b = e = κβ, GTR becomes the HKY85 model. Lanave, C., G. Preparata, C. Saccone, and G. Serio A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20:
16 So, how do you turn likelihoods into probabilities? this is the likelihood surface: Pr(data κ,ν) want probability surface: Pr(κ,ν data) apple 16
17 Kinds of probabilities B = Black S = Solid W = White D = Dotted Marginal probabilities: Joint probabilities: 17
18 Kinds of probabilities (continued) Conditional probability 18
19 Bayes rule provides a way to calculate conditional probabilities 19
20 Bayes rule shows how to turn Pr(D B) into Pr(B D) 20
21 The marginal probability of D is the sum of all joint probabilities involving D 21
22 Bayes rule in statistics Likelihood of hypothesis θ Prior probability of hypothesis θ Pr( D) = Pr(D ) Pr( ) Pr(D ) Pr( ) Posterior probability of hypothesis θ Marginal probability of the data (marginalizing over hypotheses) 22
23 Moving through treespace The LargetSimon move X Step 1: Pick 3 contiguous edges randomly, defining two subtrees, X and Y Y *Larget, B., and D. L. Simon Markov chain monte carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: See also: Holder et al Syst. Biol. 54:
24 Moving through treespace The LargetSimon move YY X X Step 1: Pick 3 contiguous edges randomly, defining two subtrees, X and Y Step 2: Shrink or grow selected 3edge segment by a random amount 24
25 Moving through treespace The LargetSimon move Y X Step 1: Pick 3 contiguous edges randomly, defining two subtrees, X and Y Step 2: Shrink or grow selected 3edge segment by a random amount 25
26 Moving through treespace The LargetSimon move Y Step 1: Pick 3 contiguous edges randomly, defining two subtrees, X and Y Step 2: Shrink or grow selected 3edge segment by a random amount Step 3: Choose X or Y randomly, then reposition randomly 26
27 Moving through treespace The LargetSimon move Proposed new tree: 3 edge lengths have changed and the topology differs by one NNI rearrangement Step 1: Pick 3 contiguous edges randomly, defining two subtrees, X and Y Step 2: Shrink or grow selected 3edge segment by a random amount Step 3: Choose X or Y randomly, then reposition randomly 27
28 Moving through treespace Current tree Proposed tree logposterior = logposterior = (better, so accept) 28
Maximum Likelihood in Phylogenetics
Maximum Likelihood in Phylogenetics June 1, 2009 Smithsonian Workshop on Molecular Evolution Paul O. Lewis Department of Ecology & Evolutionary Biology University of Connecticut, Storrs, CT Copyright 2009
More informationMaximum Likelihood in Phylogenetics
Maximum Likelihood in Phylogenetics 26 January 2011 Workshop on Molecular Evolution Český Krumlov, Česká republika Paul O. Lewis Department of Ecology & Evolutionary Biology University of Connecticut,
More informationMaximum Likelihood in Phylogenetics
Maximum Likelihood in Phylogenetics 29 July 2014 Workshop on Molecular Evolution Woods Hole, Massachusetts Paul O. Lewis Department of Ecology & Evolutionary Biology Paul O. Lewis (2014 Woods Hole Workshop
More informationSome of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!
Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis
More informationMaximum Likelihood in Phylogenetics
Maximum Likelihood in Phylogenetics 23 July 2013 Workshop on Molecular Evolution Woods Hole, Massachusetts Paul O. Lewis Department of Ecology & Evolutionary Biology University of Connecticut, Storrs,
More informationLikelihood in Phylogenetics
Likelihood in Phylogenetics 22 July 2017 Workshop on Molecular Evolution Woods Hole, Mass. Paul O. Lewis Department of Ecology & Evolutionary Biology Paul O. Lewis (2017 Woods Hole Workshop in Molecular
More informationMaximum Likelihood in Phylogenetics
Maximum Likelihood in Phylogenetics 28 January 2015 Paul O. Lewis Department of Ecology & Evolutionary Biology Workshop on Molecular Evolution Český Krumlov Paul O. Lewis (2015 Czech Republic Workshop
More informationLecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/22
Lecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 24. Phylogeny methods, part 4 (Models of DNA and
More informationMaximum Likelihood in Phylogenetics
Maximum Likelihood in Phylogenetics 21 July 2015 Workshop on Molecular Evolution Woods Hole, Mass. Paul O. Lewis Department of Ecology & Evolutionary Biology Paul O. Lewis (2015 Woods Hole Workshop in
More informationMaximum Likelihood in Phylogenetics
Maximum Likelihood in Phylogenetics 21 July 2015 Workshop on Molecular Evolution Woods Hole, Mass. Paul O. Lewis Department of Ecology & Evolutionary Biology Paul O. Lewis (2015 Woods Hole Workshop in
More informationLecture 4. Models of DNA and protein change. Likelihood methods
Lecture 4. Models of DNA and protein change. Likelihood methods Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 4. Models of DNA and protein change. Likelihood methods p.1/36
More informationWhat Is Conservation?
What Is Conservation? Lee A. Newberg February 22, 2005 A Central Dogma Junk DNA mutates at a background rate, but functional DNA exhibits conservation. Today s Question What is this conservation? Lee A.
More informationLecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/26
Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 27. Phylogeny methods, part 4 (Models of DNA and
More informationSome of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!
Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis
More informationBayesian Phylogenetics
Bayesian Phylogenetics Paul O. Lewis Department of Ecology & Evolutionary Biology University of Connecticut Woods Hole Molecular Evolution Workshop, July 27, 2006 2006 Paul O. Lewis Bayesian Phylogenetics
More informationPhylogeny Estimation and Hypothesis Testing using Maximum Likelihood
Phylogeny Estimation and Hypothesis Testing using Maximum Likelihood For: Prof. Partensky Group: Jimin zhu Rama Sharma Sravanthi Polsani Xin Gong Shlomit klopman April. 7. 2003 Table of Contents Introduction...3
More informationLetter to the Editor. Department of Biology, Arizona State University
Letter to the Editor Traditional Phylogenetic Reconstruction Methods Reconstruct Shallow and Deep Evolutionary Relationships Equally Well Michael S. Rosenberg and Sudhir Kumar Department of Biology, Arizona
More informationInferring Molecular Phylogeny
Dr. Walter Salzburger he tree of life, ustav Klimt (1907) Inferring Molecular Phylogeny Inferring Molecular Phylogeny 55 Maximum Parsimony (MP): objections long branches I!! B D long branch attraction
More informationLecture 4. Models of DNA and protein change. Likelihood methods
Lecture 4. Models of DNA and protein change. Likelihood methods Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 4. Models of DNA and protein change. Likelihood methods p.1/39
More informationLab 9: Maximum Likelihood and Modeltest
Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2010 Updated by Nick Matzke Lab 9: Maximum Likelihood and Modeltest In this lab we re going to use PAUP*
More informationA Bayesian Approach to Phylogenetics
A Bayesian Approach to Phylogenetics Niklas Wahlberg Based largely on slides by Paul Lewis (www.eeb.uconn.edu) An Introduction to Bayesian Phylogenetics Bayesian inference in general Markov chain Monte
More informationSubstitution = Mutation followed. by Fixation. Common Ancestor ACGATC 1:A G 2:C A GAGATC 3:G A 6:C T 5:T C 4:A C GAAATT 1:G A
GAGATC 3:G A 6:C T Common Ancestor ACGATC 1:A G 2:C A Substitution = Mutation followed 5:T C by Fixation GAAATT 4:A C 1:G A AAAATT GAAATT GAGCTC ACGACC Chimp Human Gorilla Gibbon AAAATT GAAATT GAGCTC ACGACC
More informationReconstruire le passé biologique modèles, méthodes, performances, limites
Reconstruire le passé biologique modèles, méthodes, performances, limites Olivier Gascuel Centre de Bioinformatique, Biostatistique et Biologie Intégrative C3BI USR 3756 Institut Pasteur & CNRS Reconstruire
More informationLecture Notes: Markov chains
Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity
More informationThe Importance of Proper Model Assumption in Bayesian Phylogenetics
Syst. Biol. 53(2):265 277, 2004 Copyright c Society of Systematic Biologists ISSN: 10635157 print / 1076836X online DOI: 10.1080/10635150490423520 The Importance of Proper Model Assumption in Bayesian
More informationMaximum Likelihood Until recently the newest method. Popularized by Joseph Felsenstein, Seattle, Washington.
Maximum Likelihood This presentation is based almost entirely on Peter G. Fosters  "The Idiot s Guide to the Zen of Likelihood in a Nutshell in Seven Days for Dummies, Unleashed. http://www.bioinf.org/molsys/data/idiots.pdf
More informationWho was Bayes? Bayesian Phylogenetics. What is Bayes Theorem?
Who was Bayes? Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 The Reverand Thomas Bayes was born in London in 1702. He was the
More informationInferring Speciation Times under an Episodic Molecular Clock
Syst. Biol. 56(3):453 466, 2007 Copyright c Society of Systematic Biologists ISSN: 10635157 print / 1076836X online DOI: 10.1080/10635150701420643 Inferring Speciation Times under an Episodic Molecular
More informationBayesian Phylogenetics
Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 Bayesian Phylogenetics 1 / 27 Who was Bayes? The Reverand Thomas Bayes was born
More informationMaximum Likelihood Tree Estimation. Carrie Tribble IB Feb 2018
Maximum Likelihood Tree Estimation Carrie Tribble IB 200 9 Feb 2018 Outline 1. Tree building process under maximum likelihood 2. Key differences between maximum likelihood and parsimony 3. Some fancy extras
More informationPhylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University
Phylogenetics: Distance Methods COMP 571  Spring 2015 Luay Nakhleh, Rice University Outline Evolutionary models and distance corrections Distancebased methods Evolutionary Models and Distance Correction
More informationPhylogenetic Inference using RevBayes
Phylogenetic Inference using RevBayes Model section using Bayes factors Sebastian Höhna 1 Overview This tutorial demonstrates some general principles of Bayesian model comparison, which is based on estimating
More informationPhylogenetic Tree Reconstruction
I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven
More informationMolecular Evolution, course # Final Exam, May 3, 2006
Molecular Evolution, course #27615 Final Exam, May 3, 2006 This exam includes a total of 12 problems on 7 pages (including this cover page). The maximum number of points obtainable is 150, and at least
More informationEfficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used
Molecular Phylogenetics and Evolution 31 (2004) 865 873 MOLECULAR PHYLOGENETICS AND EVOLUTION www.elsevier.com/locate/ympev Efficiencies of maximum likelihood methods of phylogenetic inferences when different
More informationLie Markov models. Jeremy Sumner. School of Physical Sciences University of Tasmania, Australia
Lie Markov models Jeremy Sumner School of Physical Sciences University of Tasmania, Australia Stochastic Modelling Meets Phylogenetics, UTAS, November 2015 Jeremy Sumner Lie Markov models 1 / 23 The theory
More informationBayesian Models for Phylogenetic Trees
Bayesian Models for Phylogenetic Trees Clarence Leung* 1 1 McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada ABSTRACT Introduction: Inferring genetic ancestry of different species
More informationSome of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!
Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis
More informationPhylogenetics: Building Phylogenetic Trees
1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should
More informationPreliminaries. Download PAUP* from: Tuesday, July 19, 16
Preliminaries Download PAUP* from: http://people.sc.fsu.edu/~dswofford/paup_test 1 A model of the Boston T System 1 Idea from Paul Lewis A simpler model? 2 Why do models matter? Modelbased methods including
More informationKaKs Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging
Method KaKs Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging Zhang Zhang 1,2,3#, Jun Li 2#, XiaoQian Zhao 2,3, Jun Wang 1,2,4, Gane KaShu Wong 2,4,5, and Jun Yu 1,2,4 * 1
More informationMolecular Evolution & Phylogenetics
Molecular Evolution & Phylogenetics Heuristics based on tree alterations, maximum likelihood, Bayesian methods, statistical confidence measures JeanBaka Domelevo Entfellner Learning Objectives know basic
More informationMutation models I: basic nucleotide sequence mutation models
Mutation models I: basic nucleotide sequence mutation models Peter Beerli September 3, 009 Mutations are irreversible changes in the DNA. This changes may be introduced by chance, by chemical agents, or
More informationBMI/CS 776 Lecture 4. Colin Dewey
BMI/CS 776 Lecture 4 Colin Dewey 2007.02.01 Outline Common nucleotide substitution models Directed graphical models Ancestral sequence inference Poisson process continuous Markov process X t0 X t1 X t2
More informationProbability Distribution of Molecular Evolutionary Trees: A New Method of Phylogenetic Inference
J Mol Evol (1996) 43:304 311 SpringerVerlag New York Inc. 1996 Probability Distribution of Molecular Evolutionary Trees: A New Method of Phylogenetic Inference Bruce Rannala, Ziheng Yang Department of
More informationAn Introduction to Bayesian Inference of Phylogeny
n Introduction to Bayesian Inference of Phylogeny John P. Huelsenbeck, Bruce Rannala 2, and John P. Masly Department of Biology, University of Rochester, Rochester, NY 427, U.S.. 2 Department of Medical
More informationEstimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6057
Estimating Phylogenies (Evolutionary Trees) II Biol4230 Thurs, March 2, 2017 Bill Pearson wrp@virginia.edu 42818 Jordan 6057 Tree estimation strategies: Parsimony?no model, simply count minimum number
More informationPhylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University
Phylogenetics: Building Phylogenetic Trees COMP 571  Fall 2010 Luay Nakhleh, Rice University Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary
More informationIn: P. Lemey, M. Salemi and A.M. Vandamme (eds.). To appear in: The. Chapter 4. Nucleotide Substitution Models
In: P. Lemey, M. Salemi and A.M. Vandamme (eds.). To appear in: The Phylogenetic Handbook. 2 nd Edition. Cambridge University Press, UK. (final version 21. 9. 2006) Chapter 4. Nucleotide Substitution
More information9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree)
I9 Introduction to Bioinformatics, 0 Phylogenetic ree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & omputing, IUB Evolution theory Speciation Evolution of new organisms is driven by
More informationStochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions
PLGW05 Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 1 joint work with Ilan Gronau 2, Shlomo Moran 3, and Irad Yavneh 3 1 2 Dept. of Biological Statistics and Computational
More informationEVOLUTIONARY DISTANCES
EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:
More informationAmira A. ALHosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut
Amira A. ALHosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut UniversityEgypt Phylogenetic analysis Phylogenetic Basics: Biological
More informationPhylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University
Phylogenetics: Bayesian Phylogenetic Analysis COMP 571  Spring 2015 Luay Nakhleh, Rice University Bayes Rule P(X = x Y = y) = P(X = x, Y = y) P(Y = y) = P(X = x)p(y = y X = x) P x P(X = x 0 )P(Y = y X
More informationBayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder
Bayesian inference & Markov chain Monte Carlo Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder Note 2: Paul Lewis has written nice software for demonstrating Markov
More informationMCMC: Markov Chain Monte Carlo
I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov
More informationBayesian phylogenetics. the one true tree? Bayesian phylogenetics
Bayesian phylogenetics the one true tree? the methods we ve learned so far try to get a single tree that best describes the data however, they admit that they don t search everywhere, and that it is difficult
More informationIn: M. Salemi and A.M. Vandamme (eds.). To appear. The. Phylogenetic Handbook. Cambridge University Press, UK.
In: M. Salemi and A.M. Vandamme (eds.). To appear. The Phylogenetic Handbook. Cambridge University Press, UK. Chapter 4. Nucleotide Substitution Models THEORY Korbinian Strimmer () and Arndt von Haeseler
More informationInferring Complex DNA Substitution Processes on Phylogenies Using Uniformization and Data Augmentation
Syst Biol 55(2):259 269, 2006 Copyright c Society of Systematic Biologists ISSN: 10635157 print / 1076836X online DOI: 101080/10635150500541599 Inferring Complex DNA Substitution Processes on Phylogenies
More informationMassachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution
Massachusetts Institute of Technology 6.877 Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution 1. Rates of amino acid replacement The initial motivation for the neutral
More informationBayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies
Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies 1 What is phylogeny? Essay written for the course in Markov Chains 2004 Torbjörn Karfunkel Phylogeny is the evolutionary development
More informationNatural selection on the molecular level
Natural selection on the molecular level Fundamentals of molecular evolution How DNA and protein sequences evolve? Genetic variability in evolution } Mutations } forming novel alleles } Inversions } change
More information7. Tests for selection
Sequence analysis and genomics 7. Tests for selection Dr. Katja Nowick Group leader TFome and Transcriptome Evolution Bioinformatics group PaulFlechsigInstitute for Brain Research www. nowicklab.info
More informationProbabilistic modeling and molecular phylogeny
Probabilistic modeling and molecular phylogeny Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark (DTU) What is a model? Mathematical
More informationDr. Amira A. ALHosary
Phylogenetic analysis Amira A. ALHosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut UniversityEgypt Phylogenetic Basics: Biological
More informationEstimating Evolutionary Trees. Phylogenetic Methods
Estimating Evolutionary Trees v if the data are consistent with infinite sites then all methods should yield the same tree v it gets more complicated when there is homoplasy, i.e., parallel or convergent
More informationPoints of View JACK SULLIVAN 1 AND DAVID L. SWOFFORD 2
Points of View Syst. Biol. 50(5):723 729, 2001 Should We Use ModelBased Methods for Phylogenetic Inference When We Know That Assumptions About AmongSite Rate Variation and Nucleotide Substitution Pattern
More informationLecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM)
Bioinformatics II Probability and Statistics Universität Zürich and ETH Zürich Spring Semester 2009 Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Dr Fraser Daly adapted from
More informationTaming the Beast Workshop
Workshop and Chi Zhang June 28, 2016 1 / 19 Species tree Species tree the phylogeny representing the relationships among a group of species Figure adapted from [Rogers and Gibbs, 2014] Gene tree the phylogeny
More informationIdentifiability of the GTR+Γ substitution model (and other models) of DNA evolution
Identifiability of the GTR+Γ substitution model (and other models) of DNA evolution Elizabeth S. Allman Dept. of Mathematics and Statistics University of Alaska Fairbanks TM Current Challenges and Problems
More informationLimitations of Markov Chain Monte Carlo Algorithms for Bayesian Inference of Phylogeny
Limitations of Markov Chain Monte Carlo Algorithms for Bayesian Inference of Phylogeny Elchanan Mossel Eric Vigoda July 5, 2005 Abstract Markov Chain Monte Carlo algorithms play a key role in the Bayesian
More informationAlgorithmic Methods Welldefined methodology Tree reconstruction those that are welldefined enough to be carried out by a computer. Felsenstein 2004,
Tracing the Evolution of Numerical Phylogenetics: History, Philosophy, and Significance Adam W. Ferguson Phylogenetic Systematics 26 January 2009 Inferring Phylogenies Historical endeavor Darwin 1837
More informationPhylogenetic Assumptions
Substitution Models and the Phylogenetic Assumptions Vivek Jayaswal Lars S. Jermiin COMMONWEALTH OF AUSTRALIA Copyright htregulation WARNING This material has been reproduced and communicated to you by
More informationHastings Ratio of the LOCAL Proposal Used in Bayesian Phylogenetics
2005 POINTS OF VIEW 961 Tarrío, R., F. RodriguezTrelles, and F. J. Ayala. 2001. Shared nucleotide composition biases among species and their impacts on phylogenetic reconstructions of the Drosophilidae.
More informationLecture 6 Phylogenetic Inference
Lecture 6 Phylogenetic Inference From Darwin s notebook in 1837 Charles Darwin Willi Hennig From The Origin in 1859 Cladistics Phylogenetic inference Willi Hennig, Cladistics 1. Clade, Monophyletic group,
More informationUsing phylogenetics to estimate species divergence times... Basics and basic issues for Bayesian inference of divergence times (plus some digression)
Using phylogenetics to estimate species divergence times... More accurately... Basics and basic issues for Bayesian inference of divergence times (plus some digression) "A comparison of the structures
More informationPhylogenetic Inference using RevBayes
Phylogenetic Inference using RevBayes Substitution Models Sebastian Höhna 1 Overview This tutorial demonstrates how to set up and perform analyses using common nucleotide substitution models. The substitution
More informationTaming the Beast Workshop
Workshop David Rasmussen & arsten Magnus June 27, 2016 1 / 31 Outline of sequence evolution: rate matrices Markov chain model Variable rates amongst different sites: +Γ Implementation in BES2 2 / 31 genotype
More informationEstimating the Rate of Evolution of the Rate of Molecular Evolution
Estimating the Rate of Evolution of the Rate of Molecular Evolution Jeffrey L. Thorne,* Hirohisa Kishino, and Ian S. Painter* *Program in Statistical Genetics, Statistics Department, North Carolina State
More informationEVOLUTIONARY DISTANCE MODEL BASED ON DIFFERENTIAL EQUATION AND MARKOV PROCESS
August 0 Vol 4 No 0050 JATIT & LLS All rights reserved ISSN: 998645 wwwjatitorg EISSN: 8795 EVOLUTIONAY DISTANCE MODEL BASED ON DIFFEENTIAL EUATION AND MAKOV OCESS XIAOFENG WANG College of Mathematical
More information"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky
MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION  theory that groups of organisms change over time so that descendeants differ structurally
More informationHomoplasy. Selection of models of molecular evolution. Evolutionary correction. Saturation
Homoplasy Selection of models of molecular evolution David Posada Homoplasy indicates identity not produced by descent from a common ancestor. Graduate class in Phylogenetics, Campus Agrário de Vairão,
More informationBayesian support is larger than bootstrap support in phylogenetic inference: a mathematical argument
Bayesian support is larger than bootstrap support in phylogenetic inference: a mathematical argument Tom Britton Bodil Svennblad Per Erixon Bengt Oxelman June 20, 2007 Abstract In phylogenetic inference
More informationPhylogenetics. BIOL 7711 Computational Bioscience
Consortium for Comparative Genomics! University of Colorado School of Medicine Phylogenetics BIOL 7711 Computational Bioscience Biochemistry and Molecular Genetics Computational Bioscience Program Consortium
More informationBranchLength Prior Influences Bayesian Posterior Probability of Phylogeny
Syst. Biol. 54(3):455 470, 2005 Copyright c Society of Systematic Biologists ISSN: 10635157 print / 1076836X online DOI: 10.1080/10635150590945313 BranchLength Prior Influences Bayesian Posterior Probability
More informationBioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics
Bioinformatics 1 Biology, Sequences, Phylogenetics Part 4 Sepp Hochreiter Klausur Mo. 30.01.2011 Zeit: 15:30 17:00 Raum: HS14 Anmeldung Kusss Contents Methods and Bootstrapping of Maximum Methods Methods
More informationBayesian Phylogenetics
Bayesian Phylogenetics 30 July 2014 Workshop on Molecular Evolution Woods Hole Paul O. Lewis Department of Ecology & Evolutionary Biology Paul O. Lewis (2014 Woods Hole Molecular Evolution Workshop) 1
More informationThe Phylo HMM approach to problems in comparative genomics, with examples.
The Phylo HMM approach to problems in comparative genomics, with examples. Keith Bettinger Introduction The theory of evolution explains the diversity of organisms on Earth by positing that earlier species
More informationMarkov chain MonteCarlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree
Markov chain MonteCarlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree Nicolas Salamin Department of Ecology and Evolution University of Lausanne
More informationEvolutionary Analysis of Viral Genomes
University of Oxford, Department of Zoology Evolutionary Biology Group Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS, U.K. Fax: +44 1865 271249 Evolutionary Analysis of Viral
More informationAre Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics
Journal of Mammalian Evolution, Vol. 4, No. 2, 1997 Are Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics Jack Sullivan1'2 and David L. Swofford1 The monophyly of Rodentia
More informationNucleotide substitution models
Nucleotide substitution models Alexander Churbanov University of Wyoming, Laramie Nucleotide substitution models p. 1/23 Jukes and Cantor s model [1] The simples symmetrical model of DNA evolution All
More informationEstimating Divergence Dates from Molecular Sequences
Estimating Divergence Dates from Molecular Sequences Andrew Rambaut and Lindell Bromham Department of Zoology, University of Oxford The ability to date the time of divergence between lineages using molecular
More informationPhylogeny of Mixture Models
Phylogeny of Mixture Models Daniel Štefankovič Department of Computer Science University of Rochester joint work with Eric Vigoda College of Computing Georgia Institute of Technology Outline Introduction
More informationSome of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!
Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis
More informationPhylogenetics and Darwin. An Introduction to Phylogenetics. Tree of Life. Darwin s Trees
Phylogenetics and Darwin An Introduction to Phylogenetics Bret Larget larget@stat.wisc.edu Departments of Botany and of Statistics University of Wisconsin Madison February 4, 2008 A phylogeny is a tree
More informationInferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution
Today s topics Inferring phylogeny Introduction! Distance methods! Parsimony method!"#$%&'(!)* +,.'/01!23454(6!7!2845*0&4'9#6!:&454(6 ;?@AB=C?DEF Overview of phylogenetic inferences Methodology Methods
More informationPOPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics
POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics  in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa.  before we review the
More informationConcepts and Methods in Molecular Divergence Time Estimation
Concepts and Methods in Molecular Divergence Time Estimation 26 November 2012 Prashant P. Sharma American Museum of Natural History Overview 1. Why do we date trees? 2. The molecular clock 3. Local clocks
More information