Development and Validation of the Wall Boiling Model in ANSYS CFD

Size: px
Start display at page:

Download "Development and Validation of the Wall Boiling Model in ANSYS CFD"

Transcription

1 Development and Validation of the Wall Boiling Model in ANSYS CFD Th. Frank, C. Lifante, A.D. Burns PBU, Funded CFD Development ANSYS Germany E. Krepper, R. Rzehak FZ Dresden-Rossendorf (FZD) 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

2 Outline Motivation The wall boiling model in ANSYS CFD Boiling model validation Wall boiling in vertical pipes Boiling & recondensation Boiling & CHT FRIGG loop: Boiling in heated rod bundles Summary & Outlook 2009 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary

3 Introduction Towards CFD for Flows through Nuclear Fuel Assemblies Prediction of boiling flow through fuel assemblies Optimization of fuel assembly and spacer grid design Replacement/supplementation of very expensive experiments by knowledge obtained from CFD simulations Direct contact condenser Pressurizer Water steam seperator To conenser High pressure coolers 5MW Circulation pump 10 MW Void Fraction Measurement Device Feed water P el. 9,5MW PWR Test Vessel p 185 bar P 15 MW el. Control valve BWR Test Vessel p 110 bar Control valve Downcomer Natural Circulation Loop 2009 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary

4 CFD Simulation for Fuel Assemblies in Nuclear Reactors Material Properties Wall Boiling & Bulk Condensation Turbulence Conjugate Heat Transfer (CHT) Multiphase Flow Modeling FSI: Stresses & Deformations Validation against Experiments 2009 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary

5 Multiphase Flow Regimes for Boiling Water Flow subcooled flow bubbly flow slug flow annular flow spray flow T ONB OSB wall temperature T sat mean fluid temperature subcooled boiling nucleate boiling (saturated boiling) x 2009 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary

6 Flows with Subcooled Boiling (DNB) RPI-Wall Boiling Model Mechanistic wall heat partioning model: q & = q& + q& + Wall F Q q& E convective heat flux quenching heat flux evaporation heat flux q& q& = A h ( T T ) q& = m & (h h ) F = A1 hf ( TW TL ) Q 2 Q W L E G L y A 2 A1 A 2 Convective heat flux u Quenching heat flux m& * m& * m& * t 2009 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary

7 Grid Dependent Correlations Quenching heat flux 1-D q& Q = A2 hq ( TW TL ) h = 2 f Q t W ρlc π PL λ L y T L 1-D approach T L first grid node with refining grid CFD T L T Sat T W 2009 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary

8 Grid Dependent Correlations Evaporation heat flux q& = m & (h h ) E G L m& = d W π d 6 3 W ρ G f n T = min 1.4 mm, 0.6 mm exp d W bubble departure diameter n nucleation site density per m² f bubble departure frequency S [ K] TL [ K] 45[ K] small quenching & overestimated evaporation on fine grids wrong heat flux partitioning tends to film boiling on fine grids (due to T L T W ) 2009 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary

9 Revisited RPI Boiling Model Grid invariance of the model required determine T L from temperature wall function (Kader, 1981) T = Pr y e ln( y ) + β e + + ( Γ ) + ( 1/ Γ) + ρl y u y = µ from definition of T + : + ρ c u PL τ T = (TW T L ) q& W τ evaluating T + at 2 different locations/wall distances y ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary

10 Revisited RPI Boiling Model heat flux in boundary layer identical at both locations ρ c u q & = (T T ) PL τ W, y + = first cell + W L y first cell T + = + y = first cell ρ c u q & = (T T ) PL τ + W L + W, y = const + y = const T y + = const heat fluxes are equal + T + y = const TW TL = TW T + T y + = const y + + = first cell y = first cell L additional factor in correlations for d q& q& W, F, Q assumption of y + const=250; model parameter Replace (T W -T L ) in submodel expressions with the above relation 2009 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

11 RPI-Wall Boiling Model Submodels for Model Closure Submodels for closure of RPI wall boiling model: Nucleation site density: Lemmert & Chawla, User Defined Bubble departure diameter: Tolubinski & Kostanchuk, Unal, Fritz, User Defined Bubble detachment frequency: Terminal rise velocity over Departure Diameter, User Defined Bubble waiting time: Proportional to Detachment Period, User Defined Quenching heat transfer: Del Valle & Kenning, User Defined Turbulent Wall Function for liquid convective heat transfer coefficient Correlation for bulk flow mean bubble diameter required: e.g. Kurul & Podowski correlation via CCL Supported combination of wall boiling & CHT in the solid GGI & 1:1 solid-fluid interfaces 2009 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

12 RPI Wall Boiling Model in the ANSYS CFX-Pre 12.0 GUI 2009 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

13 ANSYS Fluent 13.0 Wall Boiling Modeling Wall boiling Based on same RPI nucleate boiling & heat flux partitioning model Non-equilibrium subcooled boiling Will support superheated vapor (convective heat flux to vapor) Contours of vapor volume fraction in a heated rod bundle 2009 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

14 ANSYS CFX R&D Development Work in Progress Ongoing R&D and development: Provide more user interfaces to the RPI boiling model User defined area fractions A 1 and A 2 User defined terms for convective, quenching and evaporative heat fluxes Q F, Q Q, Q E User defined 4th component of wall heat partitioning, e.g. heat flux to vapor CFX5Pre GUI extension Extended output to CFD-Post All extensions are part of a collaborative R&D project with FZD customized CFX solver 2009 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

15 New Capabilities: CCL Access to Area Fractions WALL BOILING MODEL PARTITIONING AREA FRACTIONS Option = Standard / User Defined Under User Defined convective, quenching and evaporative area can be introduced 2009 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

16 New capabilities: CFX5Pre GUI Extension 2009 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary

17 New capabilities: CFX5Pre GUI Extension 2009 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary

18 CCL & User Routine for 4th Wall Heat Partitioning Component 2009 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary

19 CCL & User Routine for 4th Wall Heat Partitioning Component Customization of CFX5Pre for the extension of the RPI wall heat flux partitioning algorithm with a 4th component of the wall heat flux splitting 2009 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary

20 Extended CFX5Post Output Fluid pair variables 2009 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary

21 The Bartolomej et al. Testcase (1967,1982) 2009 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary

22 The Bartolomej Test Case R = 7.7 mm Variable Value Z= 2 m q=0.57mw W/m 2 P 4.5MPa R 7.7 mm G in 900 kg/(s m2) q& 0.57MW/m2 Subcooling 58.2 K G in =900 kg/(s m 2 ) 2009 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary

23 Multiphase Flow Model Steam-Water 2-phase flow: Water: continuous phase Water Steam: disperse bubbles (particle model) Material properties (EOS): IAPWS-IF97 water - water steam property tables Modified law for interfacial area Kurul & Podowski type bulk bubble diameter: d B =f(t sub ) Accounting for higher volume fraction of the steam phase Turbulence Model SST turbulence model for continuous phase 0-eq. disperse phase turb. model + Sato bubble induced turbulence 2009 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

24 Inter-Phase Mass, Momentum and Energy Transfer Mass transfer model Thermal Phase Change Model (bulk boiling/condensation model) RPI wall boiling model Momentum transfer models Grace drag FAD turbulent dispersion force Tomiyama lift force Wall lubrication force (none, Antal, Frank, Tomiyama) Heat transfer models Water: Thermal Energy Water Steam: Saturation temperature Two resistance model Ranz Marshall correlation for bubble heat transfer 2009 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary

25 Numerical Grids Validation on mesh hierarchy with regular refinement factor of 4 (2d meshes) Grid Grid1 Grid2 Grid3 # Nodes (uniform) 20x150 40x300 80x600 Max y t [s] x ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary

26 Grid ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary

27 Grid ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary

28 Grid ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary

29 Comparison to Experimental Data 2009 ANSYS, Inc. All rights reserved. 29 ANSYS, Inc. Proprietary

30 Comparison to Experimental Data - Parameter & Model Variation Influence of wall heat flux: Influence of wall lubrication force model: 2009 ANSYS, Inc. All rights reserved. 30 ANSYS, Inc. Proprietary

31 The Bartolomej et al. Testcase with Recondensation (Bartolomeij et al. (1980)) 2009 ANSYS, Inc. All rights reserved. 31 ANSYS, Inc. Proprietary

32 Geometry & Flow Parameters Geometry Pipe flow; axial symmetry Inner radius of pipe R = mm Total pipe length L T = 1.4 m Heated section length L H = 1.0 m Flow parameters Upward directed water flow p in = 6.89 Mpa Parameter Investigation L T L H R Outlet Adiabatic Wall Symmetry Axis q wall Heated Wall Mass G in Liquid T in Wall heat flux q wall G in,t in, p in Inlet 2009 ANSYS, Inc. All rights reserved. 32 ANSYS, Inc. Proprietary

33 Testcase Parameters Measurement data of zonal-averaged cross-sectional steam volume fraction distribution over pipe length are available for 3 different parameter setups: Experiment No. q Wall [MW m^-2] G in [kg m^-2 s^-1] T in [K] ANSYS, Inc. All rights reserved. 33 ANSYS, Inc. Proprietary

34 Experiment No. 3 (Mesh01) Distribution of water temperature and steam volume fraction 2009 ANSYS, Inc. All rights reserved. 34 ANSYS, Inc. Proprietary

35 Experiment No. 3 (Mesh02) Distribution of water temperature and steam volume fraction 2009 ANSYS, Inc. All rights reserved. 35 ANSYS, Inc. Proprietary

36 Experiment No. 3 (Mesh03) Distribution of water temperature and steam volume fraction 2009 ANSYS, Inc. All rights reserved. 36 ANSYS, Inc. Proprietary

37 Experiment No. 3 (Mesh04) Distribution of water temperature and steam volume fraction 2009 ANSYS, Inc. All rights reserved. 37 ANSYS, Inc. Proprietary

38 Experiment No. 3 Comparison of cross-sectional averaged steam volume fraction to experimental data 2009 ANSYS, Inc. All rights reserved. 38 ANSYS, Inc. Proprietary

39 Interface Heat Transfer Models Investigation of the influence of different interface heat transfer models for liquid phase Ranz-Marshall (Baseline Setup) Nu = Re 0.5 Pr 0.3 Hughmark Nu = Re Nu = Re Tomiyama 0.5 Pr Pr 0.3 Nu = Re 0.8 Pr Re Re 2009 ANSYS, Inc. All rights reserved. 39 ANSYS, Inc. Proprietary

40 Interphase Heat Transfer Model 2009 ANSYS, Inc. All rights reserved. 40 ANSYS, Inc. Proprietary

41 The Lee et al. Testcase (ICONE-16, 2008) 2009 ANSYS, Inc. All rights reserved. 41 ANSYS, Inc. Proprietary

42 Lee et al. (2008) Experiment Axially symmetric circular annulus Radial dimensions Inner radius of outer tube: R = mm Outer radius of inner tube: R 0 = 9.5 mm r Outlet R R0 R C Measuring Plane (for experimental and numerical Results) Core radius: R C = 3/4 R 0 Annulus width: 9.25 mm Axial dimensions Total heating section height: L T = 1670 mm Distance between inlet and measuring plane: L M = 1610 mm L M L T Heated Wall Adiabatic Wall Radial Position: R P Dimensionless, radial distance from inner tube (R P = 0) to outer tube (R P = 1) across the annulus: R P = ( r R0 ) ( R R ) ANSYS, Inc. All rights reserved. 42 ANSYS, Inc. Proprietary Axis Inlet Inner Tube (Heating Rod) Annulus Outer Tube z

43 Investigated Geometry Configurations HFO (Heat Flux Only): Fluid Domain (Annulus) area specific heat flux boundary condition # Outlet Fluid Domain Inlet CHT (Conjugated Heat Transfer): Fluid Domain (Annulus) + Solid Domain (Heated Rod Core) + Solid Domain (Non-Heated Rod Cladding) volume specific heat source # Outlet Solid Domain # Solid Domain Fluid Domain Inlet 2009 ANSYS, Inc. All rights reserved. 43 ANSYS, Inc. Proprietary

44 Selected Testcase Conditions Selected two (out of 12) datasets: Set 25 (least of all steam) Set 16 (most of all steam) Parameter comparison Set No.* q [kw m^-2] G [kg m^-2s] T in [ C] P in [kpa] ANSYS, Inc. All rights reserved. 44 ANSYS, Inc. Proprietary

45 Model Parameter Modifications in Comparison to PWR Conditions Found that submodels need modifications for BWR conditions (see also Tu&Yeoh, Anglart et al., Krepper, Koncar): 1. Bulk bubble diameter Kurul & Podowski d B,max wall modified d B law d B,max wall 2. Bubble departure diameter Tolubinski & Kostanchuk const. bubble dept. diam. d W ~0.5mm max. d W =1mm - 3mm 3. A 2 - Wall area fraction influenced by steam bubbles default 0.5 increased up to ANSYS, Inc. All rights reserved. 45 ANSYS, Inc. Proprietary

46 Modification for Bulk Bubble Diameter Correlation Modified Kurul & Podowski (1991) law: d B = ( ) + ( ) d T T d T T B1 sub sub,2 B2 sub,1 sub T T sub,1 sub, ANSYS, Inc. All rights reserved. 46 ANSYS, Inc. Proprietary

47 Set25: Variation of Bubble Departure Diameter Tolubinski & Kostanchuk (1970) vs. const. bubble departure diameter d W =1,,3mm Measurement cross z = 1610 [mm] 2009 ANSYS, Inc. All rights reserved. 47 ANSYS, Inc. Proprietary

48 Set25: Grid Independence Steam volume fraction on mesh1 - mesh4 Measurement cross z = 1610 [mm] 2009 ANSYS, Inc. All rights reserved. 48 ANSYS, Inc. Proprietary

49 The Lee et al. Testcase (ICONE-16, 2008) : Conjugate Heat Transfer 2009 ANSYS, Inc. All rights reserved. 49 ANSYS, Inc. Proprietary

50 The RPI Wall Boiling Model: Lee et al. Testcase with CHT Specific energy source in solid material, Set25 (equiv. to q Wall ): E 7 3 Core = [W/m ] Temperature and Steam VF distribution in vertical plane 2009 ANSYS, Inc. All rights reserved. 50 ANSYS, Inc. Proprietary

51 The RPI Wall Boiling Model: Lee et al. Testcase with CHT Set25 & CHT: Grid independence for temperature z=1610[mm]; 1 1 mesh interface Heated Core Fluid Domain Unheated Cladding 2009 ANSYS, Inc. All rights reserved. 51 ANSYS, Inc. Proprietary

52 The RPI Wall Boiling Model: Lee et al. Testcase with CHT Set25 & CHT: Vapour VF z=1610[mm] 1 1 mesh interface 2009 ANSYS, Inc. All rights reserved. 52 ANSYS, Inc. Proprietary

53 The RPI Wall Boiling Model: Lee et al. Testcase with CHT Comparison of temperature distributions for conforming vs. non-conforming mesh, 1 1 vs. GGI 2009 ANSYS, Inc. All rights reserved. 53 ANSYS, Inc. Proprietary

54 FRIGG-6a Test Case (Anglart & Nylund, 1967, 1996 & 1997) 2009 ANSYS, Inc. All rights reserved. 54 ANSYS, Inc. Proprietary

55 FRIGG-6a Test Case Description Geometry (FT-6a) Six electrically heated rods placed in a vertical adiabatic pipe Flow Parameters Upward directed subcooled water flow Mass G in = 1163 kg m -2 s -1 p in = 5 MPa Rod wall heat flux q Rod = MW m -2 Adiabatic Wall L H =4.2 m Heated Rod Liquid T sub = 4.5 K 2009 ANSYS, Inc. All rights reserved. 55 ANSYS, Inc. Proprietary

56 FRIGG-6a Test Case Experimental Data Determination of experimental data by gamma ray attenuation method: Measurements of area averaged gas volume fraction in different cross-sectional zones along the test section Defintion of Zones: r Zone1 Zone2 Zone3 Zone1 (r < 14.6 mm) Zone2 (14.6 mm < r < 28.6 mm) Zone3 (r > 28.6 mm) 2009 ANSYS, Inc. All rights reserved. 56 ANSYS, Inc. Proprietary

57 FRIGG-6a Test Case Mesh Refinement Hierarchy Mesh01 Mesh02 Mesh03 No. Elements 699 x 150 ( ) 2796 x 300 ( ) x 600 ( ) No. Nodes Max y Min Angle [deg] Min Determinant Numerical Effort ~ 90 6 CPU s ~ CPU s ~ 6 40 CPU s 2009 ANSYS, Inc. All rights reserved. 57 ANSYS, Inc. Proprietary

58 FRIGG-6a Test Case Baseline Setup: SST Outlet Outlet Plot of gas volume fraction (Mesh03, SST) Two cross-sectional distributions of gas volume fraction (Mesh03,SST) 2009 ANSYS, Inc. All rights reserved. 58 ANSYS, Inc. Proprietary

59 FRIGG-6a Test Case Baseline Setup: SST Outlet Outlet Plot of liquid temperature (Mesh03,SST) Two cross-sectional distributions of liquid temperature (Mesh03,SST) 2009 ANSYS, Inc. All rights reserved. 59 ANSYS, Inc. Proprietary

60 FRIGG-6a Test Case Mesh Comparison 2009 ANSYS, Inc. All rights reserved. 60 ANSYS, Inc. Proprietary

61 FRIGG-6a Test Case Mesh Comparison 2009 ANSYS, Inc. All rights reserved. 61 ANSYS, Inc. Proprietary

62 FRIGG-6a Test Case Mesh Comparison 2009 ANSYS, Inc. All rights reserved. 62 ANSYS, Inc. Proprietary

63 Turbulence Modeling in Rod Bundles So far good comparison, but Wall friction in rod bundles leads to secondary flows Anisotropic flow and turbulence SST BSL RSM Does not influence so much cross-sectional averaged flow properties Secondary flows affect steam & temperature distributions on wall surfaces Can be relevant for safety! 2009 ANSYS, Inc. All rights reserved. 63 ANSYS, Inc. Proprietary

64 FRIGG-6a Test Case Turbulence Model Comparison 2009 ANSYS, Inc. All rights reserved. 64 ANSYS, Inc. Proprietary

65 FRIGG-6a Test Case Turbulence Model Comparison 2009 ANSYS, Inc. All rights reserved. 65 ANSYS, Inc. Proprietary

66 FRIGG-6a Test Case Turbulence Model Comparison 2009 ANSYS, Inc. All rights reserved. 66 ANSYS, Inc. Proprietary

67 FRIGG-6a Test Case Turbulence Model Comparison 2009 ANSYS, Inc. All rights reserved. 67 ANSYS, Inc. Proprietary

68 FRIGG-6a Test Case Turbulence Model Comparison SST model BSL RSM model Outlet Outlet Plot of gas volume fraction 2009 ANSYS, Inc. All rights reserved. 68 ANSYS, Inc. Proprietary

69 FRIGG-6a Test Case Turbulence Model Comparison SST model NO secondary flows Plot of gas volume fraction (Outlet) Contour plot of gas volume fraction (Outlet) 2009 ANSYS, Inc. All rights reserved. 69 ANSYS, Inc. Proprietary

70 FRIGG-6a Test Case Turbulence Model Comparison BSL RSM model secondary flows Plot of gas volume fraction (Outlet) Contour plot of gas volume fraction (Outlet) 2009 ANSYS, Inc. All rights reserved. 70 ANSYS, Inc. Proprietary

71 New R&D Consortium R&D Initiative: Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR ANSYS Germany Karlsruhe Inst. of Technology (KIT) FZ Dresden/ Rossendorf TUM, Dept. Thermodynamics Univ. Bochum, Dept. Energy Systems 2009 ANSYS, Inc. All rights reserved. TUD, Dept. Fluid Mechanics 71 TUD, Dept. Nucl. Eng. TUD Medical Faculty Univ. Appl. Sciences Zittau/ Görlitz ANSYS, Inc. Proprietary

72 Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR Ultrafast electron beam X-ray CT of fuel rod bundle in titanium pipe on FZD: Images by courtesy of U. Hampel, FZD 2009 ANSYS, Inc. All rights reserved. 72 ANSYS, Inc. Proprietary

73 Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR Wall boiling simulation in a 3x3 rod bundle with spacer grid: Wall superheat T W -T Sat 2009 ANSYS, Inc. All rights reserved. 73 ANSYS, Inc. Proprietary

74 Summary & Outlook Overview on ANSYS CFD boiling model development and validation Continuous effort in model improvement, R&D Emphasis in validation on BPG, comparison to data, geometry & grid independent modeling Complex MPF phenomena number of uncertainties remaining for further investigations detailed experiments Outlook: Ongoing & customer driven CFD model development Research cooperation with Industry & Academia Coupling of wall boiling model to inhomogeneous MUSIG Extension of the wall heat partitioning in wall boiling model 2009 ANSYS, Inc. All rights reserved. 74 ANSYS, Inc. Proprietary

75 Thank You! 2009 ANSYS, Inc. All rights reserved. 75 ANSYS, Inc. Proprietary

CFD-Modeling of Boiling Processes

CFD-Modeling of Boiling Processes CFD-Modeling of Boiling Processes 1 C. Lifante 1, T. Frank 1, A. Burns 2, E. Krepper 3, R. Rzehak 3 conxita.lifante@ansys.com 1 ANSYS Germany, 2 ANSYS UK, 3 HZDR Outline Introduction Motivation Mathematical

More information

Validation of Multiphase Flow Modeling in ANSYS CFD

Validation of Multiphase Flow Modeling in ANSYS CFD Validation of Multiphase Flow Modeling in ANSYS CFD Th. Frank, C. Lifante, A.D. Burns Head Funded CFD Development ANSYS Germany Thomas.Frank@ansys.com 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc.

More information

INVESTIGATION OF THE PWR SUBCHANNEL VOID DISTRIBUTION BENCHMARK (OECD/NRC PSBT BENCHMARK) USING ANSYS CFX

INVESTIGATION OF THE PWR SUBCHANNEL VOID DISTRIBUTION BENCHMARK (OECD/NRC PSBT BENCHMARK) USING ANSYS CFX INVESTIGATION OF THE PWR SUBCHANNEL VOID DISTRIBUTION BENCHMARK (OECD/NRC PSBT BENCHMARK) USING ANSYS CFX Th. Frank 1, F. Reiterer 1 and C. Lifante 1 1 ANSYS Germany GmbH, Otterfing, Germany Thomas.Frank@ansys.com,

More information

Modeling of Wall-boiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions

Modeling of Wall-boiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions Modeling of Wall-boiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions Thomas Frank (1), Amine Ben Hadj Ali (1), Conxita Lifante (1), Florian Kaiser (2), Stephan Gabriel (2), Henning Eickenbusch

More information

CFD-Modelling of subcooled boiling and Applications in the Nuclear Technology

CFD-Modelling of subcooled boiling and Applications in the Nuclear Technology CFD-Modelling of subcooled boiling and Applications in the Nuclear Technology Eckhard Krepper Jahrestagung Kerntechnik 2011 Fachsitzung: CFD-Simulationen zu sicherheitsrelevanten Fragestellungen Text optional:

More information

Prediction of Convective Boiling up to Critical Heat Flux (CHF) Conditions for Test Facilities with Vertical Heaters

Prediction of Convective Boiling up to Critical Heat Flux (CHF) Conditions for Test Facilities with Vertical Heaters Prediction of Convective Boiling up to Critical Heat Flux (CHF) Conditions for Test Facilities with Vertical Heaters Thomas Frank (1), Amine Ben Hadj Ali (1), Conxita Lifante (1), Moritz Bruder (2), Florian

More information

Multiphase Flow Modeling & Simulation with Application to Water-Vapor Flows Through Fuel Rod Bundles of Nuclear Reactors

Multiphase Flow Modeling & Simulation with Application to Water-Vapor Flows Through Fuel Rod Bundles of Nuclear Reactors Multiphase Flow Modeling & Simulation with Application to Water-Vapor Flows Through Fuel Rod Bundles of Nuclear Reactors Thomas Frank ANSYS Germany, Otterfing Thomas.Frank@ansys.com 2006 ANSYS, Inc. Th.

More information

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model Proceedings of the 2 nd World Congress on Momentum, Heat and Mass Transfer (MHMT 17) Barcelona, Spain April 6 8, 2017 Paper No. ICMFHT 114 ISSN: 2371-5316 DOI: 10.11159/icmfht17.114 CFD Simulation of Sodium

More information

Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers

Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers Advanced Computational Methods and Experiments in Heat Transfer XI 51 Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers D. Simón, M. C. Paz, A. Eirís&E.Suárez E.T.S.

More information

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henry Anglart Royal Institute of Technology, Department of Physics Division of Nuclear Reactor Technology Stocholm,

More information

CFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING

CFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING CFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING Ladislav Vyskocil and Jiri Macek UJV Rez a. s., Dept. of Safety Analyses, Hlavni 130, 250 68 Husinec Rez, Czech Republic Ladislav.Vyskocil@ujv.cz;

More information

Research Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle

Research Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle Science and Technology of Nuclear Installations Volume 2012, Article ID 795935, 8 pages doi:10.1155/2012/795935 Research Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle Simon Lo and Joseph Osman

More information

APPLICATION OF RPI MODEL: PREDICTION OF SUBCOOLED BOILING AND DNB IN VERTICAL PIPES

APPLICATION OF RPI MODEL: PREDICTION OF SUBCOOLED BOILING AND DNB IN VERTICAL PIPES APPLICATION OF RPI MODEL: PREDICTION OF SUBCOOLED BOILING AND DNB IN VERTICAL PIPES Rui Zhang, Wenwen Zhang, Tenglong Cong, Wenxi Tian, G H Su, Suizheng Qiu School of Nuclear Science and Technology, Xi

More information

Numerical Investigation of Nucleate Boiling Flow in Water Based Bubble Bumps

Numerical Investigation of Nucleate Boiling Flow in Water Based Bubble Bumps International Journal of Fluid Mechanics & Thermal Sciences 2015; 1(2): 36-41 Published online June 15, 2015 (http://www.sciencepublishinggroup.com/j/ijfmts) doi: 10.11648/j.ijfmts.20150102.14 Numerical

More information

VALIDATION OF CFD-BWR, A NEW TWO-PHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS

VALIDATION OF CFD-BWR, A NEW TWO-PHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS VALIDATION OF CFD-BWR, A NEW TWO-PHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS V.Ustineno 1, M.Samigulin 1, A.Ioilev 1, S.Lo 2, A.Tentner 3, A.Lychagin 4, A.Razin 4, V.Girin

More information

USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES

USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES Z. E. Karoutas, Y. Xu, L. David Smith, I, P. F. Joffre, Y. Sung Westinghouse Electric Company 5801 Bluff Rd, Hopkins, SC 29061 karoutze@westinghouse.com;

More information

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments C. Lifante 1, B. Krull 1, Th. Frank 1, R. Franz 2, U. Hampel 2 1 PBU, ANSYS Germany, Otterfing 2 Institute of Safety Research,

More information

WP2.3: Boiling Water Reactor Thermal- Hydraulics

WP2.3: Boiling Water Reactor Thermal- Hydraulics WP2.3: Boiling Water Reactor Thermal- Hydraulics H. Anglart, D. Caraghiaur, D. Lakehal, J. Pérez, V. Tanskanen, M. Ilvonen BWR Thermal-hydraulic issues CFD Eulerian/Eulerian approach (KTH) Annular flow

More information

Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows

Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows Computational Methods in Multiphase Flow V 135 Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows V. Pržulj & M. Shala Ricardo Software, Ricardo UK Limited Shoreham-by-Sea,

More information

Multiphase Flows. Mohammed Azhar Phil Stopford

Multiphase Flows. Mohammed Azhar Phil Stopford Multiphase Flows Mohammed Azhar Phil Stopford 1 Outline VOF Model VOF Coupled Solver Free surface flow applications Eulerian Model DQMOM Boiling Model enhancements Multi-fluid flow applications Coupled

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer ME546 -Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, Two-Phase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS

DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLY-DISPERSED MULTIPHASE FLOWS Jun-Mei Shi, Phil Zwart 1, Thomas Frank 2, Ulrich Rohde, and Horst-Michael Prasser 1. Introduction Poly-dispersed

More information

Subgrid Scale Modeling and the art of CFD

Subgrid Scale Modeling and the art of CFD NSE Nuclear Science & Engineering at MIT science : systems : society Subgrid Scale Modeling and the art of CFD Massachusetts Institute of Technology Emilio Baglietto, NSE Multiphase-CFD: a full-scope redesign

More information

Development of twophaseeulerfoam

Development of twophaseeulerfoam ISPRAS OPEN 2016 NUMERICAL STUDY OF SADDLE-SHAPED VOID FRACTION PROFILES EFFECT ON THERMAL HYDRAULIC PARAMETERS OF THE CHANNEL WITH TWO-PHASE FLOW USING OPENFOAM AND COMPARISON WITH EXPERIMENTS Varseev

More information

Numerical Analysis of Critical Heat Flux Phenomenon in a Nuclear Power Plant Core Channel in the Presence of Mixing Vanes

Numerical Analysis of Critical Heat Flux Phenomenon in a Nuclear Power Plant Core Channel in the Presence of Mixing Vanes AUT Journal of Mechanical Engineering AUT J. Mech. Eng., 1(2) (2017) 119-130 DOI: 10.22060/mej.2017.12928.5472 Numerical Analysis of Critical Heat Flux Phenomenon in a Nuclear Power Plant Core Channel

More information

Modelling of Gas-Liquid Two-Phase Flows in Vertical Pipes using PHOENICS

Modelling of Gas-Liquid Two-Phase Flows in Vertical Pipes using PHOENICS Modelling of Gas-Liquid Two-Phase Flows in Vertical Pipes using PHOENICS Vladimir Agranat, Masahiro Kawaji, Albert M.C. Chan* Department of Chemical Engineering and Applied Chemistry University of Toronto,

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

Euler-Euler Modeling of Mass-Transfer in Bubbly Flows

Euler-Euler Modeling of Mass-Transfer in Bubbly Flows Euler-Euler Modeling of Mass-Transfer in Bubbly Flows Roland Rzehak Eckhard Krepper Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Overview Motivation

More information

MODELLING, SIMULATION AND EXPERIMENTS ON BOILING PROCESSES IN PRESSURIZED WATER REACTORS ABSTRACT

MODELLING, SIMULATION AND EXPERIMENTS ON BOILING PROCESSES IN PRESSURIZED WATER REACTORS ABSTRACT MODELLING, SIMULATION AND EXPERIMENTS ON BOILING PROCESSES IN PRESSURIZED WATER REACTORS E. Krepper 1, R. Rzehak 1, U. Hampel 1, R. Hampel 2, C. Schneider 2, Th. Frank 3, J. Fröhlich 4, A. Hurtado 4, E.

More information

Turbulence Dispersion Force Physics, Model Derivation and Evaluation

Turbulence Dispersion Force Physics, Model Derivation and Evaluation Turbulence Dispersion Force Physics, Model Derivation and Evaluation J.-M. Shi, T. Frank, A. Burns 3 Institute of Safety Research, FZ Rossendorf shi@fz-rossendorf.de ANSYS CFX Germany 3 ANSYS CFX FZR ANSYS

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

CFD modelling of multiphase flows

CFD modelling of multiphase flows 1 Lecture CFD-3 CFD modelling of multiphase flows Simon Lo CD-adapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cd-adapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM

More information

ENGINEERING OF NUCLEAR REACTORS

ENGINEERING OF NUCLEAR REACTORS 22.312 ENGINEERING OF NUCLEAR REACTORS Monday, December 17 th, 2007, 9:00am-12:00 pm FINAL EXAM SOLUTIONS Problem 1 (45%) Analysis of Decay Heat Removal during a Severe Accident i) The energy balance for

More information

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D A. Grahn, S. Kliem, U. Rohde Forschungszentrum Dresden-Rossendorf, Institute

More information

A Validation and Uncertainty Quantification Framework for. Eulerian-Eulerian Two-Fluid Model based Multiphase-CFD Solver. Part I: Methodology

A Validation and Uncertainty Quantification Framework for. Eulerian-Eulerian Two-Fluid Model based Multiphase-CFD Solver. Part I: Methodology A Validation and Uncertainty Quantification Framework for Eulerian-Eulerian Two-Fluid Model based Multiphase-CFD Solver. Part I: Methodology Yang Liu 1,*, Nam Dinh 1, Ralph Smith 2 1 Department of Nuclear

More information

Modelling of phase change for Two-Phase Refrigerant Flow inside Capillary Tube under Adiabatic Conditions

Modelling of phase change for Two-Phase Refrigerant Flow inside Capillary Tube under Adiabatic Conditions International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Modelling

More information

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004)

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004) Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p. 765 770 (July 2004) TECHNICAL REPORT Experimental and Operational Verification of the HTR-10 Once-Through Steam Generator (SG) Heat-transfer

More information

This is a repository copy of CFD Simulation of Boiling Flows with an Eulerian-Eulerian Two-Fluid Model.

This is a repository copy of CFD Simulation of Boiling Flows with an Eulerian-Eulerian Two-Fluid Model. This is a repository copy of CFD Simulation of Boiling Flows with an Eulerian-Eulerian Two-Fluid Model. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/128021/ Version: Accepted

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

Investigation of CTF void fraction prediction by ENTEK BM experiment data

Investigation of CTF void fraction prediction by ENTEK BM experiment data Investigation of CTF void fraction prediction by ENTEK BM experiment data Abstract Hoang Minh Giang 1, Hoang Tan Hung 1, Nguyen Phu Khanh 2 1 Nuclear Safety Center, Institute for Nuclear Science and Technology

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

Axial profiles of heat transfer coefficients in a liquid film evaporator

Axial profiles of heat transfer coefficients in a liquid film evaporator Axial profiles of heat transfer coefficients in a liquid film evaporator Pavel Timár, Ján Stopka, Vladimír Báleš Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology,

More information

Effect of Standoff Distance on the Partitioning of Surface Heat Flux during Subcooled Jet Impingement Boiling

Effect of Standoff Distance on the Partitioning of Surface Heat Flux during Subcooled Jet Impingement Boiling Effect of Standoff Distance on the Partitioning of Surface Heat Flux during Subcooled Jet Impingement Boiling S. Abishek, R. Narayanaswamy, V. Narayanan Department of Mechanical Engineering, Curtin University,

More information

Coolant Flow and Heat Transfer in PBMR Core With CFD

Coolant Flow and Heat Transfer in PBMR Core With CFD Heikki Suikkanen GEN4FIN 3.10.2008 1/ 27 Coolant Flow and Heat Transfer in PBMR Core With CFD Heikki Suikkanen Lappeenranta University of Technology Department of Energy and Environmental Technology GEN4FIN

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

heat transfer process where a liquid undergoes a phase change into a vapor (gas) Two-Phase: Overview Two-Phase two-phase heat transfer describes phenomena where a change of phase (liquid/gas) occurs during and/or due to the heat transfer process two-phase heat transfer generally considers

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

Laboratory of Thermal Hydraulics. General Overview

Laboratory of Thermal Hydraulics. General Overview Visit of Nuclear Master Students Laboratory of Thermal Hydraulics General Overview Horst-Michael Prasser December 04, 2009 Paul Scherrer Institut Main Goals Development of analytical and experimental methods

More information

Department of Engineering and System Science, National Tsing Hua University,

Department of Engineering and System Science, National Tsing Hua University, 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016) The Establishment and Application of TRACE/CFD Model for Maanshan PWR Nuclear Power Plant Yu-Ting

More information

Fluid Flow, Heat Transfer and Boiling in Micro-Channels

Fluid Flow, Heat Transfer and Boiling in Micro-Channels L.P. Yarin A. Mosyak G. Hetsroni Fluid Flow, Heat Transfer and Boiling in Micro-Channels 4Q Springer 1 Introduction 1 1.1 General Overview 1 1.2 Scope and Contents of Part 1 2 1.3 Scope and Contents of

More information

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

More information

A DIRECT STEADY-STATE INITIALIZATION METHOD FOR RELAP5

A DIRECT STEADY-STATE INITIALIZATION METHOD FOR RELAP5 A DIRECT STEADY-STATE INITIALIZATION METHOD FOR RELAP5 M. P. PAULSEN and C. E. PETERSON Computer Simulation & Analysis, Inc. P. O. Box 51596, Idaho Falls, Idaho 83405-1596 for presentation at RELAP5 International

More information

ANALYSIS AND APPLICATIONS OF A TWO-FLUID MULTI-FIELD HYDRODYNAMIC MODEL FOR CHURN-TURBULENT FLOWS

ANALYSIS AND APPLICATIONS OF A TWO-FLUID MULTI-FIELD HYDRODYNAMIC MODEL FOR CHURN-TURBULENT FLOWS Proceedings of the 2013 21st International Conference on Nuclear Engineering ICONE21 July 29 - August 2, 2013, Chengdu, China ICONE21-16297 ANALYSIS AND APPLICATIONS OF A TWO-FLUID MULTI-FIELD HYDRODYNAMIC

More information

Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart

Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart Von Karman Institute, Ch. de Waterloo 72. B-1640, Rhode-St-Genese, Belgium,

More information

Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock

Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock Pieter Verhees, Abdul Akhras Rahman, Kevin M. Van Geem, Geraldine J. Heynderickx Laboratory

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7 ectures on Nuclear Power Safety ecture No 7 itle: hermal-hydraulic nalysis of Single-Phase lows in Heated hannels Department of Energy echnology KH Spring 005 Slide No Outline of the ecture lad-oolant

More information

EXPERIMENTAL INVESTIGATION OF CRITICAL HEAT FLUX FOR ZERO AND NATURAL CIRCULATION FLOW OF WATER IN THREE RODS BUNDLE NEAR ATMOSPHERIC PRESSURE

EXPERIMENTAL INVESTIGATION OF CRITICAL HEAT FLUX FOR ZERO AND NATURAL CIRCULATION FLOW OF WATER IN THREE RODS BUNDLE NEAR ATMOSPHERIC PRESSURE EXPERIMENTAL INVESTIGATION OF CRITICAL HEAT FLUX FOR ZERO AND NATURAL CIRCULATION FLOW OF WATER IN THREE RODS BUNDLE NEAR ATMOSPHERIC PRESSURE Y. Aharon 1,, I. Hochbaum 1 1 : NRCN, P.O.Box 9001 Beer Sheva,

More information

MECHANISTIC MODELING OF TWO-PHASE FLOW AROUND SPACER GRIDS WITH MIXING VANES

MECHANISTIC MODELING OF TWO-PHASE FLOW AROUND SPACER GRIDS WITH MIXING VANES MECHANISTIC MODELING OF TWO-PHASE FLOW AROUND SPACER GRIDS WITH MIXING VANES B. M. Waite, D. R. Shaver and M. Z. Podowski Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic

More information

A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE (3), J.R. JONES (1) ABSTRACT

A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE (3), J.R. JONES (1) ABSTRACT FR0200515 9 lh International Conference on Nuclear Engineering, ICONE-9 8-12 April 2001, Nice, France A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE

More information

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations L. Makaum, P.v.Z. Venter and M. van Eldik Abstract Refrigerants

More information

Development of a Validation and Uncertainty Quantification Framework for Closure Models in Multiphase CFD Solver

Development of a Validation and Uncertainty Quantification Framework for Closure Models in Multiphase CFD Solver Development of a Validation and Uncertainty Quantification Framework for Closure Models in Multiphase CFD Solver Yang Liu and Nam Dinh Multi-Physics Model Validation Workshop June/28/2017 1 Multiphase

More information

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Omar S. Al-Yahia, Taewoo Kim, Daeseong Jo School of Mechanical Engineering, Kyungpook National University

More information

CFD-SIMULATION OF THE VVER-440 STEAM GENERATOR WITH POROUS MEDIA MODEL

CFD-SIMULATION OF THE VVER-440 STEAM GENERATOR WITH POROUS MEDIA MODEL CFD-SIMULATION OF THE VVER-440 STEAM GENERATOR WITH POROUS MEDIA MODEL T. Rämä, T. Toppila Fortum Nuclear Services Ltd, Finland T. J. H. Pättikangas, J. Niemi, V. Hovi VTT Technical Research Centre of

More information

ENGINEERING OF NUCLEAR REACTORS. Fall December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS

ENGINEERING OF NUCLEAR REACTORS. Fall December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS 22.312 ENGINEERING OF NUCLEAR REACTORS Fall 2002 December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS PROBLEM #1 (30 %) Consider a BWR fuel assembly square coolant subchannel with geometry and operating characteristics

More information

Evaporation Heat Transfer Coefficients Of R-446A And R-1234ze(E)

Evaporation Heat Transfer Coefficients Of R-446A And R-1234ze(E) Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 144 DOI: 10.11159/htff16.144 Evaporation Heat Transfer

More information

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 208 Boiling Heat Transfer and Pressure Drop of inside a Small-Diameter 2.5 mm

More information

COMPARISON OF COBRA-TF AND VIPRE-01 AGAINST LOW FLOW CODE ASSESSMENT PROBLEMS.

COMPARISON OF COBRA-TF AND VIPRE-01 AGAINST LOW FLOW CODE ASSESSMENT PROBLEMS. COMPARISON OF COBRA-TF AND VIPRE-01 AGAINST LOW FLOW CODE ASSESSMENT PROBLEMS A. Galimov a, M. Bradbury b, G. Gose c, R. Salko d, C. Delfino a a NuScale Power LLC, 1100 Circle Blvd., Suite 200, Corvallis,

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

SCWR Research in Korea. Yoon Y. Bae KAERI

SCWR Research in Korea. Yoon Y. Bae KAERI SCWR Research in Korea Yoon Y. ae KAERI Organization President Dr. In-Soon Chnag Advanced Reactor Development Dr. Jong-Kyun Park Nuclear Engineering & Research Dr. M. H. Chang Mechanical Engineering &

More information

Analysis and interpretation of the LIVE-L6 experiment

Analysis and interpretation of the LIVE-L6 experiment Analysis and interpretation of the LIVE-L6 experiment A. Palagin, A. Miassoedov, X. Gaus-Liu (KIT), M. Buck (IKE), C.T. Tran, P. Kudinov (KTH), L. Carenini (IRSN), C. Koellein, W. Luther (GRS) V. Chudanov

More information

Investigation of Three-Dimensional Upward and Downward Directed Gas-Liquid Two-Phase Bubbly Flows in a 180 o -Bent Tube

Investigation of Three-Dimensional Upward and Downward Directed Gas-Liquid Two-Phase Bubbly Flows in a 180 o -Bent Tube Investigation of Three-Dimensional Upward and Downward Directed Gas-Liquid Two-Phase Bubbly Flows in a 180 o -Bent Tube Th. Frank, R. Lechner, F. Menter CFX Development, ANSYS Germany GmbH, Staudenfeldweg

More information

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Gitesh Patel, Vesa Tanskanen, Juhani Hyvärinen LUT School of Energy Systems/Nuclear Engineering, Lappeenranta

More information

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS Ulrich BIEDER whole TrioCFD Team DEN-STMF, CEA, UNIVERSITÉ PARIS-SACLAY www.cea.fr SÉMINAIRE ARISTOTE, NOVEMBER 8, 2016 PAGE 1 Outline Obective: analysis

More information

Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels

Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels Taewan Kim Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea. Orcid: 0000-0001-9449-7502

More information

WP2.1: Pressurized Thermal Shock

WP2.1: Pressurized Thermal Shock WP2.1: Pressurized Thermal Shock D. Lucas, P. Apanasevich, B. Niceno, C. Heib, P. Coste, M. Boucker, C. Raynauld, J. Lakehal, I. Tiselj, M. Scheuerer, D. Bestion Work package 2.1: Pressurized Thermal Shock

More information

The Research of Heat Transfer Area for 55/19 Steam Generator

The Research of Heat Transfer Area for 55/19 Steam Generator Journal of Power and Energy Engineering, 205, 3, 47-422 Published Online April 205 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/0.4236/jpee.205.34056 The Research of Heat Transfer Area

More information

Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels

Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels Yuwen Zhang Mem. ASME A. Faghri Fellow ASME M. B. Shafii Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 Capillary Blocking in Forced Convective Condensation in Horizontal

More information

VERIFICATION AND VALIDATION OF ONE DIMENSIONAL MODELS USED IN SUBCOOLED FLOW BOILING ANALYSIS

VERIFICATION AND VALIDATION OF ONE DIMENSIONAL MODELS USED IN SUBCOOLED FLOW BOILING ANALYSIS 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 VERIFICATION

More information

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 000 REACTOR CORE Efrizon Umar Center for Research and Development of Nuclear Techniques (P3TkN) ABSTRACT PREDICTION OF

More information

EasyChair Preprint. Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels

EasyChair Preprint. Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels EasyChair Preprint 298 Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels Huirui Han and Chao Zhang EasyChair preprints are intended for rapid

More information

Coupling Physics. Tomasz Stelmach Senior Application Engineer

Coupling Physics. Tomasz Stelmach Senior Application Engineer Coupling Physics Tomasz Stelmach Senior Application Engineer Agenda Brief look @ Multiphysics solution What is new in R18 Fluent Maxwell coupling wireless power transfer Brief look @ ANSYS Multiphysics

More information

VALIDATION OF DIRECT CONTACT CONDENSATION CFD MODELS AGAINST CONDENSATION POOL EXPERIMENT. I1.Vesa Tanskanen, I2. Djamel Lakehal, I1.

VALIDATION OF DIRECT CONTACT CONDENSATION CFD MODELS AGAINST CONDENSATION POOL EXPERIMENT. I1.Vesa Tanskanen, I2. Djamel Lakehal, I1. Abstract VALIDATION OF DIRECT CONTACT CONDENSATION CFD MODELS AGAINST CONDENSATION POOL EXPERIMENT I.Vesa Tansanen, I2. Djamel Laehal, I. Maru Puustinen I,Lappeenranta University of Technology (LUT) P.O.

More information

CFD ANANLYSIS OF THE MATIS-H EXPERIMENTS ON THE TURBULENT FLOW STRUCTURES IN A 5x5 ROD BUNDLE WITH MIXING DEVICES

CFD ANANLYSIS OF THE MATIS-H EXPERIMENTS ON THE TURBULENT FLOW STRUCTURES IN A 5x5 ROD BUNDLE WITH MIXING DEVICES CFD ANANLYSIS OF THE MATIS-H EXPERIMENTS ON THE TURBULENT FLOW STRUCTURES IN A 5x5 ROD BUNDLE WITH MIXING DEVICES Hyung Seok KANG, Seok Kyu CHANG and Chul-Hwa SONG * KAERI, Daedeok-daero 45, Yuseong-gu,

More information

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE Proceedings of the International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington, DC, USA IHTC14-22751 THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

More information

Research Article Analysis of Subchannel and Rod Bundle PSBT Experiments with CATHARE 3

Research Article Analysis of Subchannel and Rod Bundle PSBT Experiments with CATHARE 3 Science and Technology of Nuclear Installations Volume 22, Article ID 23426, pages doi:.55/22/23426 Research Article Analysis of Subchannel and Rod Bundle PSBT Experiments with CATHARE 3 M. Valette CEA

More information

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes 1777 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Investigations Of Heat Transfer And Components Efficiencies In Two-Phase Isobutane Injector

Investigations Of Heat Transfer And Components Efficiencies In Two-Phase Isobutane Injector Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering July 208 Investigations Of Heat Transfer And Components Efficiencies In Two-Phase

More information

Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities.

Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities. Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities. (StratRev) NKS seminar, Armémuseum, 2009-03-26 Johan Westin and Mats

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

RESEARCH OF THE BUNDLE CHF PREDICTION BASED ON THE MINIMUM DNBR POINT AND THE BO POINT METHODS

RESEARCH OF THE BUNDLE CHF PREDICTION BASED ON THE MINIMUM DNBR POINT AND THE BO POINT METHODS RESEARCH OF THE BUNDLE CHF PREDICTION BASED ON THE MINIMUM DNBR POINT AND THE BO POINT METHODS Wei Liu 1, Jianqiang Shan 2 1 :Science and Technology on Reactor System Design Technology Laboratory, Nuclear

More information

Improvement of Critical Heat Flux Performance by Wire Spacer

Improvement of Critical Heat Flux Performance by Wire Spacer Journal of Energy and Power Engineering 9 (215) 844-851 doi: 1.17265/1934-8975/215.1.2 D DAVID PUBLISHING Improvement of Critical Heat Flux Performance by Wire Spacer Dan Tri Le 1 and Minoru Takahashi

More information

INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW

INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW Daniel Merino Gabriel S. Bassani, Luiz Eduardo A. P. Duarte Deibi E. Garcia Angela O. Nieckele Two-phase Flow

More information

Developments and Applications of TRACE/CFD Model of. Maanshan PWR Pressure Vessel

Developments and Applications of TRACE/CFD Model of. Maanshan PWR Pressure Vessel Developments and Applications of TRACE/CFD Model of Maanshan PWR Pressure Vessel Yu-Ting Ku 1, Yung-Shin Tseng 1, Jung-Hua Yang 1 Shao-Wen Chen 2, Jong-Rong Wang 2,3, and Chunkuan Shin 2,3 1 : Department

More information

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission CFD4NRS2010 A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields G Zigh and J Solis U.S. Nuclear Regulatory Commission Abstract JA Fort Pacific Northwest National

More information

Urea Injection and Preparation in Diesel Applications Multiphase Multicomponent Modeling using Star-CD

Urea Injection and Preparation in Diesel Applications Multiphase Multicomponent Modeling using Star-CD , London Urea Injection and Preparation in Diesel Applications Multiphase Multicomponent Modeling using Star-CD Institute for Powertrains & Automotive Technology Dipl.-Phys. Simon Fischer Dr. Thomas Lauer

More information

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING 1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING M. Fiocco, D. Borghesi- Mahindra Racing S.P.A. Outline Introduction

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information