Last lecture: linear combinations and spanning sets. Let X = {x 1, x 2,..., x k } be a set of vectors in a vector

Size: px
Start display at page:

Download "Last lecture: linear combinations and spanning sets. Let X = {x 1, x 2,..., x k } be a set of vectors in a vector"

Transcription

1 Last lecture: linear combinations and spanning sets Let X = { k } be a set of vectors in a vector space V A linear combination of k is any vector of the form r + r + + r k k V for r + r + + r k k for scalars r r r k R The span of X = { k } is the set Span(X) = { r + r + + r k k : r r r k R } Span(X) is a vector subspace of V Span(X) is the smallest subspace of V containing the set X In fact the subspaces of V are all of the form Span(X) for some X V (The trick is to find a good choice of X) Subspace eample I: In this lecture we are going to look at eamples of vectors subspaces and spanning sets in order to consolidate the work we have done so far -

2 Recall that F = {f : R R} is the vector space of all functions from R to R Question Let F = { f F : f() = f() } Is F a subspace of F? To answer this we have to ask our three questions: Is F non-empty? This is OK because the zero function () F Is F closed under vector addition? Well if f g F then f() = f() and g() = g() so that (f + g)() = f() + g() = f() + g() = (f + g)() Hence f + g F so that F is closed under addition Is F closed under scalar multiplication? If f F and r R then f() = f() so that (rf)() = rf() = rf() = (rf)() So rf F and F is closed under multiplication Hence F is a vector subspace of F Now let s vary the last eample by a small amount Let F + = { f F : f() f() } Is F + a subspace of F? -

3 Once again we have to ask ourselves three questions: Is F + non-empty? This is OK because the zero function () F + as () = = () Is F + closed under vector addition? Well if f g F + then f() f() and g() g() so that (f + g)() = f() + g() f() + g() = (f + g)() Hence f + g F + so that F+ is closed under vector addition Is F + closed under scalar multiplication? If f F + and r R then f() f() and (rf)() = rf()? rf() = (rf)() This works only if r and it fails if r <!! Therefore rf / F + Consequently F + if r < is not a vector subspace of F Spanning sets for R m : In the last lecture we saw that: { } is a spanning set for R { } is a spanning set for R -

4 { { { R m Moreover if a a m such that + a m } is a spanning set for R } is a spanning set for R } is a spanning set for a a a m + a m R m then there are a a a m unique = a + a Spanning sets for R The spanning set for R m on the last slide is the standard spanning set for R m In fact there is an infinite number of other spanning sets for R m Consider R The following sets are all spanning sets for R : - +

5 { { { 6 { { ab } for any a b c R c } } 4 } 4 } Sets which do not span R We have to be careful however as it is also easy to write down sets of vectors which do not span R (and similarly for R m ) { } { } { } { } or or or { Span a b c R Span { ab c } = Span { } { = Span -4 } bc for any }

6 { { } 9 } + For the last two eamples note that: = and = Polynomial vector spaces: Recall that P n = { p + p + p + + p n n : p p p p n R } is the vector space of polynomials of degree at most n Question Can we find a spanning set for P n? Let s start small and look at P = { p : p R } which is the vector space of constant (polynomial) functions Then P = Span() where is the constant polynomial () = Net P = { p + p : p p R } Therefore P = Span( ) P = { p + p + p : p p p R } -5

7 Therefore P = Span( ) The general case: P n = { p + p + p + + p n n : p p p n R } So P n = Span( n ) Note that any polynomial p() can be written in eactly one way as a linear combination of the elements of these spanning sets Spanning sets for polynomial vector spaces: Let p() = 5 and q() = + which we consider as elements of P Question When does f() = a + b + c P belong to Span(p q)? If f() Span(p q) then f() = sp()+tq() for some s t R That is a + b + c = s5 + t( + ) = (5s + t) + t This gives equations for s and t: 5s + t = a t = b = c -6

8 To solve these equations we use Gaussian elimination again Spanning sets for polynomial vector spaces: 5 a The augmented matri is b c Therefore these equations are consistent if and only if c = = Span(p q) { a + b : a b R } = P Now suppose that c = Then R = 5 R 5 5 a b c R = R 5 5 a b b 5 a R =R 5 R 5 a b b That is f() = ( 5 a b)p() + b q() Check: a + b = ( 5 a b)5 + b ( + ) Hence Span(p q) = P -7

9 Spanning sets for Null spaces: Let A = Question Find a spanning set for Null(A) We use Gaussian elimination on A: R =R R R = R R =R R w y z So the general solution to A = is s t = s = s + t t Therefore Null(A) = Span ( ) This is a two dimensional subspace of R 4 Describing the span of some { vectors: Question Let X = Describe Span(X) geometrically -8 }

10 Suppose that yz Span(X) Then we can write yz = s for some s t R + t = s+t s s+t To find s and t we have to solve the augmented matri equation: R y =R R y R z =R R z R =R R y z y Hence yz Span(X) if and only if y + z = This means that Span(X) is the plane + y z = in R { } That is Span(X) = y : + y z = z -9

11 The column space of a matri: Suppose that A is an n m matri Definition The column space of A is the vector subspace Col(A) of R n which is spanned by the columns of A That is if A = a a a m then Col(A) = Span ( ) a a a m We will see later that the column space and the null space of A are very closely related to each other Eample of the column space of a matri: Eample Let A = The vector for some a b c R Describe Col(A) yz belong to Col(A) if and only if yz = a + b + c That is we have to solve the system of equations a + b + 4c = a + 5b + 8c = y 4a + 9b + 6c = z -

12 Which leads to the augmented matri: y z 4 4 R 5 8 y =R R y R z =R 4R z 4 4 R =R R y z y Therefore yz Col(A) if and only if + y z = That is Col(A) = { y z : + y z = } This is a plane in R Eample Let A = As before yz 7 5 describe Col(A) Col(A) if and only if it is a solution of the following augmented matri equation: -

13 7 y 5 z R =R R R =R R R =R +R y + z z R =R +R y + z z + y 7 Thus Col(A) = { y z y z : 7 y z = } which is a plane in R -

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0 Linear Independence: Suppose that V is a vector space and that x, x 2,, x k belong to V {x, x 2,, x k } are linearly independent if r x + r 2 x 2 + + r k x k = only for r = r 2 = = r k = The vectors x,

More information

Matrices and Determinants

Matrices and Determinants Math Assignment Eperts is a leading provider of online Math help. Our eperts have prepared sample assignments to demonstrate the quality of solution we provide. If you are looking for mathematics help

More information

Lecture 13: Row and column spaces

Lecture 13: Row and column spaces Spring 2018 UW-Madison Lecture 13: Row and column spaces 1 The column space of a matrix 1.1 Definition The column space of matrix A denoted as Col(A) is the space consisting of all linear combinations

More information

ICS 6N Computational Linear Algebra Vector Space

ICS 6N Computational Linear Algebra Vector Space ICS 6N Computational Linear Algebra Vector Space Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 24 Vector Space Definition: A vector space is a non empty set V of

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

Practice Problems for the Final Exam

Practice Problems for the Final Exam Practice Problems for the Final Exam Linear Algebra. Matrix multiplication: (a) Problem 3 in Midterm One. (b) Problem 2 in Quiz. 2. Solve the linear system: (a) Problem 4 in Midterm One. (b) Problem in

More information

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces Section 1: Linear Independence Recall that every row on the left-hand side of the coefficient matrix of a linear system A x = b which could

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

GENERAL VECTOR SPACES AND SUBSPACES [4.1]

GENERAL VECTOR SPACES AND SUBSPACES [4.1] GENERAL VECTOR SPACES AND SUBSPACES [4.1] General vector spaces So far we have seen special spaces of vectors of n dimensions denoted by R n. It is possible to define more general vector spaces A vector

More information

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Winfried Just Department of Mathematics, Ohio University February 28, 218 Review: The linear span Definition Let { v 1, v 2,..., v n }

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V.

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. 6.2 SUBSPACES DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. HMHsueh 1 EX 1 (Ex. 1) Every vector space

More information

Math 308 Discussion Problems #4 Chapter 4 (after 4.3)

Math 308 Discussion Problems #4 Chapter 4 (after 4.3) Math 38 Discussion Problems #4 Chapter 4 (after 4.3) () (after 4.) Let S be a plane in R 3 passing through the origin, so that S is a two-dimensional subspace of R 3. Say that a linear transformation T

More information

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman Math 0 Spring 05 Midterm 03/04/5 Lecturer: Jesse Gell-Redman Time Limit: 50 minutes Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 5 problems. Check to see if

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.4 THE MATRIX EQUATION A = b MATRIX EQUATION A = b m n Definition: If A is an matri, with columns a 1, n, a n, and if is in, then the product of A and, denoted by

More information

Vector space and subspace

Vector space and subspace Vector space and subspace Math 112, week 8 Goals: Vector space, subspace, span. Null space, column space. Linearly independent, bases. Suggested Textbook Readings: Sections 4.1, 4.2, 4.3 Week 8: Vector

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4 Department of Aerospace Engineering AE6 Mathematics for Aerospace Engineers Assignment No.. Decide whether or not the following vectors are linearly independent, by solving c v + c v + c 3 v 3 + c v :

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 3 3 4 3 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

MATH2210 Notebook 3 Spring 2018

MATH2210 Notebook 3 Spring 2018 MATH2210 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH2210 Notebook 3 3 3.1 Vector Spaces and Subspaces.................................

More information

Math 544, Exam 2 Information.

Math 544, Exam 2 Information. Math 544, Exam 2 Information. 10/12/10, LC 115, 2:00-3:15. Exam 2 will be based on: Sections 1.7, 1.9, 3.2, 3.3, 3.4; The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/544fa10/544.html)

More information

Solutions to Midterm 2 Practice Problems Written by Victoria Kala Last updated 11/10/2015

Solutions to Midterm 2 Practice Problems Written by Victoria Kala Last updated 11/10/2015 Solutions to Midterm 2 Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated //25 Answers This page contains answers only. Detailed solutions are on the following pages. 2 7. (a)

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 60: Numerical Methods Lecture 7 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Drawback in Elimination Methods There are various drawbacks

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algera 1.4 THE MATRIX EQUATION A MATRIX EQUATION A mn Definition: If A is an matri, with columns a 1,, a n, and if is in R n, then the product of A and, denoted y A, is the

More information

Midterm #2 Solutions

Midterm #2 Solutions Naneh Apkarian Math F Winter Midterm # Solutions Here is a solution key for the second midterm. The solutions presented here are more complete and thorough than your responses needed to be - in order to

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Introduction to Mathematical Programming IE406. Lecture 3. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 3. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 3 Dr. Ted Ralphs IE406 Lecture 3 1 Reading for This Lecture Bertsimas 2.1-2.2 IE406 Lecture 3 2 From Last Time Recall the Two Crude Petroleum example.

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002 Solutions to Section 9 Homework Problems Problems 9 (odd) and 8 S F Ellermeyer June The pictured set contains the vector u but not the vector u so this set is not a subspace of The pictured set contains

More information

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name: Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

More information

Math 4326 Fall Exam 2 Solutions

Math 4326 Fall Exam 2 Solutions Math 4326 Fall 218 Exam 2 Solutions 1. (2 points) Which of the following are subspaces of P 2? Justify your answers. (a) U, the set of those polynomials with constant term equal to the coefficient of t

More information

Practice Final Exam Solutions

Practice Final Exam Solutions MAT 242 CLASS 90205 FALL 206 Practice Final Exam Solutions The final exam will be cumulative However, the following problems are only from the material covered since the second exam For the material prior

More information

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix Definition: Let L : V 1 V 2 be a linear operator. The null space N (L) of L is the subspace of V 1 defined by N (L) = {x

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge!

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Math 5- Computation Test September 6 th, 6 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Name: Answer Key: Making Math Great Again Be sure to show your work!. (8 points) Consider the following

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

Lecture 14: Orthogonality and general vector spaces. 2 Orthogonal vectors, spaces and matrices

Lecture 14: Orthogonality and general vector spaces. 2 Orthogonal vectors, spaces and matrices Lecture 14: Orthogonality and general vector spaces 1 Symmetric matrices Recall the definition of transpose A T in Lecture note 9. Definition 1.1. If a square matrix S satisfies then we say S is a symmetric

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

Sept. 26, 2013 Math 3312 sec 003 Fall 2013

Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Section 4.1: Vector Spaces and Subspaces Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

Inner Product, Length, and Orthogonality

Inner Product, Length, and Orthogonality Inner Product, Length, and Orthogonality Linear Algebra MATH 2076 Linear Algebra,, Chapter 6, Section 1 1 / 13 Algebraic Definition for Dot Product u 1 v 1 u 2 Let u =., v = v 2. be vectors in Rn. The

More information

18.06 Spring 2012 Problem Set 3

18.06 Spring 2012 Problem Set 3 8.6 Spring 22 Problem Set 3 This problem set is due Thursday, March, 22 at 4pm (hand in to Room 2-6). The textbook problems are out of the 4th edition. For computational problems, please include a printout

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 Jesús De Loera, UC Davis February 1, 2012 General Linear Systems of Equations (2.2). Given a system of m equations and n unknowns. Now m n is OK! Apply elementary

More information

The set of all solutions to the homogeneous equation Ax = 0 is a subspace of R n if A is m n.

The set of all solutions to the homogeneous equation Ax = 0 is a subspace of R n if A is m n. 0 Subspaces (Now, we are ready to start the course....) Definitions: A linear combination of the vectors v, v,..., v m is any vector of the form c v + c v +... + c m v m, where c,..., c m R. A subset V

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section

Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section Objective: Introduction of vector spaces, subspaces, and bases. Vector space Vector space Examples: R n, subsets of R n, the set of polynomials (up to degree n), the set of (continuous, differentiable)

More information

Sample Final Exam: Solutions

Sample Final Exam: Solutions Sample Final Exam: Solutions Problem. A linear transformation T : R R 4 is given by () x x T = x 4. x + (a) Find the standard matrix A of this transformation; (b) Find a basis and the dimension for Range(T

More information

Linear Methods (Math 211) - Lecture 2

Linear Methods (Math 211) - Lecture 2 Linear Methods (Math 211) - Lecture 2 David Roe September 11, 2013 Recall Last time: Linear Systems Matrices Geometric Perspective Parametric Form Today 1 Row Echelon Form 2 Rank 3 Gaussian Elimination

More information

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function MODEL ANSWERS TO THE FIRST QUIZ 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function A: I J F, where I is the set of integers between 1 and m and J is

More information

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic.

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. MATH 300, Second Exam REVIEW SOLUTIONS NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. [ ] [ ] 2 2. Let u = and v =, Let S be the parallelegram

More information

Math 1553 Introduction to Linear Algebra

Math 1553 Introduction to Linear Algebra Math 1553 Introduction to Linear Algebra Lecture Notes Chapter 2 Matrix Algebra School of Mathematics The Georgia Institute of Technology Math 1553 Lecture Notes for Chapter 2 Introduction, Slide 1 Section

More information

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process Worksheet for Lecture Name: Section.4 Gram-Schmidt Process Goal For a subspace W = Span{v,..., v n }, we want to find an orthonormal basis of W. Example Let W = Span{x, x } with x = and x =. Give an orthogonal

More information

Answer Key for Exam #2

Answer Key for Exam #2 Answer Key for Exam #. Use elimination on an augmented matrix: 8 6 7 7. The corresponding system is x 7x + x, x + x + x, x x which we solve for the pivot variables x, x x : x +7x x x x x x x x x x x Therefore

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Lecture 17: Section 4.2

Lecture 17: Section 4.2 Lecture 17: Section 4.2 Shuanglin Shao November 4, 2013 Subspaces We will discuss subspaces of vector spaces. Subspaces Definition. A subset W is a vector space V is called a subspace of V if W is itself

More information

(v, w) = arccos( < v, w >

(v, w) = arccos( < v, w > MA322 Sathaye Notes on Inner Products Notes on Chapter 6 Inner product. Given a real vector space V, an inner product is defined to be a bilinear map F : V V R such that the following holds: For all v

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

Answer Key for Exam #2

Answer Key for Exam #2 . Use elimination on an augmented matrix: Answer Key for Exam # 4 4 8 4 4 4 The fourth column has no pivot, so x 4 is a free variable. The corresponding system is x + x 4 =, x =, x x 4 = which we solve

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

(v, w) = arccos( < v, w >

(v, w) = arccos( < v, w > MA322 F all203 Notes on Inner Products Notes on Chapter 6 Inner product. Given a real vector space V, an inner product is defined to be a bilinear map F : V V R such that the following holds: For all v,

More information

4.8 Partial Fraction Decomposition

4.8 Partial Fraction Decomposition 8 CHAPTER 4. INTEGRALS 4.8 Partial Fraction Decomposition 4.8. Need to Know The following material is assumed to be known for this section. If this is not the case, you will need to review it.. When are

More information

Second Midterm Exam April 14, 2011 Answers., and

Second Midterm Exam April 14, 2011 Answers., and Mathematics 34, Spring Problem ( points) (a) Consider the matrices all matrices. Second Midterm Exam April 4, Answers [ Do these matrices span M? ] [, ] [, and Lectures & (Wilson) ], as vectors in the

More information

MATH20132 Calculus of Several Variables. 2018

MATH20132 Calculus of Several Variables. 2018 MATH013 Calculus of Several Variables 018 Solutions to Problems 7 Tangent Spaces & Planes Full rank Jacobian matrices 1 Are the following parametrically defined sets surfaces? Give your reasons Look at

More information

Lecture 4: Linear independence, span, and bases (1)

Lecture 4: Linear independence, span, and bases (1) Lecture 4: Linear independence, span, and bases (1) Travis Schedler Tue, Sep 20, 2011 (version: Wed, Sep 21, 6:30 PM) Goals (2) Understand linear independence and examples Understand span and examples

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

Chapter Contents. A 1.6 Further Results on Systems of Equations and Invertibility 1.7 Diagonal, Triangular, and Symmetric Matrices

Chapter Contents. A 1.6 Further Results on Systems of Equations and Invertibility 1.7 Diagonal, Triangular, and Symmetric Matrices Chapter Contents. Introduction to System of Linear Equations. Gaussian Elimination.3 Matrices and Matri Operations.4 Inverses; Rules of Matri Arithmetic.5 Elementary Matrices and a Method for Finding A.6

More information

Math 265 Midterm 2 Review

Math 265 Midterm 2 Review Math 65 Midterm Review March 6, 06 Things you should be able to do This list is not meant to be ehaustive, but to remind you of things I may ask you to do on the eam. These are roughly in the order they

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 02 Vector Spaces, Subspaces, linearly Dependent/Independent of

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x Vector Spaces and Dimension Subspaces of Definition: A non-empty subset V is a subspace of if V is closed under addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) V and

More information

MATH 2030: ASSIGNMENT 4 SOLUTIONS

MATH 2030: ASSIGNMENT 4 SOLUTIONS MATH 23: ASSIGNMENT 4 SOLUTIONS More on the LU factorization Q.: pg 96, q 24. Find the P t LU factorization of the matrix 2 A = 3 2 2 A.. By interchanging row and row 4 we get a matrix that may be easily

More information

10 Orthogonality Orthogonal subspaces

10 Orthogonality Orthogonal subspaces 10 Orthogonality 10.1 Orthogonal subspaces In the plane R 2 we think of the coordinate axes as being orthogonal (perpendicular) to each other. We can express this in terms of vectors by saying that every

More information

(v, w) = arccos( < v, w >

(v, w) = arccos( < v, w > MA322 F all206 Notes on Inner Products Notes on Chapter 6 Inner product. Given a real vector space V, an inner product is defined to be a bilinear map F : V V R such that the following holds: Commutativity:

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 110 Linear Algebra Midterm 2 Review October 28, 2017 Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

More information

Math 4242 Fall 2016 (Darij Grinberg): homework set 6 due: Mon, 21 Nov 2016 Let me first recall a definition.

Math 4242 Fall 2016 (Darij Grinberg): homework set 6 due: Mon, 21 Nov 2016 Let me first recall a definition. Math 4242 Fall 206 homework page Math 4242 Fall 206 Darij Grinberg: homework set 6 due: Mon, 2 Nov 206 Let me first recall a definition. Definition 0.. Let V and W be two vector spaces. Let v = v, v 2,...,

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann June 7, 04 The eigenvalues for a triangular

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2. Linear Transformations Math 4377/638 Advanced Linear Algebra 2. Linear Transformations, Null Spaces and Ranges Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Lecture 11: Vector space and subspace

Lecture 11: Vector space and subspace Lecture : Vector space and subspace Vector space. R n space Definition.. The space R n consists of all column vector v with n real components, i.e. R n = { v : v = [v,v 2,...,v n ] T, v j R,j =,2,...,n

More information

Matrices related to linear transformations

Matrices related to linear transformations Math 4326 Fall 207 Matrices related to linear transformations We have encountered several ways in which matrices relate to linear transformations. In this note, I summarize the important facts and formulas

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK)

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) In this lecture, F is a fixed field. One can assume F = R or C. 1. More about the spanning set 1.1. Let S = { v 1, v n } be n vectors in V, we have defined

More information