On rank 2 and rank 3 residually connected geometries for M 22

Size: px
Start display at page:

Download "On rank 2 and rank 3 residually connected geometries for M 22"

Transcription

1 Note di Matematica 22, n. 1, 2003, On rank 2 and rank 3 residually connected geometries for M 22 Nayil Kilic Department of Mathematics, UMIST, P.O. Box 88, Manchester, M60 1QD, UK. mcbignk3@stud.umist.ac.uk Peter Rowley Department of Mathematics, UMIST, P.O. Box 88, Manchester, M60 1QD, UK. peter.rowley@umist.ac.uk Received: 29/11/2002; accepted: 29/7/2003. Abstract. We determine all rank 2 and rank 3 residually connected flag transitive geometries for the Mathieu group M 22 for which object stabilizer are maximal subgroups. Keywords: Residually connected flag transitive geometries, Mathieu group MSC 2000 classification: 51Exx Introduction In this paper we shall describe all rank 2 and rank 3 residually connected flag transitive geometries for the Mathieu group M 22 whose object stabilizers are maximal subgroups. We begin by reviewing geometries and some standard notation. A geometry is a triple (Γ, I, ) where Γ is a set, I an index set and a symmetric incidence relation on Γ which satisfy (i) Γ =. i I Γ i ; and (ii) if x Γ i, y Γ j (i, j I) and x y, then i j. The elements of Γ i are called objects of type i, and I is the rank of the geometry Γ (as is usual we use Γ is place of the triple (Γ, I, )). A flag F of Γ is a subset of Γ which, for all x, y F, x y, x y. The rank of F is F, the corank of F is I\F and the type of F is {i I F Γ i }. All geometries we consider are assumed to contain at least one flag of rank I. The automorphism group of Γ, AutΓ, consists of all permutations of Γ which preserve the sets Γ i and the incidence relation. Let G be a subgroup of AutΓ. We call Γ a flag transitive geometry for G if for any two flags F 1 and F 2 of Γ having the same type, there exists g G such that F 1 g = F 2. For Γ, the residue of, denoted Γ, is defined to be {x Γ x y for all y }. A geometry Γ is called residually connected if for all flags F of Γ of corank 2 the incidence graph of

2 108 N. Kilic, P. Rowley Γ F is connected. Now suppose that Γ is a flag transitive geometry for the group G. As is well-known we may view Γ in terms of certain cosets of G. This is the approach we shall follow here. For each i I choose an x i Γ i and set G i = Stab G (x i ). Let F={G i : i I}. We now define a geometry Γ(G, F) where the objects of type i in Γ(G, F) are the right cosets of G i in G and for G i x and G j y (x, y G, i, j I) G i x G j y whenever G i x G j y. Also by letting G act upon Γ(G, F) by right multiplication we see that Γ(G, F) is a flag transitive geometry for G. Moreover Γ and Γ(G, F) are isomorphic geometries for G. So we shall be studying geometries of the form Γ(G, F), where G = M 22 and G i is a maximal subgroup of G for all i I. A numerical summary of our results is given in 1 Theorem. Suppose G = M 22 and Γ is a residually connected flag transitive geometry for G with Stab G (x) a maximal subgroup of G for all x Γ. (i) If Γ has rank 2, then, up to conjugacy in AutG, there are 86 possibilities for Γ. (ii) If Γ has rank 3, then, up to conjugacy in AutG, there are 1239 possibilities for Γ. In Section 2 and 3 we give explicit descriptions of these geometries making heavy use of the degre2 permutation representation for M 22. The descriptions given readily allow further investigation of these geometries.for the verification of these lists and more details we refer the reader to [6]. Beukenhout, in [1], sought to give a wider view of geometries so as to encompass configurations observed in the finite sporadic simple groups. An outgrowth of this has been attemps to catalogue various subcollections of geometries for the finite sporadic simple groups (and other related groups). So - called minimal parabolic geometries and maximal 2-local geometries were investigated in [13] and [14] while geometries satisfying certain additional conditions for a number of (relatively) small order simple groups have been exhaustively examined. See, for example, [2], [5], [7], [8], [9], [10], [11], [12], [15]; the results in most of these papers were obtained using various computer algebra systems. The lists here, by contrast, has been obtained by hand. For the remainder of this paper G will denote M 22, the Mathieu Group of degre2. Also Ω will denote a 24 element set possessing the Steiner system S(24, 8, 5) as described by Curtis s MOG [4]. We will follow the notation of [4]. So Ω = O 1 O 2 O 3 = , where O 1, O 2 and O 3 are the heavy bricks of the MOG. For our later concrete

3 On Rank 2 and Rank 3 Residually Connected Geometries for M descriptions we shall identify G with Stab M24 { } Stab M24 {14}. Here M 24 is the Mathieu group of degre4 which leaves invariant the Steiner system S(24, 8, 5) on Ω. Set Λ = Ω\{, 14}. We shall discuss certain (well-known) combinatorial objects associated with Ω and Λ. An octad of Ω is just an 8-element block of the Steiner system and a subset of Ω is called a dodecad if it is the symmetric difference of two octads of Ω which intersect in a set of size two. The following sets will appear frequently when we describe geometries for G. (i) H={X Λ X {, 14} is an octad of Ω} (hexads of Λ). (ii) H p ={X Λ X {14} is an octad of Ω} (heptads of Λ). (iii) H p ={X Λ X { } is an octad of Ω} (heptads of Λ). (iv) O={X Λ X is an octad of Ω} (octads of Λ). (v) D={X Λ X = 2} (duads of Λ). (vi) D o ={X Λ X is a dodecad of Ω} (dodecads of Λ). (vii) E={X Λ one of X { } and X {14} is a dodecad of Ω} (endecads of Λ). From the [3], the conjugacy classes of the maximal subgroups of G are as follows: Order Index M i Description M 1 = L3 (4) M 1 = Stab G {a}, a Λ M 2 = 2 4 : A 6 M 2 = Stab G {X}, X H M 3 = A7 M 3 = Stab G {X}, X H p M 4 = A7 M 4 = Stab G {X}, X H p M 5 = 2 3 : L 3 (2) M 5 = Stab G {X}, X O M 6 = 2 4 : S 5 M 6 = Stab G {X}, X D M 7 = M10 M 7 = Stab G {X}, X D o M 8 = L2 (11) M 8 = Stab G {X}, X E For i {1,..., 8}, we let M i denote the conjugacy class of M i, M i as given in the previous table. We also set M= 8 i=1 M i; so M consist of all maximal subgroups of G. Also put X= Λ H H p H p O D D o E. For X, Y X we have that X = Y if and only if Stab G {X} = Stab G {Y } except in the case when X, Y E. In this latter case when Y = Λ\X we have Stab G {X} = Stab G {Y }( = L 2 (11)). In order to have a (1 1) correspondence between subgroups in M and appropriate sets of Λ in X, for endecads we shall always choose X E so as X { } is a dodecad of Ω. Suppose G 1 and G 2 are maximal subgroups of G with G 1 G 2. Set G 12 = G 1 G 2. We use M ij (t) to describe {G 1, G 2, G 1 G 2 } according to the following scheme: G 1 M i, G 2 M j (and so G 1 = Stab G (X 1 ) and G 2 = Stab G (X 2 ) for some appropriate subsets X 1 and X 2 of Λ in X) with X 1 X 2 = t. When listing up the rank 2 geometries of G in Theorem 2 the notation M ij (t) frequently suffices to describe the geometries up to conjugacy in AutG. To distinguish

4 110 N. Kilic, P. Rowley those geometries where this is not the case we shall write M ij (t l ) with l {1, 2}; see after Theorem 2 for the details of these cases. Now suppose we have three distinct maximal subgroup of G, G 1, G 2 and G 3. We shall use G 12, G 13, G 23 and G 123 to denote, respectively G 1 G 2, G 1 G 3, G 2 G 3 and G 1 G 2 G 3. We extend the above notation using M ijk (t ij, t ik, t jk ) to indicate that G 1 M i, G 2 M j, G 3 M k with X i X j = t ij, X i X k = t ik and X j X k = t jk. (Here G 1 = Stab G (X i ), G 2 = Stab G (X j ) and G 3 = Stab G (X k ) for suitable subsets X i, X j and X k of Λ in X.) Again we run into the possibilty that in some instances, we need to further subdivide these cases, and we do this using the ad hoc notation M ijk (t ij, t ik, t jk ; l) where l {1, 2, 3}. See the end of Section 2 for further explanation of this notation. There is a further complexity caused by the division in the rank 2 cases mentioned earlier. In order to accommodate this we use, for example M 155 (0, 0, 4 1 ; 2) in Theorem 3 to tell us that, not only is X j X k = 4 but we are in Case 1 of this situation as described in Theorem 2. We note that if two or more of i, j and k are equal, apparently different parameters t ij, t ik, t jk may describe the same situation. For example M 333 (1, 1, 3) and M 333 (3, 1, 1) describe the same configuration as do M 335 (1, 2, 4) and M 335 (1, 4, 2). We remark that the geometry Γ = Γ(G, F) where F = {G 1, G 2, G 3 } is residually connected if and only if G 1 =< G 12, G 13 >, G 2 =< G 12, G 23 > and G 3 =< G 13, G 23 >. Also we observe that the conjugacy classes M 3 and M 4 fuse in AutG. Below we give certain subsets of Λ which will be encountered frequently in our lits. h 1 =, =, h 3 = h 4 =, h 5 =, h 6 = h 1 =, =, h 3 =

5 On Rank 2 and Rank 3 Residually Connected Geometries for M h 4 =, h 5 =, h 6 = h 7 =, h 8 =, h 9 = h 10 = O 4 =, O 5 =, O 6 = O 7 = =, d 2 =, d 3 = e 1 =, =, e 3 = e 3 = Our notation is as in the [3] with the following addition: SD n is the semidihedral group of order n, F n a Frobenious group of order n and (S n S m ) + is the group of even permutation in the permutation group S n S m.

6 112 N. Kilic, P. Rowley 1 Rank 2 geometries of M 22 2 Theorem. Up to conjugacy in AutG there are 86 rank 2 geometries Γ = Γ(G, {G 1, G 2 }) with G 1, G 2 M. These together with the shape of G 12, are listed in the following table. Γ G 12 Γ G 12 Γ G 12 M 11 (0) 2 4 A 5 M 12 (0) A 6 M 12 (1) 2 4 A 5 M 13 (0) L 3 (2) M 13 (1) A 6 M 15 (0) 2 4 S 3 M 15 (1) L 3 (2) M 16 (0) 2 4 S 3 M 16 (1) 2 4 A 5 M 17 (0) M 9 M 17 (1) A 5 M 18 (0) A 5 M 18 (1) A 5 M 22 (0) A 6 M 22 (2) 2 2 S 4 M 23 (1) A 5 M 23 (3) (S 3 S 4 ) + M 25 (0) 2 3 S 4 M 25 (2) S 4 M 25 (4) 2 2 S 4 M 26 (0) 2 S 4 M 26 (1) A 5 M 26 (2) 2 4 S 4 M 27 (2) S 4 M 27 (4) SD 16 M 27 (6) A 6 M 28 (1) A 5 M 28 (3) D 12 M 28 (5) A 5 M 33 (1) M 33 (3) S 4 M 34 (0) L 3 (2) M 34 (2) F 20 M 34 (4) (S 3 S 4 ) + M 35 (0) L 3 (2) M 35 (2) D 12 M 35 (4) S 4 M 36 (0) S 4 M 36 (1) S 4 M 36 (2) S 5 M 37 (2) F 20 M 37 (4) S 3 M 37 (6) M 38 (2) D 12 M 38 (4) S 3 M 38 (6) A 5 M 55 (0) 2 3 S 4 M 55 (2) D 8 M 55 (4 1 ) A 4 M 55 (4 2 ) M 56 (0 1 ) 2 4 (2 S 3 ) M 56 (0 2 ) 2 D 8 M 56 (1) A 4 M 56 (2) 2 2 (2 S 3 ) M 57 (2) S 4 M 57 (4 1 ) S 4 M 57 (4 2 ) 4 M 57 (6) D 8 M 58 (2) D 12 M 58 (4 1 ) 2 2 M 58 (4 2 ) A 4 M 58 (6) D 12 M 66 (0 1 ) D 12 M 66 (0 2 ) 2 3 D 8 M 66 (1) M 67 (0) SD 16 M 67 (1) S 3 M 67 (2 1 ) F 20 M 67 (2 2 ) S 4 M 68 (0) D 12 M 68 (1 1 ) D 10 M 68 (1 2 ) A 4 M 68 (2) D 12 M 77 (4) SD 16 M 77 (6) 2 M 77 (8 1 ) 4 M 77 (8 2 ) S 4 M 78 (4) S 3 M 78 (6 1 ) D 10 M 78 (6 2 ) 2 M 78 (8) S 3 M 88 (3) D 12 M 88 (5 1 ) 2 M 88 (5 2 ) D 10 M 88 (7 1 ) 2 2 M 88 (7 2 ) A 4

7 On Rank 2 and Rank 3 Residually Connected Geometries for M We now define the subgroups for M ij (t l ) (l {1, 2}) by giving the X i X such that G i = Stab G X i (i = 1, 2).

8 114 N. Kilic, P. Rowley M ij (t l ) X 1 X 2 M 55 (4 1 ) O 2 O 6 M 55 (4 2 ) O 2 O 7 M 56 (O 1 ) O 2 {0, 8} M 56 (O 2 ) O 2 {19, 22} M 57 (4 1 ) O 3 M 57 (4 2 ) M 58 (4 1 ) O 7 M 58 (4 2 ) O 3 e 1 M 66 (0 1 ) {11, 17} {19, 22} M 66 (0 2 ) {0, 8} {3, 20} M 67 (2 1 ) {8, 17} M 67 (2 2 ) {11, 17} M 68 (1 1 ) {1, 22} M 68 (1 2 ) {11, 17} e 1 M 77 (8 1 ) M 77 (8 2 ) d 2 M 78 (6 1 ) M 78 (6 2 ) e 1 M 88 (5 1 ) M 88 (5 2 ) M 88 (7 1 ) e 4 M 88 (7 2 ) e 1

9 On Rank 2 and Rank 3 Residually Connected Geometries for M Rank 3 geometries of M 22 3 Theorem. Up to conjugacy in AutG there are 1239 rank 3 residualy connected geometries Γ = Γ(G, {G 1, G 2, G 3 }) with G 1, G 2, G 3 M. These together with the shape of G 123 are listed in the following table below

10 116 N. Kilic, P. Rowley Γ G 123 Γ G 123 M 111 (0, 0, 0) M 112 (0, 0, 0) S 4 M 112 (0, 0, 1) A 5 M 112 (0, 1, 1) 2 4 A 4 M 113 (0, 0, 0) A 4 M 113 (0, 0, 1) S 4 M 113 (0, 1, 1) A 5 M 115 (0, 0, 0) 2 3 M 115 (0, 0, 1) A 4 M 115 (0, 1, 1) S 4 M 116 (0, 0, 0 : 1) M 116 (0, 0, 0 : 2) S 3 M 116 (0, 1, 0) M 117 (0, 1, 0) S 3 M 117 (0, 0, 0) Q 8 M 118 (0, 1, 1) S 3 M 118 (0, 0, 1 : 1) A 4 M 118 (0, 0, 1 : 2) D 10 M 122 (0, 0, 0) M 122 (0, 1, 0) A 5 M 122 (0, 0, 2) D 8 M 122 (1, 0, 2) S 4 M 122 (1, 1, 2) 2 2 A 4 M 123 (0, 0, 1) S 3 M 123 (0, 1, 1) D 10 M 123 (1, 0, 1) A 4 M 123 (0, 0, 3) S 3 M 123 (0, 1, 3) M 123 (1, 0, 3) S 4 M 123 (1, 1, 3) S 4 M 125 (0, 0, 0) S 4 M 125 (0, 1, 0) S 4 M 125 (1, 0, 0) 2 2 D 8 M 125 (0, 1, 2) 4 M 125 (0, 0, 2 : 1) S 3 M 125 (0, 0, 2 : 2) 2 2 M 125 (1, 0, 2) S 3 M 125 (1, 1, 2) A 4 M 125 (0, 0, 4) D 8 M 125 (0, 1, 4) S 4 M 125 (1, 1, 4) S 4 M 125 (1, 0, 4) 2 2 A 4 M 126 (0, 0, 0 : 1) S 3 M 126 (0, 0, 0 : 2) D 8 M 126 (1, 0, 0) 2 3 M 126 (0, 1, 0) S 4 M 126 (0, 0, 1) 2 2 M 126 (1, 0, 1) A 4 M 126 (0, 0, 2) S 4 M 126 (1, 1, 2) 2 4 A 4 M 127 (0, 0, 2) 4 M 127 (1, 0, 2) S 3 M 127 (0, 0, 4) 2 M 127 (0, 1, 4) 2 M 127 (1, 1, 4) 2 2 M 127 (1, 0, 4) Q 8 M 127 (0, 0, 6) M 128 (0, 1, 1) S 3 M 128 (0, 0, 1) D 10 M 128 (1, 0, 1) A 4 M 128 (0, 1, 3 : 1) S 3 M 128 (0, 1, 3 : 2) 2 M 128 (0, 0, 3 : 1) S 3 M 128 (0, 0, 3 : 2) 2 M 128 (1, 0, 3) 2 2

11 On Rank 2 and Rank 3 Residually Connected Geometries for M M 128 (1, 1, 3) 2 2 M 133 (0, 0, 1) 4 M 133 (1, 0, 1) S 3 M 133 (0, 0, 3 : 1) S 3 M 133 (0, 0, 3 : 2) D 8 M 133 (0, 3, 1) S 3 M 133 (1, 1, 3) D 8 M 134 (0, 0, 0) F 21 M 134 (1, 0, 0) S 4 M 134 (0, 0, 2) 2 M 134 (0, 1, 2) 4 M 134 (1, 1, 2) D 10 M 134 (0, 0, 4) S 3 M 134 (1, 1, 4) M 134 (1, 0, 4) S 4 M 135 (0, 1, 0) F 21 M 135 (0, 0, 0) S 4 M 135 (1, 0, 0) S 4 M 135 (0, 1, 2) 2 M 135 (0, 0, 2 : 1) 2 M 135 (0, 0, 2 : 2) 2 2 M 135 (1, 0, 2 : 1) 2 2 M 135 (1, 0, 2 : 2) S 3 M 135 (1, 1, 2) S 3 M 135 (0, 0, 4 : 1) D 8 M 135 (0, 0, 4 : 2) 3 M 135 (1, 1, 4) S 3 M 135 (0, 1, 4) S 3 M 135 (1, 0, 4) D 8 M 136 (0, 0, 0) 2 M 136 (1, 0, 0) S 3 M 136 (0, 1, 1) A 4 M 136 (0, 0, 1 : 1) 3 M 136 (0, 0, 1 : 2) 2 2 M 136 (1, 0, 1) 2 2 M 136 (0, 0, 2) D 8 M 136 (1, 0, 2) S 4 M 136 (1, 1, 2) A 5 M 137 (0, 1, 2) 2 M 137 (0, 0, 2) 4 M 137 (1, 0, 2) 4 M 137 (1, 1, 2) D 10 M 137 (0, 0, 4) 1 M 137 (1, 0, 4) 2 M 137 (0, 0, 6) 4 M 137 (0, 1, 6) S 3 M 137 (1, 1, 6) S 3 M 138 (0, 1, 2 : 1) 2 M 138 (0, 1, 2 : 2) 2 2 M 138 (0, 0, 2) 2 M 138 (1, 0, 2 : 1) 2 2 M 138 (1, 0, 2 : 2) S 3 M 138 (1, 1, 2) S 3 M 138 (0, 1, 4) 1 M 138 (0, 0, 4 : 1) 2 M 138 (0, 0, 4 : 2) 3 M 138 (1, 0, 4) 2 M 138 (0, 0, 6) S 3 M 138 (1, 1, 6) D 10 M 138 (0, 1, 6) A 4 M 155 (0, 1, 0) S 4 M 155 (0, 0, 2) 2 M 155 (0, 1, 2) 2 M 155 (1, 1, 2) 4 M 155 (0, 0, 4 1 : 1) 3 M 155 (0, 0, 4 1 : 2) 2 2 M 155 (1, 0, 4 1 ) 3 M 155 (1, 1, 4 1 ) 3 M 155 (0, 0, 4 2 ) 2 2 M 155 (0, 1, 4 2 ) D 8

12 118 N. Kilic, P. Rowley M 155 (1, 1, 4 2 ) D 8 M 156 (0, 0, 0 1 ) M 156 (1, 0, 0 1 ) S 4 M 156 (0, 0, 0 2 ) 2 M 156 (1, 0, 0 2 ) 2 M 156 (0, 1, 0 2 ) 2 3 M 156 (0, 0, 1) 1 M 156 (1, 0, 1) 3 M 156 (0, 0, 2 : 1) S 3 M 156 (0, 0, 2 : 2) 2 3 M 156 (1, 0, 2) 2 3 M 156 (1, 1, 2) S 4 M 157 (1, 0, 2) 4 M 157 (0, 0, 2) S 3 M 157 (0, 0, 4 1 ) 4 M 157 (1, 0, 4 1 ) S 3 M 157 (0, 0, 4 2 ) 1 M 157 (1, 0, 4 2 ) 1 M 157 (1, 1, 4 2 ) 1 M 157 (0, 1, 4 2 : 1) S 3 M 157 (0, 1, 4 2 : 2) 2 M 157 (0, 0, 6) 2 M 157 (1, 0, 6) 4 M 158 (0, 1, 2 : 1) 2 M 158 (0, 1, 2 : 2) 2 2 M 158 (1, 0, 2) 2 M 158 (0, 0, 2) 2 2 M 158 (1, 1, 2) S 3 M 158 (0, 1, 4 1 : 1) 2 M 158 (0, 1, 4 1 : 2) 1 M 158 (0, 0, 4 1 : 1) 1 M 158 (0, 0, 4 1 : 2) 2 M 158 (1, 1, 4 1 ) 2 M 158 (1, 0, 4 1 ) 2 M 158 (0, 1, 4 2 ) 2 M 158 (0, 0, 4 2 ) 2 M 158 (1, 1, 4 2 ) 3 M 158 (1, 0, 4 2 ) 3 M 158 (1, 1, 6) 2 M 158 (0, 0, 6 : 1) 2 2 M 158 (0, 0, 6 : 2) 2 M 158 (0, 1, 6 : 1) S 3 M 158 (0, 1, 6 : 2) 2 2 M 158 (1, 0, 6) S 3 M 166 (0, 0, 0 1 : 1) 2 2 M 166 (0, 0, 0 1 : 2) 2 M 166 (1, 0, 0 1 ) S 3 M 166 (0, 0, 0 2 ) 2 2 M 166 (0, 0, 1) 3 M 167 (0, 1, 0) 2 M 167 (0, 0, 0) 2 M 167 (1, 0, 0) Q 8 M 167 (0, 0, 1 : 1) 2 M 167 (0, 0, 1 : 2) 1 M 167 (0, 1, 2 1 ) 2 M 167 (0, 0, 2 1 ) 4 M 167 (1, 1, 2 1 ) D 10 M 167 (0, 0, 2 2 ) 4 M 168 (0, 0, 1 1 ) 2 M 168 (0, 1, 1 1 ) 2 M 168 (0, 0, 1 2 ) 2 M 168 (0, 1, 1 2 ) 2 M 168 (0, 0, 0 : 1) 2 M 168 (0, 0, 0 : 2) 2 2 M 168 (0, 1, 0 : 1) 2 M 168 (0, 1, 0 : 2) 2 2 M 168 (0, 1, 0 : 3) S 3 M 168 (1, 0, 0) S 3

13 On Rank 2 and Rank 3 Residually Connected Geometries for M M 168 (0, 0, 2 : 1) 2 M 168 (0, 0, 2 : 2) 2 2 M 168 (0, 1, 2 : 1) 2 M 168 (0, 1, 2 : 2) 2 2 M 168 (1, 0, 2) S 3 M 177 (0, 1, 4) 2 M 177 (1, 1, 4) 2 2 M 177 (0, 0, 4) Q 8 M 177 (0, 0, 6) 1 M 177 (0, 0, 8 1 ) 1 M 177 (1, 0, 8 1 ) 1 M 177 (1, 1, 8 1 : 1) 1 M 177 (1, 1, 8 1 : 2) 2 M 177 (1, 1, 8 2 ) 4 M 178 (0, 0, 6 1 ) 2 M 178 (0, 1, 6 1 ) 2 M 178 (0, 0, 6 2 ) 1 M 178 (0, 1, 6 2 ) 1 M 178 (0, 0, 8) 1 M 178 (0, 1, 8) 2 M 178 (0, 1, 4) 1 M 178 (0, 0, 4) 2 M 188 (1, 0, 3) 2 M 188 (0, 0, 3) 2 2 M 188 (1, 1, 3) 2 2 M 188 (0, 0, 5 1 ) 1 M 188 (1, 0, 5 1 ) 1 M 188 (0, 1, 5 1 ) 1 M 188 (1, 1, 5 1 ) 1 M 188 (0, 0, 5 2 ) 2 M 188 (1, 0, 5 2 ) 2 M 188 (1, 1, 5 2 ) 2 M 188 (0, 0, 7 1 : 1) 1 M 188 (0, 0, 7 1 : 2) 2 M 188 (1, 1, 7 1 : 1) 1 M 188 (1, 1, 7 1 : 2) 2 M 188 (1, 0, 7 1 ) 2 M 188 (1, 1, 7 2 ) 2 M 188 (0, 0, 7 2 ) 2 M 188 (1, 0, 7 2 ) 3 M 222 (0, 2, 2) D 8 M 222 (0, 0, 2) S 4 M 222 (2, 2, 2 : 1) 3 M 222 (2, 2, 2 : 2) M 223 (0, 3, 1) S 3 M 223 (0, 1, 1) D 10 M 223 (0, 3, 3) M 223 (2, 3, 1 : 1) 2 M 223 (2, 3, 1 : 2) S 3 M 223 (2, 3, 3 : 1) S 3 M 223 (2, 3, 3 : 2) 2 2 M 223 (2, 1, 1) 2 2 M 225 (0, 2, 2) 2 M 225 (0, 4, 2) D 8 M 225 (0, 0, 4) S 4 M 225 (2, 2, 2 : 1) 1 M 225 (2, 2, 2 : 2) 2 M 225 (2, 2, 4) 3 M 225 (2, 2, 0) 2 2 M 225 (2, 4, 4) 2 3 M 225 (2, 0, 0) M 226 (0, 0, 1) S 3 M 226 (0, 0, 0) D 8 M 226 (0, 0, 2) S 4 M 226 (2, 1, 0) 2 M 226 (2, 0, 0 : 1) 2 M 226 (2, 0, 0 : 2) 2 3 M 226 (2, 1, 2) A 4 M 226 (2, 0, 2) 2 D 8 M 227 (2, 4, 4 : 1) 2 2 M 227 (2, 4, 4 : 2) 1 M 227 (2, 4, 2) 1 M 227 (2, 6, 4) D 8

14 120 N. Kilic, P. Rowley M 227 (0, 4, 2) 2 M 227 (0, 4, 4) 2 M 228 (0, 3, 3) 2 M 228 (0, 3, 5) S 3 M 228 (0, 3, 1) S 3 M 228 (0, 1, 5) D 10 M 228 (2, 3, 3 : 1) 1 M 228 (2, 3, 3 : 2) 2 M 228 (2, 3, 3 : 3) 2 2 M 228 (2, 3, 5 : 1) 2 M 228 (2, 3, 5 : 2) 2 2 M 228 (2, 1, 3 : 1) 2 M 228 (2, 1, 3 : 2) 2 2 M 228 (2, 5, 5) S 3 M 228 (2, 1, 1) S 3 M 228 (2, 5, 1) A 4 M 233 (3, 1, 1) 2 M 233 (3, 3, 3 : 1) 2 M 233 (3, 3, 3 : 2) 2 2 M 233 (3, 3, 1) 4 M 233 (3, 1, 3) S 3 M 233 (1, 1, 1) 2 M 233 (1, 1, 3 : 1) 3 M 233 (1, 1, 3 : 2) 2 M 234 (3, 1, 2) 2 M 234 (3, 3, 2 : 1) 2 M 234 (3, 3, 2 : 2) 4 M 234 (3, 3, 4) 2 2 M 234 (3, 1, 0) S 3 M 234 (3, 1, 4) S 3 M 234 (1, 1, 2) 1 M 234 (1, 1, 4) 2 2 M 235 (3, 2, 2 : 1) 1 M 235 (3, 2, 2 : 2) 2 M 235 (3, 2, 4) 2 M 235 (3, 4, 4 : 1) 2 2 M 235 (3, 4, 4 : 2) S 3 M 235 (3, 4, 2) 2 2 M 235 (3, 0, 2) 2 2 M 235 (3, 2, 0) S 3 M 235 (3, 0, 0) S 4 M 235 (1, 2, 2) 1 M 235 (1, 4, 2 : 1) 1 M 235 (1, 4, 2 : 2) 2 2 M 235 (1, 2, 4) 2 M 235 (1, 0, 4) 2 2 M 235 (1, 0, 2) 2 2 M 235 (1, 2, 0) S 3 M 235 (1, 4, 4) S 3 M 235 (1, 4, 0) A 4 M 236 (3, 0, 1) 2 M 236 (3, 0, 0 : 1) 2 M 236 (3, 0, 0 : 2) 2 2 M 236 (3, 0, 0 : 3) S 3 M 236 (3, 1, 2) S 3 M 236 (3, 2, 1) D 8 M 236 (3, 0, 2) D 12 M 236 (3, 2, 2) S 4 M 236 (1, 0, 1) 2 M 236 (1, 0, 0 : 1) 2 M 236 (1, 0, 0 : 2) 2 2 M 236 (1, 1, 0 : 1) 2 M 236 (1, 1, 0 : 2) 3 M 236 (1, 0, 2) 2 2 M 237 (3, 4, 4 : 1) 1 M 237 (3, 4, 4 : 2) 2 M 237 (3, 4, 2 : 1) 2 M 237 (3, 4, 2 : 2) 4 M 237 (3, 2, 2) 2 M 237 (3, 6, 6) M 237 (1, 4, 2 : 1) 1 M 237 (1, 4, 2 : 2) 2 M 237 (1, 4, 4 : 1) 1 M 237 (1, 4, 4 : 2) 2 M 237 (1, 4, 6) 2 M 237 (1, 2, 6) 2 M 237 (1, 2, 2) 2 M 237 (1, 6, 2) D 10

15 On Rank 2 and Rank 3 Residually Connected Geometries for M M 238 (3, 3, 4 : 1) 1 M 238 (3, 3, 4 : 2) 2 M 238 (3, 3, 2 : 1) 1 M 238 (3, 3, 2 : 2) 2 M 238 (3, 3, 2 : 3) 2 2 M 238 (3, 1, 2 : 1) 2 M 238 (3, 1, 2 : 2) S 3 M 238 (3, 1, 4) 2 M 238 (3, 3, 6) 2 2 M 238 (3, 5, 6) S 3 M 238 (1, 1, 4) 1 M 238 (1, 3, 2 : 1) 1 M 238 (1, 3, 2 : 2) 2 M 238 (1, 3, 4 : 1) 1 M 238 (1, 3, 4 : 2) 2 M 238 (1, 5, 2) 2 M 238 (1, 3, 6) 2 M 238 (1, 5, 4) 2 M 238 (1, 1, 2) 2 2 M 255 (2, 2, 4 1 : 1) 1 M 255 (2, 2, 4 1 : 2) 2 M 255 (2, 2, 2) 1 M 255 (0, 2, 4 1 ) 2 M 255 (2, 4, 4 1 ) 2 M 255 (0, 2, 2) 2 M 255 (4, 4, 4 1 ) 3 M 255 (2, 2, 0) 2 2 M 255 (2, 2, 4 2 ) 2 2 M 255 (2, 4, 4 2 ) 2 2 M 255 (4, 0, 2) 2 2 M 255 (4, 4, 4 2 ) 2 3 M 255 (0, 0, 4 2 ) 2 4 M 255 (4, 0, 0) M 256 (0, 0, 1) 3 M 256 (0, 1, 0 2 ) 2 2 M 256 (0, 0, 2) 2 3 M 256 (0, 0, 0 2 ) 2 3 M 256 (0, 2, 0 1 ) M 256 (2, 0, 1 : 1) 1 M 256 (2, 0, 1 : 2) 2 M 256 (2, 1, 0 2 ) 2 M 256 (2, 1, 2) 2 M 256 (2, 0, 2) 2 M 256 (2, 2, 1) 3 M 256 (2, 2, 0 2 ) 2 2 M 256 (2, 1, 0 1 ) S 3 M 256 (2, 0, 0 1 ) D 8 M 256 (4, 0, 1) 2 M 256 (4, 1, 0 1 ) 2 2 M 256 (4, 1, 2) S 3 M 256 (4, 2, 2) M 257 (0, 4, 4 2 ) 1 M 257 (0, 2, 4 2 ) 2 M 257 (0, 4, 6) 2 2 M 257 (0, 4, 2) 2 2 M 257 (2, 4, 2) 1 M 257 (2, 4, 4 2 ) 1 M 257 (2, 4, 6 : 1) 1 M 257 (2, 4, 6 : 2) 2 M 257 (2, 4, 4 1 : 1) 1 M 257 (2, 4, 4 1 : 2) 2 M 257 (2, 2, 4 2 : 1) 1 M 257 (2, 2, 4 2 : 2) 2 M 257 (2, 6, 4 2 ) 2 M 257 (4, 2, 4 2 ) 1 M 257 (4, 4, 4 2 ) 1 M 257 (4, 4, 6) 1 M 257 (4, 4, 4 1 ) 3 M 257 (4, 4, 2) D 8 M 258 (0, 3, 4 2 : 1) 3 M 258 (0, 3, 4 2 : 2) 2 2 M 258 (0, 1, 6) 2 2 M 258 (0, 5, 2) 2 2 M 258 (0, 3, 2) 2 2 M 258 (0, 3, 6) 2 2 M 258 (2, 3, 2 : 1) 1 M 258 (2, 3, 2 : 2) 2

16 122 N. Kilic, P. Rowley M 258 (2, 3, 4 1 ) 1 M 258 (2, 5, 4 1 ) 1 M 258 (2, 1, 4 1 ) 1 M 258 (2, 3, 4 2 : 1) 1 M 258 (2, 3, 4 2 : 2) 2 M 258 (2, 3, 6 : 1) 1 M 258 (2, 3, 6 : 2) 2 M 258 (2, 1, 4 2 : 1) 2 M 258 (2, 1, 4 2 : 2) 2 M 258 (2, 5, 4 2 : 1) 2 M 258 (2, 5, 4 2 : 2) 3 M 258 (2, 5, 2) 2 M 258 (2, 1, 6) 2 M 258 (2, 5, 6 : 1) 2 M 258 (2, 5, 6 : 2) 2 M 258 (2, 1, 2) 2 M 258 (4, 3, 4 1 : 1) 1 M 258 (4, 3, 4 1 : 2) 2 M 258 (4, 3, 4 2 ) 1 M 258 (4, 1, 4 1 ) 2 M 258 (4, 5, 4 1 ) 2 M 258 (4, 3, 6 : 1) 2 M 258 (4, 3, 6 : 2) 2 2 M 258 (4, 3, 2 : 1) 2 M 258 (4, 3, 2 : 2) 2 2 M 258 (4, 5, 6) 2 2 M 258 (4, 1, 2) S 3 M 266 (1, 1, 0 1 ) 1 M 266 (0, 0, 0 1 ) 1 M 266 (0, 1, 0 2 ) 2 M 266 (0, 0, 1) 3 M 266 (1, 1, 0 2 ) 2 2 M 266 (2, 0, 0 1 ) 2 2 M 266 (1, 0, 0 2 ) 2 2 M 266 (0, 0, 1) 2 2 M 266 (1, 2, 0 1 ) 2 2 M 266 (2, 0, 0 2 ) 2 D 8 M 266 (2, 0, 0 1 ) 2 2 M 267 (0, 4, 0 : 1) 1 M 267 (0, 4, 0 : 2) 2 M 267 (0, 4, 1) 1 M 267 (0, 4, 2 1 ) 1 M 267 (0, 2, 2 1 ) 2 M 267 (0, 2, 0 : 1) 2 M 267 (0, 2, 0 : 2) D 8 M 267 (0, 6, 0) D 8 M 267 (0, 4, 2 2 ) 2 M 267 (1, 2, 0) 1 M 267 (1, 4, 2 2 ) 1 M 267 (1, 4, 0) 1 M 267 (1, 4, 2 1 ) 2 M 267 (1, 2, 2 1 ) 2 M 267 (1, 6, 2 1 ) D 10 M 267 (2, 4, 1) 2 M 267 (2, 2, 0) 2 2 M 267 (2, 4, 2 1 ) 4 M 267 (2, 4, 2 2 ) D 8 M 268 (0, 3, 2) 1 M 268 (0, 3, 0) 1 M 268 (0, 5, 1 1 ) 2 M 268 (0, 1, 1 1 ) 2 M 268 (0, 1, 2) 2 M 268 (0, 5, 0 : 1) 2 M 268 (0, 5, 0 : 2) 2 2 M 268 (0, 3, 1 1 ) 2 M 268 (0, 5, 2) 2 2 M 268 (0, 1, 0) 2 2 M 268 (1, 3, 0 : 1) 1 M 268 (1, 3, 0 : 2) 2 M 268 (1, 3, 2 : 1) 1 M 268 (1, 3, 2 : 2) 2 M 268 (1, 5, 2) 2 M 268 (1, 1, 0) 2 M 268 (2, 3, 1 1 ) 2 M 268 (2, 3, 0) 2 2

17 On Rank 2 and Rank 3 Residually Connected Geometries for M M 268 (2, 3, 2) 2 2 M 268 (2, 3, 1 2 ) 2 2 M 268 (2, 5, 2) S 3 M 268 (2, 1, 0) S 3 M 277 (4, 4, 8 2 ) 1 M 277 (2, 2, 8 1 : 1) 1 M 277 (2, 2, 8 1 : 2) 2 M 277 (4, 2, 8 1 : 1) 1 M 277 (4, 2, 8 1 : 2) 2 M 277 (4, 4, 8 1 ) 1 M 277 (2, 4, 4) 1 M 277 (4, 4, 6) 1 M 277 (4, 4, 4) 1 M 277 (4, 6, 8 1 ) 2 M 277 (2, 2, 8 1 ) 2 M 277 (2, 2, 4) 2 2 M 277 (2, 6, 4) D 8 M 278 (4, 1, 4 : 1) 1 M 278 (4, 1, 4 : 2) 2 M 278 (4, 3, 4) 1 M 278 (4, 1, 6 2 ) 1 M 278 (4, 3, 6 2 ) 1 M 278 (4, 3, 6 1 ) 1 M 278 (4, 3, 8 : 1) 1 M 278 (4, 3, 8 : 2) 2 M 278 (4, 5, 6 2 ) 1 M 278 (4, 5, 8 : 1) 1 M 278 (4, 5, 8 : 2) 2 M 278 (4, 1, 8) 2 M 278 (4, 1, 6 1 ) 2 M 278 (4, 5, 4) 2 M 278 (4, 5, 6 1 ) 2 M 278 (4, 3, 4) 2 M 288 (3, 5, 5 1 ) 1 M 288 (3, 3, 5 1 ) 1 M 288 (5, 1, 5 1 ) 1 M 288 (3, 3, 3) 1 M 288 (1, 3, 5 1 ) 1 M 288 (3, 3, 5 2 ) 1 M 288 (3, 3, 7 1 ) 1 M 288 (3, 5, 7 1 : 1) 1 M 288 (3, 5, 7 1 : 2) 2 M 288 (3, 3, 7 2 ) 1 M 288 (3, 5, 7 2 ) 2 M 288 (5, 5, 7 1 ) 2 M 288 (1, 3, 7 1 : 1) 1 M 288 (1, 3, 7 1 : 2) 2 M 288 (1, 3, 5 2 ) 2 M 288 (5, 3, 5 2 ) 2 M 288 (3, 5, 3) 2 M 288 (3, 1, 3) 2 M 288 (1, 3, 7 2 ) 2 M 288 (5, 5, 7 2 ) 3 M 288 (1, 1, 7 2 ) 3 M 288 (1, 5, 3) 2 2 M 333 (1, 1, 3 : 1) 1 M 333 (1, 1, 3 : 2) S 3 M 333 (1, 1, 1) 2 M 333 (3, 1, 3) 2 M 333 (3, 3, 3 : 1) 1 M 333 (3, 3, 3 : 2) 2 M 334 (3, 2, 2 : 1) 1 M 334 (3, 2, 2 : 2) 2 M 334 (1, 2, 2 : 1) 1 M 334 (1, 2, 2 : 2) 2 M 334 (3, 2, 4) 2 M 334 (1, 2, 4 : 1) 2 M 334 (1, 2, 4 : 2) 4 M 334 (3, 2, 0) 2 M 334 (1, 2, 0) 4 M 334 (3, 4, 4 : 1) 2 2 M 334 (3, 4, 4 : 2) S 3 M 334 (1, 4, 0) S 3 M 334 (3, 0, 0) A 4 M 334 (1, 4, 4) 3 2 2

18 124 N. Kilic, P. Rowley M 335 (1, 2, 2) 1 M 335 (1, 2, 4 : 1) 1 M 335 (1, 2, 4, : 2) 2 M 335 (3, 4, 2 : 1) 1 M 335 (3, 4, 2 : 2) 2 M 335 (3, 4, 4 : 1) 1 M 335 (3, 4, 4 : 2) 2 M 335 (3, 0, 2) 2 M 335 (1, 4, 4) 2 M 335 (1, 2, 0) S 3 M 335 (3, 2, 2) 1 M 335 (1, 0, 4) 4 M 336 (3, 0, 1 : 1) 1 M 336 (3, 0, 1 : 2) 2 M 336 (1, 1, 0 : 1) 1 M 336 (1, 1, 0 : 2) 2 M 336 (1, 0, 0) 2 M 336 (3, 0, 0) 1 M 336 (3, 2, 1) 2 M 336 (3, 2, 0) 2 2 M 336 (1, 2, 0 : 1) 4 M 336 (1, 2, 0 : 2) S 3 M 336 (3, 2, 2) D 8 M 337 (3, 4, 2 : 1) 1 M 337 (3, 4, 2 : 2) 2 M 337 (3, 6, 4 : 1) 1 M 337 (3, 6, 4 : 2) 2 M 337 (3, 2, 2 : 1) 1 M 337 (3, 2, 2 : 2) 2 M 337 (1, 4, 2 : 1) 1 M 337 (1, 4, 2 : 2) 2 M 337 (1, 6, 2) 2 M 337 (3, 6, 6) 2 M 337 (1, 6, 4) 1 M 337 (3, 6, 2) 4 M 337 (1, 2, 2) 4 M 338 (3, 2, 4 : 1) 1 M 338 (3, 2, 4 : 2) 2 M 338 (1, 4, 4) 1 M 338 (3, 4, 4) 1 M 338 (3, 2, 2 : 1) 1 M 338 (3, 2, 2 : 2) 2 M 338 (1, 2, 4 : 1) 1 M 338 (1, 2, 4 : 2) 2 M 338 (1, 2, 2) 2 M 338 (1, 6, 4) 2 M 338 (3, 4, 6) 2 M 338 (1, 2, 6) 2 M 338 (3, 6, 2) 2 2 M 338 (3, 6, 6) S 3 M 345 (2, 2, 2) 1 M 345 (2, 2, 4 : 1) 1 M 345 (2, 2, 4 : 2) 2 M 345 (2, 4, 4 : 1) 1 M 345 (2, 4, 4 : 2) 2 M 345 (4, 2, 2) 1 M 345 (4, 4, 4) 2 M 345 (0, 4, 2) 2 M 345 (0, 2, 2) 2 M 345 (4, 2, 4) 2 M 345 (2, 4, 0) 4 M 345 (4, 0, 2) S 3 M 345 (0, 0, 4) A 4 M 345 (4, 0, 0) S 4 M 346 (4, 0, 0) 2 M 346 (4, 1, 2) S 3 M 346 (4, 2, 2) D 12 M 346 (0, 0, 1) 2 M 346 (0, 0, 0) S 3 M 346 (0, 2, 0) D 8 M 346 (2, 0, 0 : 1) 1 M 346 (2, 0, 0 : 2) 2

19 On Rank 2 and Rank 3 Residually Connected Geometries for M M 346 (2, 1, 0 : 1) 1 M 346 (2, 1, 0 : 2) 2 M 346 (2, 2, 1) 2 M 346 (2, 2, 0) 2 M 347 (4, 2, 4) 2 M 347 (4, 6, 4) 2 M 347 (4, 2, 2 : 1) 2 M 347 (4, 2, 2 : 2) 4 M 347 (4, 6, 6) 4 M 347 (0, 2, 4) 2 M 347 (0, 2, 6) 4 M 347 (2, 6, 4 : 1) 1 M 347 (2, 6, 4 : 2) 2 M 347 (2, 2, 4 : 1) 1 M 347 (2, 2, 4 : 2) 2 M 347 (2, 2, 2) 1 M 347 (2, 6, 2) 2 M 347 (2, 6, 6) 4 M 348 (4, 4, 5 : 1) 1 M 348 (4, 4, 5 : 2) 2 M 348 (4, 2, 3 : 1) 1 M 348 (4, 2, 3 : 2) 2 M 348 (4, 4, 3 : 1) 1 M 348 (4, 4, 3 : 2) 2 M 348 (4, 2, 5) 2 2 M 348 (4, 6, 5 : 1) 2 2 M 348 (4, 6, 5 : 2) S 3 M 348 (4, 2, 1 : 1) 2 2 M 348 (4, 2, 1 : 2) S 3 M 348 (0, 4, 3) 1 M 348 (0, 2, 3) 2 M 348 (0, 2, 5 : 1) 2 M 348 (0, 2, 5 : 2) 2 2 M 348 (0, 4, 5) 2 M 348 (0, 6, 1) A 4 M 348 (2, 4, 5 : 1) 1 M 348 (2, 4, 5 : 2) 2 M 348 (2, 4, 3 : 1) 1 M 348 (2, 4, 3 : 2) 2 M 348 (2, 6, 3 : 1) 1 M 348 (2, 6, 3 : 2) 2 M 348 (2, 2, 3 : 1) 1 M 348 (2, 2, 3 : 2) 2 M 348 (2, 4, 1 : 1) 1 M 348 (2, 4, 1 : 2) 2 M 348 (2, 2, 1) 2 M 348 (2, 6, 5) 2 M 355 (4, 4, 4 1 ) 1 M 355 (2, 2, 4 1 : 1) 1 M 355 (2, 2, 4 1 : 2) 2 M 355 (2, 2, 4 2 ) 1 M 355 (2, 4, 4 1 ) 1 M 355 (2, 2, 2 : 1) 1 M 355 (2, 2, 2 : 2) 2 M 355 (2, 4, 2) 1 M 355 (2, 4, 4 2 ) 2 M 355 (0, 2, 2) 2 M 355 (0, 2, 4 1 ) 2 M 355 (0, 4, 2) 2 M 355 (4, 4, 2) 2 M 355 (4, 4, 4 2 ) 2 M 355 (0, 2, 4 2 ) 2 2 M 355 (4, 2, 0) 2 2 M 356 (4, 1, 0 2 ) 1 M 356 (4, 0, 0 2 ) 1 M 356 (4, 0, 1) 1 M 356 (4, 2, 1) 1 M 356 (4, 1, 2) 2 M 356 (4, 0, 2) 2 2 M 356 (4, 2, 2) 2 2 M 356 (4, 0, 0 1 ) S 3 M 356 (4, 2, 0 1 ) D 8 M 356 (2, 0, 1) 1 M 356 (2, 0, 0 2 : 1) 1 M 356 (2, 0, 0 2 : 2) 2

20 126 N. Kilic, P. Rowley M 356 (2, 1, 0 2 ) 1 M 356 (2, 1, 2) 2 M 356 (2, 1, 0 1 : 1) 2 M 356 (2, 1, 0 1 : 2) 2 2 M 356 (2, 0, 2) 2 M 356 (2, 2, 0 2 ) 2 M 356 (2, 2, 1) 2 M 356 (2, 0, 0 1 ) 2 2 M 356 (0, 0, 1) 3 M 356 (0, 0, 2) S 3 M 356 (0, 2, 0 2 ) D 8 M 357 (2, 2, 6 : 1) 1 M 357 (2, 2, 6 : 2) 2 M 357 (2, 6, 4 2 ) 1 M 357 (2, 2, 2) 2 M 357 (2, 2, 4 1 ) 2 M 357 (2, 6, 6) 2 M 357 (2, 6, 2) 2 M 357 (2, 6, 4 1 ) 2 M 357 (4, 2, 4 2 ) 1 M 357 (4, 6, 4 2 ) 1 M 357 (4, 2, 2) 2 M 357 (4, 2, 4 1 ) 2 M 357 (4, 2, 6) 2 M 357 (4, 6, 6) 2 M 357 (0, 4, 4 2 ) 1 M 357 (0, 2, 6) 2 M 357 (0, 6, 2) S 3 M 358 (2, 4, 6) 1 M 358 (2, 4, 2) 1 M 358 (2, 6, 4 1 ) 1 M 358 (2, 2, 4 1 ) 1 M 358 (2, 2, 4 2 ) 1 M 358 (2, 4, 4 1 ) 1 M 358 (2, 4, 4 2 ) 1 M 358 (2, 2, 2) 1 M 358 (2, 2, 6) 1 M 358 (2, 6, 4 2 ) 2 M 358 (2, 6, 2) 2 M 358 (2, 2, 6) 2 M 358 (4, 4, 6) 1 M 358 (4, 2, 4 1 ) 1 M 358 (4, 2, 4 2 : 1) 1 M 358 (4, 2, 4 2 : 2) 2 M 358 (4, 4, 4 2 ) 1 M 358 (4, 2, 2 : 1) 1 M 358 (4, 2, 2 : 2) 2 M 358 (4, 4, 2 : 1) 1 M 358 (4, 4, 2 : 2) 2 M 358 (4, 4, 4 1 ) 1 M 358 (4, 6, 6) 2 M 358 (4, 4, 6) 2 M 358 (4, 2, 6) 2 M 358 (4, 6, 4 2 ) 3 M 358 (0, 4, 4 1 ) 1 M 358 (0, 2, 4 1 ) 2 M 358 (0, 2, 6) 2 M 358 (0, 4, 2) 2 M 358 (0, 2, 4 2 ) 2 2 M 358 (0, 6, 2) S 3 M 366 (1, 1, 0 1 ) 1 M 366 (1, 0, 0 1 : 1) 1 M 366 (1, 0, 0 1 : 2) 2 M 366 (0, 0, 0 1 : 1) 1 M 366 (0, 0, 0 1 : 2) 2 M 366 (0, 0, 1) 1 M 366 (1, 2, 0 1 ) 2 M 366 (2, 0, 0 1 ) 2 M 366 (0, 0, 0 2 ) 2 M 366 (0, 1, 0 2 ) 2 M 366 (2, 1, 0 2 ) D 8 M 366 (2, 2, 1) A 4 M 367 (1, 4, 0) 1 M 367 (1, 2, 0 : 1) 1

21 On Rank 2 and Rank 3 Residually Connected Geometries for M M 367 (1, 2, 0 : 2) 4 M 367 (1, 4, 2 1 : 1) 1 M 367 (1, 4, 2 1 : 2) 2 M 367 (1, 6, 2 2 ) 2 M 367 (1, 2, 2 1 ) 2 M 367 (1, 6, 2 1 ) 2 M 367 (1, 2, 2 2 ) 2 M 367 (0, 4, 0 : 1) 1 M 367 (0, 4, 0 : 2) 1 M 367 (0, 2, 1 : 1) 1 M 367 (0, 2, 1 : 2) 2 M 367 (0, 6, 0) 2 M 367 (0, 2, 0) 2 M 367 (0, 2, 2 1 ) 1 M 367 (0, 6, 1) 1 M 367 (0, 2, 2 2 ) 2 M 367 (0, 6, 2 1 ) 4 M 367 (2, 4, 0) 2 M 367 (2, 4, 2 1 ) 2 M 367 (2, 2, 1) 2 M 367 (2, 2, 0) 2 M 367 (2, 6, 2 1 ) 4 M 367 (2, 6, 2 2 ) S 3 M 368 (0, 4, 2 : 1) 1 M 368 (0, 4, 2 : 2) 2 M 368 (0, 2, 1 1 ) 1 M 368 (0, 4, 1 2 ) 1 M 368 (0, 4, 0 : 1) 1 M 368 (0, 4, 0 : 2) 2 M 368 (0, 2, 1 2 ) 1 M 368 (0, 2, 2 : 1) 1 M 368 (0, 2, 2 : 2) 2 M 368 (0, 2, 2 : 3) 2 2 M 368 (0, 6, 1 1 ) 2 M 368 (0, 2, 0 : 1) 2 M 368 (0, 2, 0 : 2) 2 2 M 368 (0, 6, 0) 2 M 368 (1, 2, 0 : 1) 1 M 368 (1, 2, 0 : 2) 2 M 368 (1, 2, 2) 1 M 368 (1, 4, 0 : 1) 1 M 368 (1, 4, 0 : 2) 2 M 368 (1, 6, 2) 2 M 368 (2, 4, 1 2 ) 1 M 368 (2, 4, 0) 2 M 368 (2, 4, 2) 2 M 368 (2, 2, 0 : 1) 2 M 368 (2, 2, 0 : 2) 2 2 M 368 (2, 2, 1 1 ) 2 M 368 (2, 2, 1 2 ) 3 M 368 (2, 6, 2) 2 2 M 377 (6, 2, 6) 1 M 377 (2, 2, 6) 1 M 377 (2, 2, 8 1 ) 1 M 377 (2, 4, 4 : 1) 1 M 377 (2, 4, 4 : 2) 2 M 377 (2, 2, 8 2 ) 2 M 377 (2, 6, 4) 4 M 377 (4, 6, 8 1 ) 1 M 377 (4, 2, 8 1 ) 1 M 377 (6, 2, 4) 2 M 377 (4, 6, 4) 2 M 377 (6, 6, 8 2 ) S 3 M 377 (6, 6, 8 1 ) 1 M 378 (6, 4, 8 : 1) 1 M 378 (6, 4, 8 : 2) 2 M 378 (6, 2, 6 2 ) 1 M 378 (6, 4, 4) 1 M 378 (6, 2, 4 : 1) 1 M 378 (6, 2, 4 : 2) 2 M 378 (6, 2, 6 1 ) 2 M 378 (6, 6, 8) 2 M 378 (2, 2, 8 : 1) 1 M 378 (2, 2, 8 : 2) 2

22 128 N. Kilic, P. Rowley M 378 (2, 2, 4 : 1) 1 M 378 (2, 2, 4 : 2) 2 M 378 (2, 4, 6 1 ) 1 M 378 (2, 2, 6 2 ) 1 M 378 (2, 4, 8 : 1) 1 M 378 (2, 4, 8 : 2) 2 M 378 (2, 4, 4) 1 M 378 (2, 6, 6 2 ) 1 M 378 (2, 2, 6 1 ) 2 M 378 (2, 6, 4) 2 M 388 (2, 4, 3) 1 M 388 (4, 4, 3) 1 M 388 (4, 4, 5 2 ) 1 M 388 (4, 6, 5 1 ) 1 M 388 (4, 2, 5 1 ) 1 M 388 (6, 4, 7 1 ) 1 M 388 (2, 2, 7 1 ) 1 M 388 (2, 2, 7 2 : 1) 1 M 388 (2, 2, 7 2 : 2) 2 M 388 (2, 4, 7 2 ) 1 M 388 (4, 4, 7 2 ) 1 M 388 (4, 4, 7 1 ) 1 M 388 (2, 4, 3) 1 M 388 (2, 4, 5 2 : 1) 1 M 388 (2, 4, 5 2 : 2) 2 M 388 (2, 2, 5 1 ) 1 M 388 (2, 6, 5 1 ) 1 M 388 (2, 6, 3 : 1) 2 M 388 (2, 6, 3 : 2) 2 2 M 388 (6, 6, 7 1 ) 2 M 388 (6, 4, 7 2 ) 2 M 388 (2, 6, 5 2 ) 2 M 555 (2, 2, 2) 1 M 555 (4 1, 2, 2) 1 M 555 (4 2, 2, 2) 1 M 555 (4 2, 4 1, 4 1 ) 1 M 555 (4 2, 4 1, 4 2 ) 2 M 556 (4 2, 1, 0 2 ) 1 M 556 (2, 1, 2) 1 M 556 (4 1, 0 2, 0 2 : 1) 1 M 556 (4 1, 0 2, 0 2 : 2) 2 M 556 (4 1, 1, 0 2 ) 1 M 556 (4 1, 2, 1) 1 M 556 (2, 0 2, 0 2 ) 1 M 556 (4 1, 2, 0 2 ) 2 M 556 (4 1, 2, 2) 2 M 556 (4 2, 1, 2) 2 M 556 (2, 0 1, 1) 2 M 556 (2, 0 2, 2) 2 M 556 (4 1, 0 1, 1) 3 M 556 (0, 2, 0 2 ) 2 3 M 556 (4 2, 2, 2) M 556 (0, 0 1, 0 1 ) M 557 (4 1, 4 2, 6) 1 M 557 (4 1, 4 2, 2) 1 M 557 (4 2, 2, 4 2 ) 1 M 557 (4 2, 6, 4 2 ) 1 M 558 (2, 2, 4 1 ) 1 M 558 (2, 6, 4 1 ) 1 M 558 (2, 4 2, 2) 1 M 558 (2, 4 2, 6) 1 M 558 (4 2, 4 1, 2) 1 M 558 (4 2, 6, 4 1 ) 1 M 558 (4 1, 6, 6 : 1) 1 M 558 (4 1, 6, 6 : 2) 2 M 558 (4 1, 4 2, 6) 1 M 558 (4 1, 2, 2 : 1) 1 M 558 (4 1, 2, 2 : 2) 2 M 558 (4 1, 4 2, 4 1 ) 1 M 558 (2, 6, 2 : 1) 1 M 558 (2, 6, 2 : 2) 2 M 558 (4 1, 6, 4 1 ) 1 M 558 (4 1, 2, 4 2 ) 1 M 558 (4 1, 2, 4 1 ) 1 M 558 (4 2, 4 2, 4 2 ) 1

23 On Rank 2 and Rank 3 Residually Connected Geometries for M M 558 (2, 6, 6) 2 M 558 (4 1, 6, 2) 2 M 558 (4 2, 6, 6) 2 M 558 (4 2, 2, 2) 2 M 558 (0, 6, 2) 2 2 M 558 (4 1, 4 2, 4 2 ) 2 M 558 (0, 4 2, 4 2 ) 3 M 558 (4 2, 2, 6) 2 2 M 566 (1, 0 2, 0 1 ) 1 M 566 (2, 1, 0 1 ) 1 M 566 (1, 1, 0 1 ) 1 M 566 (0 1, 1, 0 1 ) 2 M 566 (2, 0 2, 0 1 ) 2 M 566 (2, 2, 1) 2 2 M 566 (0 1, 0 2, 0 1 ) 2 2 M 566 (2, 2, 0 1 ) 2 2 M 566 (0 1, 0 1, 0 2 ) M 566 (0 1, 2, 0 2 ) M 567 (0 1, 6, 0) 2 2 M 567 (0 1, 4 1, 0) D 8 M 567 (0 2, 6, 0) 1 M 567 (0 2, 4 2, 0) 1 M 567 (0 2, 4 2, 2 2 ) 1 M 567 (0 2, 4 2, 2 1 ) 1 M 567 (0 2, 4 1, 0) 2 M 567 (0 2, 4 1, 2 1 ) 2 M 567 (0 2, 2, 2 1 ) 2 M 567 (0 2, 6, 2 1 ) 2 M 567 (1, 2, 0) 1 M 567 (1, 4 1, 0) 1 M 567 (1, 6, 2 1 ) 1 M 567 (1, 4 2, 0) 1 M 567 (1, 4 2, 2 2 ) 1 M 567 (1, 4 2, 2 1 ) 1 M 567 (1, 6, 0) 1 M 567 (1, 2, 2 1 ) 2 M 567 (1, 4 1, 2 1 ) 2 M 567 (2, 4 2, 1) 1 M 567 (2, 4 2, 2 1 ) 1 M 567 (2, 4 2, 0 : 1) 1 M 567 (2, 4 2, 0 : 2) 2 M 567 (2, 6, 2 1 ) 2 M 567 (2, 4 2, 2 2 ) 2 M 567 (2, 2, 0) 2 M 567 (2, 4 1, 0) 2 2 M 568 (0 1, 4, 0) 2 M 568 (0 1, 4, 2) 2 M 568 (0 1, 4, 1) 2 M 568 (0 1, 6, 1) 2 2 M 568 (0 1, 6, 0) 2 2 M 568 (0 1, 2, 2) 2 2 M 568 (0 2, 2, 1 2 : 1) 1 M 568 (0 2, 2, 1 2 : 2) 2 M 568 (0 2, 2, 2) 1 M 568 (0 2, 4 1, 1 1 ) 1 M 568 (0 2, 6, 0) 1 M 568 (0 2, 4 2, 0 : 1) 1 M 568 (0 2, 4 2, 0 : 2) 2 M 568 (0 2, 4 2, 1 1 ) 1 M 568 (0 2, 4 2, 1 2 ) 1 M 568 (0 2, 4 2, 2 : 1) 1 M 568 (0 2, 4 2, 2 : 2) 2 M 568 (0 2, 6, 2) 2 M 568 (0 2, 6, 1 1 ) 2 M 568 (0 2, 6, 1 2 ) 2 M 568 (0 2, 2, 1 1 ) 2 M 568 (0 2, 2, 0) 2 M 568 (1, 4 1, 0) 1 M 568 (1, 4 1, 2) 1 M 568 (1, 6, 2) 1 M 568 (1, 2, 2) 1 M 568 (1, 6, 0 : 1) 1 M 568 (1, 6, 0 : 2) 2

24 130 N. Kilic, P. Rowley M 568 (1, 4 2, 2) 1 M 568 (1, 2, 0) 2 M 568 (1, 2, 2) 2 M 568 (1, 4 2, 0) 1 M 568 (1, 6, 2) 2 M 568 (2, 4 2, 1 1 ) 1 M 568 (2, 4 1, 0) 1 M 568 (2, 4 1, 1 2 ) 1 M 568 (2, 4 1, 2) 1 M 568 (2, 4 2, 0) 2 M 568 (2, 4 2, 2) 2 M 568 (2, 6, 1 1 ) 2 M 568 (2, 2, 1 1 ) 2 M 568 (2, 2, 0) 2 M 568 (2, 6, 1 2 ) 2 M 568 (2, 6, 2) 2 M 577 (4 2, 4 2, 8 2 ) 1 M 577 (6, 4 2, 8 1 ) 1 M 577 (2, 6, 4) 1 M 577 (4 1, 4 2, 4) 1 M 577 (4 2, 6, 4) 1 M 577 (2, 2, 8 1 : 1) 1 M 577 (2, 2, 8 1 : 2) 2 M 577 (4 2, 4 2, 8 1 ) 1 M 577 (6, 6, 8 1 ) 1 M 577 (6, 4 1, 8 1 ) 1 M 577 (6, 2, 8 1 ) 2 M 577 (4 1, 6, 4) 2 M 577 (2, 4 2, 4) 2 M 577 (2, 4 1, 8 1 ) 2 M 577 (4 1, 4 1, 4) 2 2 M 578 (4 2, 4 1, 8) 1 M 578 (4 2, 4 2, 8) 1 M 578 (4 2, 6, 8) 1 M 578 (4 2, 2, 8) 1 M 578 (4 2, 4 1, 4) 1 M 578 (4 2, 2, 4) 1 M 578 (4 2, 6, 4) 1 M 578 (4 2, 4 2, 6 1 ) 1 M 578 (4 2, 4 1, 6 1 ) 1 M 578 (4 2, 4 2, 4) 1 M 588 (4 2, 4 1, 5 2 ) 1 M 588 (6, 6, 5 1 ) 1 M 588 (4 2, 6, 5 1 ) 1 M 588 (4 2, 4 1, 3) 1 M 588 (4 2, 4 2, 3) 1 M 588 (4 2, 4 1, 7 1 ) 1 M 588 (4 2, 4 2, 7 1 ) 1 M 588 (6, 4 1, 7 1 ) 1 M 588 (2, 2, 7 1 ) 1 M 588 (6, 6, 7 1 ) 1 M 588 (4 1, 4 2, 7 2 ) 1 M 588 (6, 6, 7 2 ) 1 M 588 (2, 2, 7 2 ) 1 M 588 (4 2, 4 2, 7 2 ) 1 M 588 (4 1, 2, 7 2 ) 1 M 588 (6, 4 1, 3) 1 M 588 (2, 6, 3 : 1) 1 M 588 (2, 6, 3 : 2) 2 M 588 (2, 4 1, 3) 1 M 588 (4 2, 2, 5 2 ) 1 M 588 (4 2, 6, 5 2 ) 1 M 588 (2, 2, 5 1 ) 1 M 588 (2, 6, 5 1 ) 1 M 588 (2, 2, 5 2 ) 2 M 588 (6, 6, 5 2 ) 2 M 588 (4 2, 2, 3) 2 M 588 (4 2, 6, 3) 2 M 588 (2, 6, 7 1 ) 2 M 588 (4 2, 6, 7 1 ) 2 M 588 (2, 4 2, 7 1 ) 2 M 666 (0 1, 0 1, 0 1 ) 1 M 666 (0 1, 0 1, 1) 1

25 On Rank 2 and Rank 3 Residually Connected Geometries for M M 666 (0 1, 1, 0 2 ) 2 M 666 (0 1, 0 2, 0 1 ) 2 M 666 (0 1, 0 2, 0 2 ) 2 2 M 666 (0 2, 0 2, 0 2 ) 2 3 M 667 (0 2, 0, 1) 1 M 667 (1, 0, 0) 1 M 667 (0 1, 0, 0 : 1) 1 M 667 (0 1, 0, 0 : 2) 2 M 667 (0 1, 0, 1) 1 M 667 (0 1, 0, 2 2 : 1) 1 M 667 (0 1, 0, 2 2 : 2) 2 M 667 (1, 2 2, 2 1 ) 2 M 667 (0 1, 2 1, 0) 2 M 667 (0 2, 2 1, 1) 2 M 667 (1, 2 1, 2 1 ) 2 M 667 (0 1, 2 2, 2 1 ) 2 M 667 (0 2, 0, 0) 2 2 M 668 (1, 0, 0 : 1) 1 M 668 (1, 0, 0 : 2) 2 M 668 (1, 2, 2 : 1) 1 M 668 (1, 2, 2 : 2) 2 M 668 (0 1, 1 1, 0) 1 M 668 (0 1, 2, 1 2 ) 1 M 668 (0 1, 1 2, 0) 1 M 668 (0 1, 1 1, 1 1 ) 1 M 668 (0 1, 0, 0) 1 M 668 (0 1, 0, 2) 1 M 668 (0 1, 1 2, 1 2 ) 1 M 668 (0 1, 1, 2) 1 M 668 (0 1, 2, 2) 1 M 668 (0 2, 1 1, 1 1 ) 2 M 668 (0 2, 0, 0) 2 M 668 (0 2, 1 2, 1 2 ) 2 M 668 (0 2, 1 1, 0) 2 M 668 (0 2, 1 1, 1 2 ) 2 M 668 (0 2, 0, 2 : 1) 2 M 668 (0 2, 0, 2 : 2) 2 2 M 668 (0 2, 2, 2) 2 M 668 (0 2, 1 1, 2) 2 M 668 (0 2, 1 2, 2) 2 2 M 677 (2 2, 1, 4) 1 M 677 (2 1, 0, 4) 1 M 677 (1, 0, 4) 1 M 677 (2 1, 0, 6) 1 M 677 (2 1, 2 1, 6) 1 M 677 (2 1, 2 2, 8 1 ) 1 M 677 (1, 2 2, 8 1 ) 1 M 677 (2 1, 1, 8 1 ) 1 M 677 (2 1, 0, 8 1 ) 1 M 677 (1, 0, 8 1 ) 1 M 677 (2 1, 2 1, 8 1 ) 1 M 677 (0, 0, 8 1 : 1) 1 M 677 (0, 0, 8 1 : 2) 2 M 677 (0, 0, 6) 1 M 677 (2 1, 2 1, 8 2 ) 2 M 677 (2 1, 1, 4) 2 M 677 (2 2, 2 2, 8 1 ) 2 M 677 (0, 0, 8 2 ) 2 M 677 (2 2, 0, 4 : 1) 2 M 677 (2 2, 0, 4 : 2) 2 2 M 677 (2 1, 2 1, 4) 2 M 678 (0, 1 1, 6 1 ) 1 M 678 (0, 1 2, 6 1 : 1) 1 M 678 (0, 1 2, 6 1 : 2) 2 M 678 (0, 0, 8 : 1) 1 M 678 (0, 0, 8 : 2) 2 M 678 (0, 1 1, 8) 1 M 678 (0, 1 1, 4) 1 M 678 (0, 2, 4 : 1) 1 M 678 (0, 2, 4 : 2) 2 M 678 (0, 0, 6 2 ) 1 M 678 (0, 1 1, 6 2 ) 1 M 678 (0, 2, 6 2 ) 1

26 132 N. Kilic, P. Rowley M 678 (0, 0, 6 1 ) 2 M 678 (0, 2, 6 1 ) 2 M 678 (0, 2, 8) 2 M 678 (0, 0, 4) 2 M 678 (2 1, 1 2, 6 1 ) 1 M 678 (2 1, 1 2, 8) 1 M 678 (2 1, 2, 8) 1 M 678 (2 1, 0, 6 2 ) 1 M 678 (2 1, 1 2, 6 2 ) 1 M 678 (2 1, 2, 6 2 ) 1 M 678 (2 1, 0, 4) 1 M 678 (2 1, 1, 4) 1 M 678 (2 1, 0, 6 1 ) 2 M 678 (2 1, 2, 6 1 ) 2 M 678 (2 1, 0, 8) 2 M 678 (2 1, 2, 4) 2 M 688 (0, 1 1, 5 2 ) 1 M 688 (0, 1 2, 5 2 ) 1 M 688 (1 2, 2, 5 2 ) 1 M 688 (1 1, 2, 5 2 ) 1 M 688 (0, 0, 7 2 ) 1 M 688 (1 2, 0, 7 2 ) 1 M 688 (1 1, 0, 7 2 ) 1 M 688 (2, 1 1, 7 2 ) 1 M 688 (2, 1 2, 7 2 ) 1 M 688 (2, 2, 7 2 ) 1 M 688 (0, 1 2, 3) 1 M 688 (1 2, 2, 3) 1 M 688 (0, 0, 7 1 ) 1 M 688 (1 2, 0, 7 1 ) 1 M 688 (1 1, 0, 7 1 ) 1 M 688 (2, 1 2, 7 1 ) 1 M 688 (2, 1 1, 7 1 ) 1 M 688 (2, 2, 7 1 ) 1 M 688 (0, 0, 5 1 ) 1 M 688 (2, 2, 5 1 ) 1 M 688 (0, 0, 5 2 ) 2 M 688 (2, 2, 5 2 ) 2 M 688 (1 1, 2, 3) 2 M 777 (8 1, 8 2, 8 1 ) 1 M 777 (8 1, 4, 8 1 ) 1 M 777 (4, 8 1, 4) 1 M 777 (4, 4, 8 2 ) 2 2 M 778 (8 1, 4, 6 1 ) 1 M 778 (8 1, 6 1, 6 1 : 1) 1 M 778 (8 1, 6 1, 6 1 : 2) 2 M 778 (8 1, 8, 6 1 ) 1 M 778 (4, 6 1, 6 1 ) 1 M 778 (8 1, 6 2, 6 1 ) 1 M 778 (8 1, 8, 8) 1 M 778 (4, 4, 8 : 1) 1 M 778 (4, 4, 8 : 2) 2 M 778 (8 1, 4, 4) 1 M 778 (8 1, 8, 4) 1 M 778 (4 1, 6 2, 8) 1 M 888 (3, 7 1, 5 1 ) 1 M 888 (3, 7 1, 3 : 1) 1 M 888 (3, 7 1, 3 : 2) 2 M 888 (3, 7 2, 3) 1 M 888 (3, 5 2, 5 1 ) 1 M 888 (5 1, 5 2, 5 2 ) 1 M 888 (5 2, 7 1, 7 1 ) 1 M 888 (5 2, 7 2, 5 2 ) 1 M 888 (7 1, 7 1, 7 2 ) 1 M 888 (7 1, 7 1, 3) 1 M 888 (5 2, 5 2, 3) 1 M 888 (7 1, 7 2, 7 2 ) 1 M 888 (5 2, 7 1, 5 2 ) 2 M 888 (3, 7 2, 7 2 ) 3 We now define the subgroups for M ijk (t i, t j, t k : l) (l {1, 2, 3}) by giving the X i X such that G i = Stab G X i (i = 1, 2, 3).

27 On Rank 2 and Rank 3 Residually Connected Geometries for M M ijk (t i, t j, t k : l) X 1 X 2 X 3 M 116 (0, 0, 0 : 1) {9} {22} {17, 11} M 116 (0, 0, 0 : 2) {19} {22} {17, 11} M 118 (0, 0, 1 : 1) {11} {22} M 118 (0, 0, 1 : 2) {1} {22} M 125 (0, 0, 2 : 1) {19} O 2 M 125 (0, 0, 2 : 2) {0} O 2 M 126 (0, 0, 0 : 1) {22} h 1 {17, 11} M 126 (0, 0, 0 : 2) {4} h 1 {17, 11} M 128 (0, 1, 3 : 1) {22} h 1 M 128 (0, 1, 3 : 2) {4} h 1 M 128 (0, 0, 3 : 1) {17} h 1 M 128 (0, 0, 3 : 2) {1} h 1 M 133 (0, 0, 3 : 1) {22} h 7 M 133 (0, 0, 3 : 2) {0} h 7 M 135 (0, 0, 2 : 1) {4} O 3 M 135 (0, 0, 2 : 2) {8} O 3 M 135 (1, 0, 2 : 1) {0} O 3 M 135 (1, 0, 2 : 2) {17} O 3 M 135 (0, 0, 4 : 1) {0} h 1 O 2 M 135 (0, 0, 4 : 2) {22} h 1 O 2 M 136 (0, 0, 1 : 1) {22} h 1 {17, 11} M 136 (0, 0, 1 : 2) {0} h 1 {17, 11} M 138 (0, 1, 2 : 1) {13} M 138 (0, 1, 2 : 2) {8} M 138 (1, 0, 2 : 1) {0} M 138 (1, 0, 2 : 2) {17} M 138 (0, 0, 4 : 1) {0} h 6 M 138 (0, 0, 4 : 2) {17} h 6 M 155 (0, 0, 4 1 : 1) {19} O 2 O 4 M 155 (0, 0, 4 1 : 2) {0} O 2 O 4 M 156 (0, 0, 2 : 1) {22} O 2 {17, 11} M 156 (0, 0, 2 : 2) {8} O 2 {17, 11} M 157 (0, 1, 4 2 : 1) {16}

28 134 N. Kilic, P. Rowley M 157 (0, 1, 4 2 : 2) {0} M 158 (0, 1, 2 : 1) {4} O 3 M 158 (0, 1, 2 : 2) {8} O 3 M 158 (0, 1, 4 1 : 1) {20} O 7 M 158 (0, 1, 4 1 : 2) {16} O 7 M 158 (0, 0, 4 1 : 1) {12} O 7 M 158 (0, 0, 4 1 : 2) {3} O 7 M 158 (0, 0, 6 : 1) {0} O 2 M 158 (0, 0, 6 : 2) {1} O 2 M 158 (0, 1, 6 : 1) {22} O 2 M 158 (0, 1, 6 : 2) {8} O 2 M 166 (0, 0, 0 1 : 1) {0} {17, 11} {22, 19} M 166 (0, 0, 0 1 : 2) {1} {17, 11} {22, 19} M 167 (0, 0, 1 : 1) {1} {22, 19} M 167 (0, 0, 1 : 2) {4} {22, 19} M 168 (0, 0, 0 : 1) {1} {17, 11} M 168 (0, 0, 0 : 2) {0} {17, 11} M 168 (0, 1, 0 : 1) {4} {17, 11} M 168 (0, 1, 0 : 2) {8} {17, 11} M 168 (0, 1, 0 : 3) {22} {17, 11} M 168 (0, 0, 2 : 1) {1} {22, 19} M 168 (0, 0, 2 : 2) {0} {22, 19} M 168 (0, 1, 2 : 1) {4} {22, 19} M 168 (0, 1, 2 : 2) {8} {22, 19} M 177 (1, 1, 8 1 : 1) {16} M 177 (1, 1, 8 1 : 2) {22} M 188 (0, 0, 7 1 : 1) {12} e 4 M 188 (0, 0, 7 1 : 2) {9} e 4 M 188 (1, 1, 7 1 : 1) {16} e 4 M 188 (1, 1, 7 1 : 2) {22} e 4

29 On Rank 2 and Rank 3 Residually Connected Geometries for M M 222 (2, 2, 2 : 1) h 5 M 222 (2, 2, 2 : 2) h 1 h 3 M 223 (2, 3, 1 : 1) h 5 h 5 M 223 (2, 3, 1 : 2) h 3 h 1 M 223 (2, 3, 3 : 1) h 1 h 3 h 1 M 223 (2, 3, 3 : 2) h 5 M 225 (2, 2, 2 : 1) h 3 O 4 M 225 (2, 2, 2 : 2) O 2 M 226 (2, 0, 0 : 1) h 1 {22, 19} M 226 (2, 0, 0 : 2) h 1 h 4 {17, 11} M 227 (2, 4, 4 : 1) h 3 h 4 M 227 (2, 4, 4 : 2) h 3 M 228 (2, 3, 3 : 1) h 1 h 3 e 1 M 228 (2, 3, 3 : 2) h 1 M 228 (2, 3, 3 : 3) h 1 h 3 M 228 (2, 3, 5 : 1) h 1 M 228 (2, 3, 5 : 2) h 1 M 228 (2, 1, 3 : 1)

30 136 N. Kilic, P. Rowley M 228 (2, 1, 3 : 2) h 1 h 6 M 233 (3, 3, 3 : 1) h 1 h 5 M 233 (3, 3, 3 : 1) h 1 h 5 M 233 (3, 3, 3 : 2) h 6 h 6 M 233 (1, 1, 3 : 1) h 1 h 5 h 7 M 233 (1, 1, 3 : 2) h 1 h 7 M 234 (3, 3, 2 : 1) h 1 h 1 M 234 (3, 3, 2 : 2) h 1 h 1 M 235 (3, 2, 2 : 1) h 1 h 1 M 235 (3, 2, 2 : 2) h 5 M 235 (3, 4, 4 : 1) h 1 h 6 M 235 (3, 4, 4 : 2) h 1 O 3 M 235 (1, 4, 2 : 1) h 6 O 7 M 235 (1, 4, 2 : 2) h 6 M 236 (3, 0, 0 : 1) h 1 h 6 {17, 13} M 236 (3, 0, 0 : 2) h 1 h 6 {17, 4} M 236 (3, 0, 0 : 3) h 1 h 6 {17, 11}

31 On Rank 2 and Rank 3 Residually Connected Geometries for M M 236 (1, 0, 0 : 1) h 6 {4, 19} M 236 (1, 0, 0 : 2) h 1 {0, 13} M 236 (1, 1, 0 : 1) h 6 {9, 19} M 236 (1, 1, 0 : 2) h 1 {22, 19} M 237 (3, 4, 4 : 1) h 3 h 1 M 237 (3, 4, 4 : 2) h 3 M 237 (3, 4, 2 : 1) h 3 h 9 M 237 (3, 4, 2 : 2) h 9 M 237 (1, 4, 2 : 1) h 9 M 237 (1, 4, 2 : 2) h 6 h 9 M 237 (1, 4, 4 : 1) h 6 M 237 (1, 4, 4 : 2) h 3 h 6 M 238 (3, 3, 4 : 1) h 5 M 238 (3, 3, 4 : 2) M 238 (3, 3, 2 : 1) h 5 M 238 (3, 3, 2 : 2) M 238 (3, 3, 2 : 3) h 4 M 238 (3, 1, 2 : 1) h 6

32 138 N. Kilic, P. Rowley M 238 (3, 1, 2 : 2) M 238 (1, 3, 2 : 1) M 238 (1, 3, 2 : 2) M 238 (1, 3, 4 : 1) h 6 M 238 (1, 3, 4 : 2) h 4 h 6 M 255 (2, 2, 4 1 : 1) O 2 M 255 (2, 2, 4 1 : 2) O 2 M 256 (2, 0, 1 : 1) O 2 {3, 4} M 256 (2, 0, 1 : 2) O 2 {8, 4} M 257 (2, 4, 6 : 1) M 257 (2, 4, 6 : 2) M 257 (2, 4, 4 1 : 1) O 3 M 257 (2, 4, 4 1 : 2) O 3 M 257 (2, 2, 4 2 : 1)

33 On Rank 2 and Rank 3 Residually Connected Geometries for M M 257 (2, 2, 4 2 : 2) M 258 (0, 3, 4 2 : 1) h 1 O 2 e 1 M 258 (0, 3, 4 2 : 2) h 3 O 3 e 1 M 258 (2, 3, 2 : 1) h 1 e 1 M 258 (2, 3, 2 : 2) O 3 M 258 (2, 3, 4 2 : 1) O 3 e 1 M 258 (2, 3, 4 2 : 2) O 3 e 1 M 258 (2, 3, 6 : 1) O 2 M 258 (2, 3, 6 : 2) O 2 M 258 (2, 1, 4 2 : 1) O 3 e 1 M 258 (2, 1, 4 2 : 2) h 5 O 2 e 1 M 258 (2, 5, 4 2 : 1) O 3 e 1 M 258 (2, 5, 4 2 : 2) O 2 e 1 M 258 (2, 5, 6 : 1) O 2

34 140 N. Kilic, P. Rowley M 258 (2, 5, 6 : 2) M 258 (4, 3, 4 1 : 1) M 258 (4, 3, 4 1 : 2) M 258 (4, 3, 6 : 1) O 7 O 7 O 2 M 258 (4, 3, 6 : 2) h 3 O 2 M 258 (4, 3, 2 : 1) O 3 M 258 (4, 3, 2 : 2) h 4 O 3 M 267 (0, 4, 0 : 1) h 3 {2, 19} M 267 (0, 4, 0 : 2) h 3 {7, 10} M 267 (0, 2, 0 : 1) h 5 {2, 16} M 267 (0, 2, 0 : 2) h 5 {4, 13} M 268 (0, 5, 0 : 1) {21, 12} M 268 (0, 5, 0 : 2) {11, 17} M 268 (1, 3, 0 : 1) h 1 {0, 12} M 268 (1, 3, 0 : 2) h 1 {0, 17} M 268 (1, 3, 2 : 1) h 1 {8, 16} M 268 (1, 3, 2 : 2) h 1 {4, 8} M 277 (2, 2, 8 1 : 1) h 5 M 277 (2, 2, 8 1 : 2)

35 On Rank 2 and Rank 3 Residually Connected Geometries for M M 277 (4, 2, 8 1 : 1) h 3 M 277 (4, 2, 8 1 : 2) M 278 (4, 1, 4 : 1) M 278 (4, 1, 4 : 2) h 6 M 278 (4, 3, 8 : 1) e 3 M 278 (4, 3, 8 : 2) h 4 e 3 M 278 (4, 5, 8 : 1) e 3 M 278 (4, 5, 8 : 2) h 6 e 3 M 288 (3, 5, 7 1 : 1) e 4 M 288 (3, 5, 7 1 : 2) e 4 M 288 (1, 3, 7 1 : 1) e 4 M 288 (1, 3, 7 1 : 2) e 4 M 333 (1, 1, 3 : 1) h 6 h 5 M 333 (1, 1, 3 : 2) h 6 h 5

36 142 N. Kilic, P. Rowley M 333 (3, 3, 3 : 1) h 1 h 7 M 333 (3, 3, 3 : 2) h 1 h 7 M 334 (3, 2, 2 : 1) h 1 h 5 M 334 (3, 2, 2 : 2) M 334 (1, 2, 2 : 1) h 5 h 8 M 334 (1, 2, 2 : 2) h 5 M 334 (1, 2, 4 : 1) h 5 M 334 (1, 2, 4 : 2) h 5 h 9 M 334 (3, 4, 4 : 1) h 5 M 334 (3, 4, 4 : 2) h 6 h 5 h 4 M 335 (1, 2, 4 : 1) h 5 O 3 M 335 (1, 2, 4 : 2) h 5 O 3 M 335 (3, 4, 2 : 1) h 1 O 2

37 On Rank 2 and Rank 3 Residually Connected Geometries for M M 335 (3, 4, 2 : 2) h 1 h 7 M 335 (3, 4, 4 : 1) h 1 O 2 M 335 (3, 4, 4 : 2) h 1 O 2 M 336 (3, 0, 1 : 1) M 336 (3, 0, 1 : 2) M 336 (1, 1, 0 : 1) M 336 (1, 1, 0 : 2) M 336 (1, 2, 0 : 1) M 336 (1, 2, 0 : 2) M 337 (3, 4, 2 : 1) h 1 h 1 h 1 h 6 h 1 h 7 {1, 17} h 7 {0, 17} h 5 {13, 17} {11, 13} h 5 {0, 22} {11, 17} h 9 M 337 (3, 4, 2 : 2) h 6 M 337 (3, 6, 4 : 1) h 5 M 337 (3, 6, 4 : 2) h 5 M 337 (3, 2, 2 : 1) h 9 M 337 (3, 2, 2 : 2) h 9 M 337 (1, 4, 2 : 1) h 6

38 144 N. Kilic, P. Rowley M 337 (1, 4, 2 : 2) h 6 M 338 (3, 2, 4 : 1) e 1 M 338 (3, 2, 4 : 2) M 338 (3, 2, 2 : 1) M 338 (3, 2, 2 : 2) e 1 M 338 (1, 2, 4 : 1) M 338 (1, 2, 4 : 2) M 345 (2, 2, 4 : 1) O 3 M 345 (2, 2, 4 : 2) h 8 O 3 M 345 (2, 4, 4 : 1) h 4 O 7 M 345 (2, 4, 4 : 2) M 346 (2, 0, 0 : 1) M 346 (2, 0, 0 : 2) M 346 (2, 1, 0 : 1) h 8 O 7 h 10 {8, 20} h 10 {8, 5} h 10 {5, 19}

39 On Rank 2 and Rank 3 Residually Connected Geometries for M M 346 (2, 1, 0 : 2) h 10 {9, 19} M 347 (4, 2, 2 : 1) M 347 (4, 2, 2 : 2) h 10 M 347 (2, 6, 4 : 1) M 347 (2, 6, 4 : 2) M 347 (2, 2, 4 : 1) M 347 (2, 2, 4 : 2) h 9 M 348 (4, 4, 5 : 1) h 4 M 348 (4, 4, 5 : 2) h 4 M 348 (4, 2, 3 : 1) h 3 M 348 (4, 2, 3 : 2) h 3

40 146 N. Kilic, P. Rowley M 348 (4, 4, 3 : 1) h 3 M 348 (4, 4, 3 : 2) h 3 M 348 (4, 6, 5 : 1) h 4 M 348 (4, 6, 5 : 2) h 1 h 4 M 348 (4, 2, 1 : 1) M 348 (4, 2, 1 : 2) M 348 (0, 2, 5 : 1) h 4 M 348 (0, 2, 5 : 2) h 4 M 348 (2, 4, 5 : 1) h 4 M 348 (2, 4, 5 : 2) h 6 h 10 M 348 (2, 4, 3 : 1) h 6 M 348 (2, 4, 3 : 2) h 3 M 348 (2, 6, 3 : 1) h 1

41 On Rank 2 and Rank 3 Residually Connected Geometries for M M 348 (2, 6, 3 : 2) h 3 M 348 (2, 2, 3 : 1) e 1 M 348 (2, 2, 3 : 2) M 348 (2, 4, 1 : 1) h 5 h 8 M 348 (2, 4, 1 : 2) h 6 M 355 (2, 2, 4 1 : 1) O 2 O 4 M 355 (2, 2, 4 1 : 2) O 2 O 4 M 355 (2, 2, 2 : 1) O 2 M 355 (2, 2, 2 : 2) O 2 M 355 (2, 2, 4 1 : 1) O 2 O 4 M 355 (2, 2, 4 1 : 2) O 2 O 4

42 148 N. Kilic, P. Rowley M 356 (2, 0, 0 2 : 1) O 2 {9, 20} M 356 (2, 0, 0 2 : 2) O 2 {5, 6} M 356 (2, 1, 0 1 : 1) O 2 {1, 22} M 356 (2, 1, 0 1 : 2) O 2 {0, 8} M 357 (2, 2, 6 : 1) M 357 (2, 2, 6 : 2) M 358 (4, 2, 4 2 : 1) O 5 M 358 (4, 2, 4 2 : 2) O 4 M 358 (4, 2, 2 : 1) O 3 M 358 (4, 2, 2 : 2) M 358 (4, 4, 2 : 1) O 3 M 358 (4, 4, 2 : 2) h 6 M 366 (1, 0, 0 1 : 1) {11, 17} {22, 19} M 366 (1, 0, 0 1 : 2) {11, 17} {19, 22} M 366 (0, 0, 0 1 : 1) {11, 17} {22, 19}

43 On Rank 2 and Rank 3 Residually Connected Geometries for M M 366 (0, 0, 0 1 : 2) {11, 17} {22, 19} M 367 (1, 2, 0 : 1) {1, 13} M 367 (1, 2, 0 : 2) {1, 19} M 367 (1, 4, 2 1 : 1) h 6 {8, 17} M 367 (1, 4, 2 1 : 2) h 6 {8, 9} M 367 (0, 4, 0 : 1) h 1 {1, 19} M 367 (0, 4, 0 : 2) h 6 {4, 13} M 367 (0, 2, 1 : 1) {22, 19} M 367 (0, 2, 1 : 2) {22, 19} M 368 (0, 4, 2 : 1) h 6 {4, 19} M 368 (0, 4, 2 : 2) h 6 {4, 13} M 368 (0, 4, 0 : 1) h 6 {0, 17} M 368 (0, 4, 0 : 2) h 6 {5, 6} M 368 (0, 2, 2 : 1) {18, 13} M 368 (0, 2, 2 : 2) {4, 8} M 368 (0, 2, 2 : 3) {4, 13} M 368 (0, 2, 0 : 1) {5, 6} M 368 (0, 2, 0 : 2) {1, 9} M 368 (1, 2, 0 : 1) {1, 11} M 368 (1, 2, 0 : 2) {1, 0} M 368 (1, 4, 0 : 1) h 6 {1, 17} M 368 (1, 4, 0 : 2) h 6 {1, 9} M 368 (2, 2, 0 : 1) {17, 0} M 368 (2, 2, 0 : 2) {3, 15} M 377 (2, 4, 4 : 1) d 3

44 150 N. Kilic, P. Rowley M 377 (2, 4, 4 : 2) d 3 M 378 (6, 4, 8 : 1) M 378 (6, 4, 8 : 2) e 1 e 3 M 378 (6, 2, 4 : 1) M 378 (6, 2, 4 : 2) M 378 (2, 2, 8 : 1) e 1 M 378 (2, 2, 8 : 2) e 3 M 378 (2, 2, 4 : 1) e 1 M 378 (2, 2, 4 : 2) e 1 M 378 (2, 4, 8 : 1) e 3 M 378 (2, 4, 8 : 2) e 1

45 On Rank 2 and Rank 3 Residually Connected Geometries for M M 388 (2, 2, 7 2 : 1) e 1 M 388 (2, 2, 7 2 : 2) e 1 M 388 (2, 4, 5 2 : 1) M 388 (2, 4, 5 2 : 2) e 1 M 388 (2, 6, 3 : 1) h 9 e 3 M 388 (2, 6, 3 : 2) e 3 M 556 (4 1, 0 2, 0 2 : 1) O 2 O 4 {0, 19} M 556 (4 1, 0 2, 0 2 : 2) O 2 O 4 {9, 19} M 558 (4 1, 6, 6 : 1) O 6 e 1 M 558 (4 1, 6, 6 : 2) O 2 M 558 (4 1, 2, 2 : 1) O 5 e 1 M 558 (4 1, 2, 2 : 2) O 3 M 558 (2, 6, 2 : 1) O 2

46 152 N. Kilic, P. Rowley M 558 (2, 6, 2 : 2) O 6 e 1 M 567 (2, 4 2, 0 : 1) {12, 16} M 567 (2, 4 2, 0 : 2) {12, 21} M 568 (0 2, 2, 1 2 : 1) O 4 {3, 4} M 568 (0 2, 2, 1 2 : 2) O 5 {13, 19} e 1 M 568 (0 2, 4 2, 0 : 1) O 3 {3, 0} e 1 M 568 (0 2, 4 2, 0 : 2) O 2 {1, 19} e 1 M 568 (0 2, 4 2, 2 : 1) O 3 {8, 20} e 1 M 568 (0 2, 4 2, 2 : 2) O 2 {9, 22} e 1 M 568 (1, 6, 0 : 1) O 2 {1, 17} M 568 (1, 6, 0 : 2) O 2 {0, 17} M 577 (2, 2, 8 1 : 1) M 577 (2, 2, 8 1 : 2) M 588 (2, 6, 3 : 1) e 3 M 588 (2, 6, 3 : 2) O 6 e 1 M 667 (0 1, 0, 0 : 1) {4, 13} {19, 16} M 667 (0 1, 0, 0 : 2) {4, 13} {2, 7} M 667 (0 1, 0, 2 2 : 1) {4, 13} {17, 22} M 667 (0 1, 0, 2 2 : 2) {17, 11} {10, 16}

47 On Rank 2 and Rank 3 Residually Connected Geometries for M M 668 (1, 0, 0 : 1) {11, 19} {1, 19} e 1 M 668 (1, 0, 0 : 2) {11, 17} {0, 17} M 668 (1, 2, 2 : 1) {17, 22} {9, 22} e 1 M 668 (1, 2, 2 : 2) {19, 22} {8, 22} M 668 (0 2, 0, 2 : 1) {11, 17} {8, 4} M 668 (0 2, 0, 2 : 2) {11, 17} {13, 4} M 677 (0, 0, 8 1 : 1) {19, 21} M 677 (0, 0, 8 1 : 2) {19, 1} M 677 (2 2, 0, 4 : 1) {5, 22} d 3 M 677 (2 2, 0, 4 : 2) {9, 22} d 3 M 678 (0, 1 2, 6 1 : 1) {0, 7} M 678 (0, 1 2, 6 1 : 2) {0, 8} M 678 (0, 0, 8 : 1) {13, 19} e 3 M 678 (0, 0, 8 : 2) {13, 4} e 3 M 678 (0, 2, 4 : 1) {13, 4} e 3 M 678 (0, 2, 4 : 2) {13, 19} M 778 (8 1, 6 1, 6 1 : 1) M 778 (8 1, 6 1, 6 1 : 2) M 778 (4, 4, 8 : 1) M 778 (4, 4, 8 : 2)

Chamber Graphs of Minimal Parabolic Geometries of Type M 2 4. Carr, Emily and Rowley, Peter. MIMS EPrint:

Chamber Graphs of Minimal Parabolic Geometries of Type M 2 4. Carr, Emily and Rowley, Peter. MIMS EPrint: Chamber Graphs of Minimal Parabolic Geometries of Type M 2 4 Carr, Emily and Rowley, Peter 2018 MIMS EPrint: 2018.18 Manchester Institute for Mathematical Sciences School of Mathematics The University

More information

Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation

Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation Peter J. Cameron University of St Andrews Shanghai Jiao Tong University November 2017 Idempotent generation We are interested

More information

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation MRQ 2009 School of Mathematics and Statistics MT5824 Topics in Groups Problem Sheet I: Revision and Re-Activation 1. Let H and K be subgroups of a group G. Define HK = {hk h H, k K }. (a) Show that HK

More information

The Witt designs, Golay codes and Mathieu groups

The Witt designs, Golay codes and Mathieu groups The Witt designs, Golay codes and Mathieu groups 1 The Golay codes Let V be a vector space over F q with fixed basis e 1,..., e n. A code C is a subset of V. A linear code is a subspace of V. The vector

More information

SOME DESIGNS AND CODES FROM L 2 (q) Communicated by Alireza Abdollahi

SOME DESIGNS AND CODES FROM L 2 (q) Communicated by Alireza Abdollahi Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 3 No. 1 (2014), pp. 15-28. c 2014 University of Isfahan www.combinatorics.ir www.ui.ac.ir SOME DESIGNS AND CODES FROM

More information

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 49 (2008), No. 2, 341-368. Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems Ma lgorzata

More information

SYMMETRIC PRESENTATIONS OF COXETER GROUPS

SYMMETRIC PRESENTATIONS OF COXETER GROUPS Proceedings of the Edinburgh Mathematical Society (2011) 54, 669 683 DOI:10.1017/S0013091509000388 SYMMETRIC PRESENTATIONS OF COXETER GROUPS BEN FAIRBAIRN Departamento de Matemáticas, Universidad de Los

More information

SOME SYMMETRIC (47,23,11) DESIGNS. Dean Crnković and Sanja Rukavina Faculty of Philosophy, Rijeka, Croatia

SOME SYMMETRIC (47,23,11) DESIGNS. Dean Crnković and Sanja Rukavina Faculty of Philosophy, Rijeka, Croatia GLASNIK MATEMATIČKI Vol. 38(58)(2003), 1 9 SOME SYMMETRIC (47,23,11) DESIGNS Dean Crnković and Sanja Rukavina Faculty of Philosophy, Rijeka, Croatia Abstract. Up to isomorphism there are precisely fifty-four

More information

Conway s group and octonions

Conway s group and octonions Conway s group and octonions Robert A. Wilson School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E 4NS Submitted 7th March 009 Abstract We give a description of the

More information

On the Codes Related to the Higman-Sims Graph

On the Codes Related to the Higman-Sims Graph On the Codes Related to the Higman-Sims Graph Wolfgang Knapp Mathematisches Institut Universität Tübingen, Germany wolfgang.knapp@uni-tuebingen.de Hans-Jörg Schaeffer Mathematisches Institut Universität

More information

Strongly regular graphs constructed from groups

Strongly regular graphs constructed from groups Strongly regular graphs constructed from groups Dean Crnković Department of Mathematics University of Rijeka Croatia Symmetry vs Regularity Pilsen, Czech Republic, July 2018 This work has been fully supported

More information

A construction for the outer automorphism of S 6

A construction for the outer automorphism of S 6 A construction for the outer automorphism of S 6 Padraig Ó Catháin joint work with Neil Gillespie and Cheryl Praeger University of Queensland 5 August 2013 Automorphisms of finite groups G a finite group.

More information

Independent generating sets and geometries for symmetric groups

Independent generating sets and geometries for symmetric groups Independent generating sets and geometries for symmetric groups Peter J. Cameron School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS UK Philippe Cara Department

More information

INTRODUCTION MATHIEU GROUPS. Lecture 5: Sporadic simple groups. Sporadic simple groups. Robert A. Wilson. LTCC, 10th November 2008

INTRODUCTION MATHIEU GROUPS. Lecture 5: Sporadic simple groups. Sporadic simple groups. Robert A. Wilson. LTCC, 10th November 2008 Lecture 5: Sporadic simple groups Robert A. Wilson INTRODUCTION Queen Mary, University of London LTCC, 0th November 2008 Sporadic simple groups The 26 sporadic simple groups may be roughly divided into

More information

Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces Differential Geometry, Lie Groups, and Symmetric Spaces Sigurdur Helgason Graduate Studies in Mathematics Volume 34 nsffvjl American Mathematical Society l Providence, Rhode Island PREFACE PREFACE TO THE

More information

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation Notation Basics of permutation group theory Arc-transitive graphs Primitivity Normal subgroups of primitive groups Permutation Groups John Bamberg, Michael Giudici and Cheryl Praeger Centre for the Mathematics

More information

2. The center of G, denoted by Z(G), is the abelian subgroup which commutes with every elements of G. The center always contains the unit element e.

2. The center of G, denoted by Z(G), is the abelian subgroup which commutes with every elements of G. The center always contains the unit element e. Chapter 2 Group Structure To be able to use groups in physics, or mathematics, we need to know what are the important features distinguishing one group from another. This is under the heading of group

More information

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract Permutation groups Whatever you have to do with a structure-endowed entity Σ try to determine its group of automorphisms... You can expect to gain a deep insight into the constitution of Σ in this way.

More information

Planar and Affine Spaces

Planar and Affine Spaces Planar and Affine Spaces Pýnar Anapa İbrahim Günaltılı Hendrik Van Maldeghem Abstract In this note, we characterize finite 3-dimensional affine spaces as the only linear spaces endowed with set Ω of proper

More information

Sporadic and Related Groups. Lecture 1 Classification of finite simple groups Steiner Systems

Sporadic and Related Groups. Lecture 1 Classification of finite simple groups Steiner Systems Sporadic and Related Groups Lecture 1 Classification of finite simple groups Steiner Systems Classification theorem (summary) All finite simple groups are either Cyclic groups of prime order Alternating

More information

A Design and a Code Invariant

A Design and a Code Invariant JOURNAL OF COMBINATORIAL THEORY, Series A 62, 225-233 (1993) A Design and a Code Invariant under the Simple Group Co3 WILLEM H. HAEMERS Department of Economics, Tilburg University, P.O. Box 90153, 5000

More information

Algebraic aspects of Hadamard matrices

Algebraic aspects of Hadamard matrices Algebraic aspects of Hadamard matrices Padraig Ó Catháin University of Queensland 22 February 2013 Overview Difference set Relative difference set Symmetric Design Hadamard matrix Overview 1 Hadamard matrices

More information

Algebra-I, Fall Solutions to Midterm #1

Algebra-I, Fall Solutions to Midterm #1 Algebra-I, Fall 2018. Solutions to Midterm #1 1. Let G be a group, H, K subgroups of G and a, b G. (a) (6 pts) Suppose that ah = bk. Prove that H = K. Solution: (a) Multiplying both sides by b 1 on the

More information

Imprimitive symmetric graphs with cyclic blocks

Imprimitive symmetric graphs with cyclic blocks Imprimitive symmetric graphs with cyclic blocks Sanming Zhou Department of Mathematics and Statistics University of Melbourne Joint work with Cai Heng Li and Cheryl E. Praeger December 17, 2008 Outline

More information

The L 3 (4) near octagon

The L 3 (4) near octagon The L 3 (4) near octagon A. Bishnoi and B. De Bruyn October 8, 206 Abstract In recent work we constructed two new near octagons, one related to the finite simple group G 2 (4) and another one as a sub-near-octagon

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

Parameterizing orbits in flag varieties

Parameterizing orbits in flag varieties Parameterizing orbits in flag varieties W. Ethan Duckworth April 2008 Abstract In this document we parameterize the orbits of certain groups acting on partial flag varieties with finitely many orbits.

More information

CHAMBER GRAPHS OF SOME GEOMETRIES RELATED TO THE PETERSEN GRAPH

CHAMBER GRAPHS OF SOME GEOMETRIES RELATED TO THE PETERSEN GRAPH CHAMBER GRAPHS OF SOME GEOMETRIES RELATED TO THE PETERSEN GRAPH A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences

More information

NESTED SYMMETRIC REPRESENTATION OF ELEMENTS OF THE SUZUKI CHAIN GROUPS

NESTED SYMMETRIC REPRESENTATION OF ELEMENTS OF THE SUZUKI CHAIN GROUPS IJMMS 2003:62, 3931 3948 PII. S0161171203212023 http://ijmms.hindawi.com Hindawi Publishing Corp. NESTED SYMMETRIC REPRESENTATION OF ELEMENTS OF THE SUZUKI CHAIN GROUPS MOHAMED SAYED Received 2 December

More information

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Östergård]

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Östergård] Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Östergård] Winter 2009 Introduction Isomorphism of Combinatorial Objects In general, isomorphism is an equivalence relation on a set of objects.

More information

THERE IS NO Sz(8) IN THE MONSTER

THERE IS NO Sz(8) IN THE MONSTER THERE IS NO Sz(8) IN THE MONSTER ROBERT A. WILSON Abstract. As a contribution to an eventual solution of the problem of the determination of the maximal subgroups of the Monster we show that there is no

More information

11 Block Designs. Linear Spaces. Designs. By convention, we shall

11 Block Designs. Linear Spaces. Designs. By convention, we shall 11 Block Designs Linear Spaces In this section we consider incidence structures I = (V, B, ). always let v = V and b = B. By convention, we shall Linear Space: We say that an incidence structure (V, B,

More information

Difference sets and Hadamard matrices

Difference sets and Hadamard matrices Difference sets and Hadamard matrices Padraig Ó Catháin National University of Ireland, Galway 14 March 2012 Outline 1 (Finite) Projective planes 2 Symmetric Designs 3 Difference sets 4 Doubly transitive

More information

arxiv: v1 [math.co] 19 Nov 2016

arxiv: v1 [math.co] 19 Nov 2016 Tetravalent 2-transitive Cayley graphs of finite simple groups and their automorphism groups Xin Gui Fang a, Jie Wang a and Sanming Zhou b arxiv:1611.06308v1 [math.co] 19 Nov 2016 a LAMA and School of

More information

Centralizers of Coxeter Elements and Inner Automorphisms of Right-Angled Coxeter Groups

Centralizers of Coxeter Elements and Inner Automorphisms of Right-Angled Coxeter Groups International Journal of Algebra, Vol. 3, 2009, no. 10, 465-473 Centralizers of Coxeter Elements and Inner Automorphisms of Right-Angled Coxeter Groups Anton Kaul Mathematics Department, California Polytecnic

More information

Collineations of polar spaces with restricted displacements

Collineations of polar spaces with restricted displacements Collineations of polar spaces with restricted displacements B. Temmermans J. A. Thas H. Van Maldeghem Department of Mathematics, Ghent University, Krijgslaan 281, S22, B 9000 Gent btemmerm@cage.ugent.be,

More information

Algebra Review. Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor. June 15, 2001

Algebra Review. Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor. June 15, 2001 Algebra Review Instructor: Laszlo Babai Notes by Vincent Lucarelli and the instructor June 15, 2001 1 Groups Definition 1.1 A semigroup (G, ) is a set G with a binary operation such that: Axiom 1 ( a,

More information

Maximal non-commuting subsets of groups

Maximal non-commuting subsets of groups Maximal non-commuting subsets of groups Umut Işık March 29, 2005 Abstract Given a finite group G, we consider the problem of finding the maximal size nc(g) of subsets of G that have the property that no

More information

The Mathieu groups. Leo Taslaman

The Mathieu groups. Leo Taslaman The Mathieu groups Leo Taslaman May 26, 2009 Abstract In the 19th century E. Mathieu discovered and studied ve multiply transitive permutation groups. The groups are called the Mathieu groups and it turned

More information

Groups of Prime Power Order with Derived Subgroup of Prime Order

Groups of Prime Power Order with Derived Subgroup of Prime Order Journal of Algebra 219, 625 657 (1999) Article ID jabr.1998.7909, available online at http://www.idealibrary.com on Groups of Prime Power Order with Derived Subgroup of Prime Order Simon R. Blackburn*

More information

AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS

AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS MAX GOLDBERG Abstract. We explore ways to concisely describe circulant graphs, highly symmetric graphs with properties that are easier to generalize

More information

Linear binary codes arising from finite groups

Linear binary codes arising from finite groups Linear binary codes arising from finite groups Yannick Saouter, Member, IEEE Institut Telecom - Telecom Bretagne, Technopôle Brest-Iroise - CS 83818 29238 Brest Cedex, France Email: Yannick.Saouter@telecom-bretagne.eu

More information

HIM, 10/2018. The Relational Complexity of a Finite. Permutation Group. Gregory Cherlin. Definition. Examples. Issues. Questions

HIM, 10/2018. The Relational Complexity of a Finite. Permutation Group. Gregory Cherlin. Definition. Examples. Issues. Questions Theory HIM, 10/2018 Structures and s Theory Structure A Aut(A) on A Inv(G) G on A Inv(G) = A n /G. L k : A k /G (k-types) language k-closed: G = Aut(L k ) k-homogeneous: A l -orbits are determined by L

More information

Exercises on chapter 1

Exercises on chapter 1 Exercises on chapter 1 1. Let G be a group and H and K be subgroups. Let HK = {hk h H, k K}. (i) Prove that HK is a subgroup of G if and only if HK = KH. (ii) If either H or K is a normal subgroup of G

More information

Characters and triangle generation of the simple Mathieu group M 11

Characters and triangle generation of the simple Mathieu group M 11 SEMESTER PROJECT Characters and triangle generation of the simple Mathieu group M 11 Under the supervision of Prof. Donna Testerman Dr. Claude Marion Student: Mikaël Cavallin September 11, 2010 Contents

More information

SYMMETRIC (66,26,10) DESIGNS HAVING F rob 55 AUTOMORPHISM GROUP AS AN. Dean Crnković and Sanja Rukavina Faculty of Philosophy in Rijeka, Croatia

SYMMETRIC (66,26,10) DESIGNS HAVING F rob 55 AUTOMORPHISM GROUP AS AN. Dean Crnković and Sanja Rukavina Faculty of Philosophy in Rijeka, Croatia GLASNIK MATEMATIČKI Vol. 35(55)(2000), 271 281 SYMMETRIC (66,26,10) DESIGNS HAVING F rob 55 AUTOMORPHISM GROUP AS AN Dean Crnković and Sanja Rukavina Faculty of Philosophy in Rijeka, Croatia Abstract.

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q)

A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q) A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q) Joris De Kaey and Hendrik Van Maldeghem Ghent University, Department of Pure Mathematics and Computer

More information

Regular actions of groups and inverse semigroups on combinatorial structures

Regular actions of groups and inverse semigroups on combinatorial structures Regular actions of groups and inverse semigroups on combinatorial structures Tatiana Jajcayová Comenius University, Bratislava CSA 2016, Lisbon August 1, 2016 (joint work with Robert Jajcay) Group of Automorphisms

More information

LECTURES MATH370-08C

LECTURES MATH370-08C LECTURES MATH370-08C A.A.KIRILLOV 1. Groups 1.1. Abstract groups versus transformation groups. An abstract group is a collection G of elements with a multiplication rule for them, i.e. a map: G G G : (g

More information

January 2016 Qualifying Examination

January 2016 Qualifying Examination January 2016 Qualifying Examination If you have any difficulty with the wording of the following problems please contact the supervisor immediately. All persons responsible for these problems, in principle,

More information

On the single-orbit conjecture for uncoverings-by-bases

On the single-orbit conjecture for uncoverings-by-bases On the single-orbit conjecture for uncoverings-by-bases Robert F. Bailey School of Mathematics and Statistics Carleton University 1125 Colonel By Drive Ottawa, Ontario K1S 5B6 Canada Peter J. Cameron School

More information

The Golay code. Robert A. Wilson. 01/12/08, QMUL, Pure Mathematics Seminar

The Golay code. Robert A. Wilson. 01/12/08, QMUL, Pure Mathematics Seminar The Golay code Robert A. Wilson 01/12/08, QMUL, Pure Mathematics Seminar 1 Introduction This is the third talk in a projected series of five. It is more-or-less independent of the first two talks in the

More information

Most primitive groups are full automorphism groups of edge-transitive hypergraphs

Most primitive groups are full automorphism groups of edge-transitive hypergraphs Most primitive groups are full automorphism groups of edge-transitive hypergraphs László Babai Department of Computer Science, University of Chicago, 1100 E 58th St., Chicago IL 60637, USA Peter J. Cameron

More information

Semiregular automorphisms of vertex-transitive graphs

Semiregular automorphisms of vertex-transitive graphs Semiregular automorphisms of vertex-transitive graphs Michael Giudici http://www.maths.uwa.edu.au/ giudici/research.html Semiregular automorphisms A semiregular automorphism of a graph is a nontrivial

More information

Math 249B. Tits systems

Math 249B. Tits systems Math 249B. Tits systems 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ + Φ, and let B be the unique Borel k-subgroup

More information

INVERSE LIMITS AND PROFINITE GROUPS

INVERSE LIMITS AND PROFINITE GROUPS INVERSE LIMITS AND PROFINITE GROUPS BRIAN OSSERMAN We discuss the inverse limit construction, and consider the special case of inverse limits of finite groups, which should best be considered as topological

More information

Integrals of groups. Peter J. Cameron University of St Andrews. Group actions and transitive graphs Shenzhen, October 2018

Integrals of groups. Peter J. Cameron University of St Andrews. Group actions and transitive graphs Shenzhen, October 2018 Integrals of groups Peter J. Cameron University of St Andrews Group actions and transitive graphs Shenzhen, October 2018 Happy Birthday, Cheryl! Cheryl Praeger and I were both born in Toowoomba, an inland

More information

Every generalized quadrangle of order 5 having a regular point is symplectic

Every generalized quadrangle of order 5 having a regular point is symplectic Every generalized quadrangle of order 5 having a regular point is symplectic Bart De Bruyn Ghent University, Department of Mathematics, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

More information

On some incidence structures constructed from groups and related codes

On some incidence structures constructed from groups and related codes On some incidence structures constructed from groups and related codes Dean Crnković Department of Mathematics University of Rijeka Croatia Algebraic Combinatorics and Applications The first annual Kliakhandler

More information

COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125

COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125 COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125 ROBERT S. COULTER AND PAMELA KOSICK Abstract. This note summarises a recent search for commutative semifields of order 243 and 3125. For each of these two orders,

More information

The alternating groups

The alternating groups Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

On certain Regular Maps with Automorphism group PSL(2, p) Martin Downs

On certain Regular Maps with Automorphism group PSL(2, p) Martin Downs BULLETIN OF THE GREEK MATHEMATICAL SOCIETY Volume 53, 2007 (59 67) On certain Regular Maps with Automorphism group PSL(2, p) Martin Downs Received 18/04/2007 Accepted 03/10/2007 Abstract Let p be any prime

More information

The geometry of k-transvection groups

The geometry of k-transvection groups The geometry of k-transvection groups Hans Cuypers Department of Mathematics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands December 8, 2005 To Professor Bernd Fischer

More information

Nick Gill. 13th July Joint with Hunt (USW) and Spiga (Milano Bicocca).

Nick Gill. 13th July Joint with Hunt (USW) and Spiga (Milano Bicocca). 13th July 2016 Joint with Hunt and Spiga (Milano Bicocca). Overview Beautiful sets From here on, G is a group acting on a set Ω, and Λ is a subset of Ω. Write G Λ for the set-wise stabilizer of Λ. Write

More information

Symmetric bowtie decompositions of the complete graph

Symmetric bowtie decompositions of the complete graph Symmetric bowtie decompositions of the complete graph Simona Bonvicini Dipartimento di Scienze e Metodi dell Ingegneria Via Amendola, Pad. Morselli, 4100 Reggio Emilia, Italy simona.bonvicini@unimore.it

More information

Combinatorial Method in the Coset Enumeration. of Symmetrically Generated Groups II: Monomial Modular Representations

Combinatorial Method in the Coset Enumeration. of Symmetrically Generated Groups II: Monomial Modular Representations International Journal of Algebra, Vol. 1, 2007, no. 11, 505-518 Combinatorial Method in the Coset Enumeration of Symmetrically Generated Groups II: Monomial Modular Representations Mohamed Sayed Department

More information

Introduction to Association Schemes

Introduction to Association Schemes Introduction to Association Schemes Akihiro Munemasa Tohoku University June 5 6, 24 Algebraic Combinatorics Summer School, Sendai Assumed results (i) Vandermonde determinant: a a m =. a m a m m i

More information

FURTHER RESTRICTIONS ON THE STRUCTURE OF FINITE DCI-GROUPS: AN ADDENDUM

FURTHER RESTRICTIONS ON THE STRUCTURE OF FINITE DCI-GROUPS: AN ADDENDUM FURTHER RESTRICTIONS ON THE STRUCTURE OF FINITE DCI-GROUPS: AN ADDENDUM EDWARD DOBSON, JOY MORRIS, AND PABLO SPIGA Abstract. A finite group R is a DCI-group if, whenever S and T are subsets of R with the

More information

Math 249B. Geometric Bruhat decomposition

Math 249B. Geometric Bruhat decomposition Math 249B. Geometric Bruhat decomposition 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ Φ, and let B be the unique

More information

Rank 4 toroidal hypertopes

Rank 4 toroidal hypertopes ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 15 (2018) 67 79 https://doi.org/10.26493/1855-3974.1319.375 (Also available at http://amc-journal.eu) Rank

More information

Simple connectedness of the 3-local geometry of the Monster. A.A. Ivanov. U. Meierfrankenfeld

Simple connectedness of the 3-local geometry of the Monster. A.A. Ivanov. U. Meierfrankenfeld Simple connectedness of the 3-local geometry of the Monster A.A. Ivanov U. Meierfrankenfeld Abstract We consider the 3-local geometry M of the Monster group M introduced in [BF] as a locally dual polar

More information

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions ARCS IN FINITE PROJECTIVE SPACES SIMEON BALL Abstract. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017. Let K denote an

More information

Error-correction and the binary Golay code

Error-correction and the binary Golay code London Mathematical Society Impact150 Stories 1 (2016) 51 58 C 2016 Author(s) doi:10.1112/i150lms/t.0003 Error-correction and the binary Golay code R.T.Curtis Abstract Linear algebra and, in particular,

More information

Stab(t) = {h G h t = t} = {h G h (g s) = g s} = {h G (g 1 hg) s = s} = g{k G k s = s} g 1 = g Stab(s)g 1.

Stab(t) = {h G h t = t} = {h G h (g s) = g s} = {h G (g 1 hg) s = s} = g{k G k s = s} g 1 = g Stab(s)g 1. 1. Group Theory II In this section we consider groups operating on sets. This is not particularly new. For example, the permutation group S n acts on the subset N n = {1, 2,...,n} of N. Also the group

More information

THE SYLOW THEOREMS AND THEIR APPLICATIONS

THE SYLOW THEOREMS AND THEIR APPLICATIONS THE SYLOW THEOREMS AND THEIR APPLICATIONS AMIN IDELHAJ Abstract. This paper begins with an introduction into the concept of group actions, along with the associated notions of orbits and stabilizers, culminating

More information

Disjoint G-Designs and the Intersection Problem for Some Seven Edge Graphs. Daniel Hollis

Disjoint G-Designs and the Intersection Problem for Some Seven Edge Graphs. Daniel Hollis Disjoint G-Designs and the Intersection Problem for Some Seven Edge Graphs by Daniel Hollis A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements

More information

Isomorphisms between pattern classes

Isomorphisms between pattern classes Journal of Combinatorics olume 0, Number 0, 1 8, 0000 Isomorphisms between pattern classes M. H. Albert, M. D. Atkinson and Anders Claesson Isomorphisms φ : A B between pattern classes are considered.

More information

Longest element of a finite Coxeter group

Longest element of a finite Coxeter group Longest element of a finite Coxeter group September 10, 2015 Here we draw together some well-known properties of the (unique) longest element w in a finite Coxeter group W, with reference to theorems and

More information

EXERCISES ON THE OUTER AUTOMORPHISMS OF S 6

EXERCISES ON THE OUTER AUTOMORPHISMS OF S 6 EXERCISES ON THE OUTER AUTOMORPHISMS OF S 6 AARON LANDESMAN 1. INTRODUCTION In this class, we investigate the outer automorphism of S 6. Let s recall some definitions, so that we can state what an outer

More information

TRIPLE FACTORIZATION OF NON-ABELIAN GROUPS BY TWO MAXIMAL SUBGROUPS

TRIPLE FACTORIZATION OF NON-ABELIAN GROUPS BY TWO MAXIMAL SUBGROUPS Journal of Algebra and Related Topics Vol. 2, No 2, (2014), pp 1-9 TRIPLE FACTORIZATION OF NON-ABELIAN GROUPS BY TWO MAXIMAL SUBGROUPS A. GHARIBKHAJEH AND H. DOOSTIE Abstract. The triple factorization

More information

Irreducible subgroups of algebraic groups

Irreducible subgroups of algebraic groups Irreducible subgroups of algebraic groups Martin W. Liebeck Department of Mathematics Imperial College London SW7 2BZ England Donna M. Testerman Department of Mathematics University of Lausanne Switzerland

More information

On the rank two geometries of the groups PSL(2, q): part I

On the rank two geometries of the groups PSL(2, q): part I Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-397 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 3 (010) 177 19 On the rank two geometries of the groups PSL(, q): part

More information

arxiv: v1 [math.gr] 7 Jan 2019

arxiv: v1 [math.gr] 7 Jan 2019 The ranks of alternating string C-groups Mark Mixer arxiv:1901.01646v1 [math.gr] 7 Jan 019 January 8, 019 Abstract In this paper, string C-groups of all ranks 3 r < n are provided for each alternating

More information

On Pi-Product Involution Graphs in Symmetric Groups. Rowley, Peter and Ward, David. MIMS EPrint:

On Pi-Product Involution Graphs in Symmetric Groups. Rowley, Peter and Ward, David. MIMS EPrint: On Pi-Product Involution Graphs in Symmetric Groups Rowley, Peter and Ward, David 2014 MIMS EPrint: 2014.4 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester

More information

Chapter One. Affine Coxeter Diagrams

Chapter One. Affine Coxeter Diagrams Chapter One Affine Coxeter Diagrams By the results summarized in Chapter VI, Section 43, of [3], affine Coxeter groups can be characterized as groups generated by reflections of an affine space (by which

More information

Adjoint Representations of the Symmetric Group

Adjoint Representations of the Symmetric Group Adjoint Representations of the Symmetric Group Mahir Bilen Can 1 and Miles Jones 2 1 mahirbilencan@gmail.com 2 mej016@ucsd.edu Abstract We study the restriction to the symmetric group, S n of the adjoint

More information

Tamagawa Numbers in the Function Field Case (Lecture 2)

Tamagawa Numbers in the Function Field Case (Lecture 2) Tamagawa Numbers in the Function Field Case (Lecture 2) February 5, 204 In the previous lecture, we defined the Tamagawa measure associated to a connected semisimple algebraic group G over the field Q

More information

The power graph of a finite group, II

The power graph of a finite group, II The power graph of a finite group, II Peter J. Cameron School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, U.K. Abstract The directed power graph of a group G

More information

Strongly regular graphs and the Higman-Sims group. Padraig Ó Catháin National University of Ireland, Galway. June 14, 2012

Strongly regular graphs and the Higman-Sims group. Padraig Ó Catháin National University of Ireland, Galway. June 14, 2012 Strongly regular graphs and the Higman-Sims group Padraig Ó Catháin National University of Ireland, Galway. June 14, 2012 We introduce some well known results about permutation groups, strongly regular

More information

2-arc-transitive digraphs

2-arc-transitive digraphs 2-arc-transitive digraphs Michael Giudici Centre for the Mathematics of Symmetry and Computation Groups St Andrews Birmingham, August 2017 on joint work with Cai Heng Li and Binzhou Xia Graphs and digraphs

More information

On the isomorphism problem for relatively hyperbolic groups

On the isomorphism problem for relatively hyperbolic groups On the isomorphism problem for relatively hyperbolic groups Nicholas Touikan (joint work with François Dahmani) CMS Winter 2012 Geometrical Group Theory session December 09 2012 The isomorphism problem

More information

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT Contents 1. Group Theory 1 1.1. Basic Notions 1 1.2. Isomorphism Theorems 2 1.3. Jordan- Holder Theorem 2 1.4. Symmetric Group 3 1.5. Group action on Sets 3 1.6.

More information

Recognition of Some Symmetric Groups by the Set of the Order of Their Elements

Recognition of Some Symmetric Groups by the Set of the Order of Their Elements Recognition of Some Symmetric Groups by the Set of the Order of Their Elements A. R. Moghaddamfar, M. R. Pournaki * Abstract For a finite group G, let π e (G) be the set of order of elements in G and denote

More information

SOME STRONGLY REGULAR GRAPHS AND SELF-ORTHOGONAL CODES FROM THE UNITARY GROUP U 4 (3)

SOME STRONGLY REGULAR GRAPHS AND SELF-ORTHOGONAL CODES FROM THE UNITARY GROUP U 4 (3) GLASNIK MATEMATIČKI Vol. 45(65)(2010), 307 323 SOME STRONGLY REGULAR GRAPHS AND SELF-ORTHOGONAL CODES FROM THE UNITARY GROUP U 4 (3) Dean Crnković, Vedrana Mikulić and B. G. Rodrigues University of Rijeka,

More information

Groups that Distribute over Stars

Groups that Distribute over Stars Groups that Distribute over Stars Arthur Holshouser 3600 Bullard St Charlotte, NC, USA, 808 Harold Reiter Department of Mathematics UNC Charlotte Charlotte, NC 83 hbreiter@emailunccedu 1 Abstract Suppose

More information

MATH 436 Notes: Cyclic groups and Invariant Subgroups.

MATH 436 Notes: Cyclic groups and Invariant Subgroups. MATH 436 Notes: Cyclic groups and Invariant Subgroups. Jonathan Pakianathan September 30, 2003 1 Cyclic Groups Now that we have enough basic tools, let us go back and study the structure of cyclic groups.

More information

Lecture Note of Week 2

Lecture Note of Week 2 Lecture Note of Week 2 2. Homomorphisms and Subgroups (2.1) Let G and H be groups. A map f : G H is a homomorphism if for all x, y G, f(xy) = f(x)f(y). f is an isomorphism if it is bijective. If f : G

More information

Difference sets and Hadamard matrices

Difference sets and Hadamard matrices Difference sets and Hadamard matrices Padraig Ó Catháin University of Queensland 5 November 2012 Outline 1 Hadamard matrices 2 Symmetric designs 3 Hadamard matrices and difference sets 4 Two-transitivity

More information

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups Journal of Algebraic Combinatorics 12 (2000), 123 130 c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Tactical Decompositions of Steiner Systems and Orbits of Projective Groups KELDON

More information