An example of LP problem: Political Elections

Size: px
Start display at page:

Download "An example of LP problem: Political Elections"

Transcription

1 Linear Programming

2 An example of LP problem: Political Elections Suppose that you are a politician trying to win an election. Your district has three different types of areas: urban, suburban, and rural. These areas have, respectively, 100,000, 200,000,and 50,000 registered voters. To govern effectively, you would like to win a majority of the votes in each of the three regions. you can estimate how many votes you win or lose from each population segment by spending $1,000 on advertising on each issue.

3 policy urban suburban rural build roads gun control farm subsidies gasoline tax Figure 1: The effects of policies on voters. Each entry describes the number of thousands of urban, suburban, or rural voters who could be won over by spending $1,000 on advertising support of a policy on a particular issue. Negative entries denote votes that would be lost.

4 x1 is the number of thousands of dollars spent on advertising on building roads, x2 is the number of thousands of dollars spent on advertising on gun control, x3 is the number of thousands of dollars spent on advertising on farm subsidies, and x4 is the number of thousands of dollars spent on advertising on a gasoline tax. We can write the requirement that we win at least 50,000 urban votes as

5 Similarly, we can write the requirements that we win at least 100,000 suburban votes and 25,000 rural votes as And To minimize the expression

6 there is no such thing as negative-cost advertising. We format this problem as

7

8 General linear programs In the general linear-programming problem, we wish to optimize a linear function subject to a set of linear inequalities. Given a set of real numbers a1, a2,..., an and a set of variables x1, x2,..., xn, a linear function f on those variables is defined by

9 are linear inequalities. We use the term linear constraints to denote either linear equalities or linear inequalities. In linear programming, we do not allow strict inequalities.

10 A linear programming in standard form is the maximization of a linear function subject to linear inequalitis. A linear program in slack form is the maximization of a linear function subject to linear equalities.

11 Let us first consider the following linear program with two variables (example 2):

12 We call any setting of the variables x1 and x2 that satisfies all the constraints a feasible solution to the linear program.

13 Figure 2: (a) The linear program given in example 2. Each constraint is represented by a line and a direction. The intersection of the constraints, which is the feasible region, is shaded. (b) The dotted lines show, respectively, the points for which the objective value is 0, 4, and 8. The optimal solution to the linear program is x1 = 2 and x2 = 6 with objective value 8.

14 Because the feasible region in Figure 2 is bounded, there must be some maximum value z for which the intersection of the line x1 + x2 = z and the feasible region is nonempty. An optimal solution to the linear program must be on the boundary of the bounded feasible region. In this case, the point is x1 = 2 and x2 = 6 with objective value 8. An optimal solution to the linear program occurred at a vertex or a line segment of the feasible region for two variables.

15 This is because of the convexity of bounded feasible regions. Similarly, if the LP has n variables, each constraint defines a half-space in n- dimensional space. The feasible region formed by the intersection of these half-spaces is called a simplex. The objective function is now a hyper-plane and, because of the convexity, an optimal solution will still occur at a vertex of the simplex.

16 Algorithms for LP Simplex algorithm worst case exponentialtime. Practical very simple and performance is good. Ellipsoid algorithm -- polynomial-time Interior-point method polynomial-time.

17 The basic idea of simplex algorithm The simplex algorithm takes as input a linear program and returns an optimal solution. It starts at some vertex of the simplex and performs a sequence of iterations. In each iteration, it moves along an edge of the simplex from a current vertex to a neighboring vertex whose objective value is no smaller than that of the current vertex (and usually is larger.)

18 The simplex algorithm terminates when it reaches a local maximum, which is a vertex from which all neighboring vertices have a smaller objective value. Because the feasible region is convex and the objective function is linear, this local optimum is actually a global optimum. (What if it is non-convex or non-linear)

19 If we add to a linear program the additional requirement that all variables take on integer values, we have an integer linear program. It has been proven that even finding the feasible region of an integer program is NPhard.

20 Standard form In standard form, we are given n real numbers c1, c2,..., cn; m real numbers b1, b2,..., bm; and mn real numbers aij for i = 1, 2,..., m and j = 1, 2,..., n. We wish to find n real numbers for n variables: x1, x2,..., xn that maximize the objective function.

21 We call the maximize expression above, the objective function and the n + m inequalities, the constraints, among them the n constraints, are called the non-negativity constraints.

22 In a more compact form for LP, let A = (a ij ) be an m x n matrix b = (b i ) be an m dimensional vector c = (c j ) be an n dimensional vector x = (x j ) be an n dimensional vector We can rewrite the LP as follows:

23 Where c T x is inner product of two n dimensional vectors; Ax is a matrix-vector Product; x must be non-negative.

24 A linear program may not be in standard form for one of four possible reasons: 1. The objective function may be a minimization rather than a maximization. 2. There may be variables without non-negativity constraints. 3. There may be equality constraints, which have an equal sign rather than a less-than or -equal-to sign. 4. There may be inequality constraints, but instead of having a less-than-or-equal-to sign, they have a greater-than-or-equal-to sign.

25 Method to convert to Standard form: To convert a minimization linear program L into an equivalent maximization linear program L, we simply negate the coefficients in the objective function. For example, if we have the linear program

26

27 To convert a linear program in which some of the variables do not have non-negativity constraints into one in which each variable has a non-negativity constraint. Suppose that some variable xj does not have a nonnegativity constraint. Then we replace each occurrence of xj by and add the nonnegativity constraints

28 Thus, if the objective function has a term cjxj, it is replaced by Any feasible solution x to the new linear program corresponds to a feasible solution to the original linear program with and with the same objective value, and thus the two solutions are equivalent. We apply this conversion scheme to each variable that does not have a non-negativity constraint to yield an equivalent linear program in which all variables have nonnegativity constraints.

29 In our previous example, Variable x1 has a nonnegative constraint, but variable x2 does not. To ensure that each variable has a corresponding non-negativity constraint. we replace x2 by two variables, x 2 x 2 then we solve the modified linear program to obtain x2 = x 2 x 2.

30

31 To convert equality constraints into inequality constraints, we can replace this equality constraint by the pair of inequality constraints. Suppose that a linear program has an equality constraint f (x1, x2,..., xn) = b. Since x = y if and only if both x y and x y, we can replace f (x1, x2,..., xn) = b by f (x1, x2,...,xn) b and f (x1, x2,..., xn) b.

32 Finally, we can convert the greaterthan-or-equal-to constraints to lessthan-or-equal-to constraints by multiplying these constraints through by -1. That is, any inequality of the form

33 Thus, by replacing each coefficient aij by -aij and each value bi by -bi, we obtain an equivalent lessthan-or-equal-to constraint. Finishing our example, we replace the equality in constraint by two inequalities, obtaining

34 Finally, we negate constraint. For consistency in variable names, we rename X 2 to x2 and X 2 to x3, obtaining the standard form as follows:

35

36 Converting linear programs into slack form To efficiently solve a linear program with the simplex algorithm, we prefer to express it in a form in which some of the constraints are equality constraints. Let be an inequality constraint. We introduce a new variable s and rewrite inequality as the two constraints:

37 We call s a slack variable because it measures the slack, or difference, between the left-hand and right-hand sides of equation.

38 we shall use xn+i (instead of s) to denote the slack variable associated with the i th inequality. The i th constraint is therefore along with the non-negativity constraint xn+i 0.

39 For example, we introduce slack variables x4, x5, and x6, obtaining maximize The variables on the left-hand side of the equalities are called basic variables, and those on the right-hand side are called non-basic variables.

40 We shall also use the variable z to denote the value of the objective function. Thus we can concisely define a slack form by a 5-tuple (N, B, A, b, c, v), denoting the slack form

41 N set of indices of nonbasic variables B set of indices of basic variables N = n; B =m; N U B = {1,2,, n+m} A coefficient matrix of variables b,c vectors; v -- constant

42 In this slack form, we have that B= {4,5,6}; N={1,2,3}; A = (a 41, a 42, a 43, a 51, a 52, a 53, a 61, a 62, a 63 ) = (-1, -1, 1, 1, 1, -1, ) b = (b 4, b 5, b 6 ) = (7, -7, 4) c = (c 1, c 2, c 3 ) = (2, -3, 3) v = 0

43 For more example, the slack form below

44 Examples for formulation of problems into LP Shortest paths Maximum flow Minimum-cost flow Multi-commodity flow

45 Shortest paths The single-pair shortest path problem: Given a weighted directed graph G = (V,E) weight function w: E R, a source vertex s and destination vertex t, compute the value d[t], the weight of the shortest path from s to t. Note that for each edge (u,v) in E, d[v] <= d[u] + w(u,v); d[s] = 0

46 Shortest paths We obtain the following linear program to compute the shortest-path weight from nodes s to t: In this linear program, there are V variables d[v] s, one for each vertex v in V. There are E + 1 constraints, one for each edge plus the additional constraint that the source vertex always has the value 0.

47 Maximum flow A flow network G=(V,E) is a directed graph s.t. each edge (u,v) in E has non-negative capacity c(u,v) >=0. If (u,v) not in E, then c(u,v)=0. Designate a source s and a sink t in V. G is a connected graph. A flow in G is a real-valued function f: V X V R satisfies three properties:

48 Capacity constraint: for all u,v in V, f(u,v) <= c(u,v) Skew symmetry: for all u,v in V, f(u,v) <= - f(u,v) Flow conservation: for all u,v in V-{s,t}, SUM v in V f(u,v) = 0 The value of a flow f is f = SUM v in V f(s,v) That is the total flow out of the source s.

49 The maximum flow problem is defined as Given a flow network G with source s and sink t, find a flow of maximum value. Ford-Fulkerson-method initialize flow f to 0 while there exists an augmenting path p do augment flow f along p return f O(E f* ) time, f* the maximum value found by algorithm

50 Maximum flow we can express the maximum-flow problem as following linear program: This linear program has V -2 variables, corresponding to the flow between each pair of vertices, and it has 2 V 2 + V - 2 constraints.

51 Minimum-cost flow Figure.3: (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

52

53 Multi-commodity flow

54 The real power of linear programming comes from the ability to solve new problems (not the above shortest path, maximum flow etc, which already had efficient algorithms). Such as political vote problem is new one. It is also useful to solve these problems do not have a known efficient algorithms.

55

29 Linear Programming

29 Linear Programming 29 Linear Programming Many problems take the form of optimizing an objective, given limited resources and competing constraints If we can specify the objective as a linear function of certain variables,

More information

III. Linear Programming

III. Linear Programming III. Linear Programming Thomas Sauerwald Easter 2017 Outline Introduction Standard and Slack Forms Formulating Problems as Linear Programs Simplex Algorithm Finding an Initial Solution III. Linear Programming

More information

Today: Linear Programming

Today: Linear Programming Today: Linear Programming COSC 581, Algorithms March 27, 2014 Many of these slides are adapted from several online sources Today s class: Chapter 29.1 Reading Assignments Reading assignment for next Thursday

More information

Lecture 9 Tuesday, 4/20/10. Linear Programming

Lecture 9 Tuesday, 4/20/10. Linear Programming UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Spring, 2010 Lecture 9 Tuesday, 4/20/10 Linear Programming 1 Overview Motivation & Basics Standard & Slack Forms Formulating

More information

CSC Design and Analysis of Algorithms. LP Shader Electronics Example

CSC Design and Analysis of Algorithms. LP Shader Electronics Example CSC 80- Design and Analysis of Algorithms Lecture (LP) LP Shader Electronics Example The Shader Electronics Company produces two products:.eclipse, a portable touchscreen digital player; it takes hours

More information

COMP3121/9101/3821/9801 Lecture Notes. Linear Programming

COMP3121/9101/3821/9801 Lecture Notes. Linear Programming COMP3121/9101/3821/9801 Lecture Notes Linear Programming LiC: Aleks Ignjatovic THE UNIVERSITY OF NEW SOUTH WALES School of Computer Science and Engineering The University of New South Wales Sydney 2052,

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

An introductory example

An introductory example CS1 Lecture 9 An introductory example Suppose that a company that produces three products wishes to decide the level of production of each so as to maximize profits. Let x 1 be the amount of Product 1

More information

Types of Networks. Internet Telephone Cell Highways Rail Electrical Power Water Sewer Gas

Types of Networks. Internet Telephone Cell Highways Rail Electrical Power Water Sewer Gas Flow Networks Network Flows 2 Types of Networks Internet Telephone Cell Highways Rail Electrical Power Water Sewer Gas 3 Maximum Flow Problem How can we maximize the flow in a network from a source or

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Flow Network. The following figure shows an example of a flow network:

Flow Network. The following figure shows an example of a flow network: Maximum Flow 1 Flow Network The following figure shows an example of a flow network: 16 V 1 12 V 3 20 s 10 4 9 7 t 13 4 V 2 V 4 14 A flow network G = (V,E) is a directed graph. Each edge (u, v) E has a

More information

Network Flows. CS124 Lecture 17

Network Flows. CS124 Lecture 17 C14 Lecture 17 Network Flows uppose that we are given the network in top of Figure 17.1, where the numbers indicate capacities, that is, the amount of flow that can go through the edge in unit time. We

More information

Graph Algorithms -2: Flow Networks. N. H. N. D. de Silva Dept. of Computer Science & Eng University of Moratuwa

Graph Algorithms -2: Flow Networks. N. H. N. D. de Silva Dept. of Computer Science & Eng University of Moratuwa CS4460 Advanced d Algorithms Batch 08, L4S2 Lecture 9 Graph Algorithms -2: Flow Networks Dept. of Computer Science & Eng University of Moratuwa Announcement Assignment 2 is due on 18 th of November Worth

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

CS 1501 Recitation. Xiang Xiao

CS 1501 Recitation. Xiang Xiao CS 1501 Recitation Xiang Xiao Network Flow A flow network G=(V,E): a directed graph, where each edge (u,v) E has a nonnegative capacity c(u,v)>=0. If (u,v) E, we assume that c(u,v)=0. two distinct vertices

More information

Exercises - Linear Programming

Exercises - Linear Programming Chapter 38 Exercises - Linear Programming By Sariel Har-Peled, December 10, 2007 1 Version: 1.0 This chapter include problems that are related to linear programming. 38.1 Miscellaneous Exercise 38.1.1

More information

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 Linear Function f: R n R is linear if it can be written as f x = a T x for some a R n Example: f x 1, x 2 =

More information

10 Max-Flow Min-Cut Flows and Capacitated Graphs 10 MAX-FLOW MIN-CUT

10 Max-Flow Min-Cut Flows and Capacitated Graphs 10 MAX-FLOW MIN-CUT 10 Max-Flow Min-Cut 10.1 Flows and Capacitated Graphs Previously, we considered weighted graphs. In this setting, it was natural to thinking about minimizing the weight of a given path. In fact, we considered

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 18 Prof. Erik Demaine Negative-weight cycles Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist.

More information

Algorithms and Theory of Computation. Lecture 11: Network Flow

Algorithms and Theory of Computation. Lecture 11: Network Flow Algorithms and Theory of Computation Lecture 11: Network Flow Xiaohui Bei MAS 714 September 18, 2018 Nanyang Technological University MAS 714 September 18, 2018 1 / 26 Flow Network A flow network is a

More information

6.046 Recitation 11 Handout

6.046 Recitation 11 Handout 6.046 Recitation 11 Handout May 2, 2008 1 Max Flow as a Linear Program As a reminder, a linear program is a problem that can be written as that of fulfilling an objective function and a set of constraints

More information

Maximum Flow Problem (Ford and Fulkerson, 1956)

Maximum Flow Problem (Ford and Fulkerson, 1956) Maximum Flow Problem (Ford and Fulkerson, 196) In this problem we find the maximum flow possible in a directed connected network with arc capacities. There is unlimited quantity available in the given

More information

We say that a flow is feasible for G (or just feasible if the graph and capacity function in question are obvious) if

We say that a flow is feasible for G (or just feasible if the graph and capacity function in question are obvious) if CS787: Advanced Algorithms Lecture 4: Network Flow We devote this lecture to the network flow problem and the max-flow min-cut theorem. A number of other problems can be cast into a maximum flow or minimum

More information

Linear Programming. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Linear Programming 1 / 47

Linear Programming. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Linear Programming 1 / 47 Linear Programming Jie Wang University of Massachusetts Lowell Department of Computer Science J. Wang (UMass Lowell) Linear Programming 1 / 47 Linear function: f (x 1, x 2,..., x n ) = n a i x i, i=1 where

More information

Linear programs, convex polyhedra, extreme points

Linear programs, convex polyhedra, extreme points MVE165/MMG631 Extreme points of convex polyhedra; reformulations; basic feasible solutions; the simplex method Ann-Brith Strömberg 2015 03 27 Linear programs, convex polyhedra, extreme points A linear

More information

Algorithms: Lecture 12. Chalmers University of Technology

Algorithms: Lecture 12. Chalmers University of Technology Algorithms: Lecture 1 Chalmers University of Technology Today s Topics Shortest Paths Network Flow Algorithms Shortest Path in a Graph Shortest Path Problem Shortest path network. Directed graph G = (V,

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Internet Routing Example

Internet Routing Example Internet Routing Example Acme Routing Company wants to route traffic over the internet from San Fransisco to New York. It owns some wires that go between San Francisco, Houston, Chicago and New York. The

More information

Network Flows. 7. Multicommodity Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 7. Multicommodity Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 7. Multicommodity Flows Problems 7.3 Column Generation Approach Fall 2010 Instructor: Dr. Masoud Yaghini Path Flow Formulation Path Flow Formulation Let first reformulate

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4,

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4, LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR OCH KOMBINATORISK OPTIMERING 2018-03-16 1. a) The rst thing to do is to rewrite the problem so that the right hand side of all constraints are positive.

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions. What does the Representation Theorem say (in linear programming)? In words, the representation theorem says that any feasible point can be written

More information

Another max flow application: baseball

Another max flow application: baseball CS124 Lecture 16 Spring 2018 Another max flow application: baseball Suppose there are n baseball teams, and team 1 is our favorite. It is the middle of baseball season, and some games have been played

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

6.854 Advanced Algorithms

6.854 Advanced Algorithms 6.854 Advanced Algorithms Homework 5 Solutions 1 10 pts Define the following sets: P = positions on the results page C = clicked old results U = unclicked old results N = new results and let π : (C U)

More information

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality.

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality. CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Primal-Dual Algorithms Date: 10-17-07 14.1 Last Time We finished our discussion of randomized rounding and

More information

u = 50 u = 30 Generalized Maximum Flow Problem s u = 00 2 u = 00 u = 50 4 = 3=4 u = 00 t capacity u = 20 3 u = 20 = =2 5 u = 00 gain/loss factor Max o

u = 50 u = 30 Generalized Maximum Flow Problem s u = 00 2 u = 00 u = 50 4 = 3=4 u = 00 t capacity u = 20 3 u = 20 = =2 5 u = 00 gain/loss factor Max o Generalized Max Flows Kevin Wayne Cornell University www.orie.cornell.edu/~wayne = 3=4 40 v w 30 advisor: Eva Tardos u = 50 u = 30 Generalized Maximum Flow Problem s u = 00 2 u = 00 u = 50 4 = 3=4 u =

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Linear programming: algebra

Linear programming: algebra : algebra CE 377K March 26, 2015 ANNOUNCEMENTS Groups and project topics due soon Announcements Groups and project topics due soon Did everyone get my test email? Announcements REVIEW geometry Review geometry

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

Energy minimization via graph-cuts

Energy minimization via graph-cuts Energy minimization via graph-cuts Nikos Komodakis Ecole des Ponts ParisTech, LIGM Traitement de l information et vision artificielle Binary energy minimization We will first consider binary MRFs: Graph

More information

Mathematics for Decision Making: An Introduction. Lecture 13

Mathematics for Decision Making: An Introduction. Lecture 13 Mathematics for Decision Making: An Introduction Lecture 13 Matthias Köppe UC Davis, Mathematics February 17, 2009 13 1 Reminder: Flows in networks General structure: Flows in networks In general, consider

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

CMPSCI 611: Advanced Algorithms

CMPSCI 611: Advanced Algorithms CMPSCI 611: Advanced Algorithms Lecture 12: Network Flow Part II Andrew McGregor Last Compiled: December 14, 2017 1/26 Definitions Input: Directed Graph G = (V, E) Capacities C(u, v) > 0 for (u, v) E and

More information

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique.

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique. IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, 31 14. You wish to solve the IP below with a cutting plane technique. Maximize 4x 1 + 2x 2 + x 3 subject to 14x 1 + 10x 2 + 11x 3 32 10x 1 +

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information

Discrete Optimization

Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 15, 2010 Discussions: March 25, April 01 Discrete Optimization Spring 2010 s 3 You can hand in written solutions for up to two of the exercises

More information

Ω R n is called the constraint set or feasible set. x 1

Ω R n is called the constraint set or feasible set. x 1 1 Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize subject to f(x) x Ω Ω R n is called the constraint set or feasible set. any point x Ω is called a feasible point We

More information

Chapter 5 Linear Programming (LP)

Chapter 5 Linear Programming (LP) Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize f(x) subject to x R n is called the constraint set or feasible set. any point x is called a feasible point We consider

More information

BBM402-Lecture 20: LP Duality

BBM402-Lecture 20: LP Duality BBM402-Lecture 20: LP Duality Lecturer: Lale Özkahya Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html An easy LP? which is compact form for max cx subject to

More information

Network Flows. CTU FEE Department of control engineering. March 28, 2017

Network Flows. CTU FEE Department of control engineering. March 28, 2017 Network Flows Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU FEE Department of control engineering March 28, 2017 Z. Hanzálek (CTU FEE) Network Flows March 28, 2017 1 / 44 Table of contents 1

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Introduction to Linear and Combinatorial Optimization (ADM I)

Introduction to Linear and Combinatorial Optimization (ADM I) Introduction to Linear and Combinatorial Optimization (ADM I) Rolf Möhring based on the 20011/12 course by Martin Skutella TU Berlin WS 2013/14 1 General Remarks new flavor of ADM I introduce linear and

More information

Duality. Peter Bro Mitersen (University of Aarhus) Optimization, Lecture 9 February 28, / 49

Duality. Peter Bro Mitersen (University of Aarhus) Optimization, Lecture 9 February 28, / 49 Duality Maximize c T x for x F = {x (R + ) n Ax b} If we guess x F, we can say that c T x is a lower bound for the optimal value without executing the simplex algorithm. Can we make similar easy guesses

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

Discrete Optimization Lecture 5. M. Pawan Kumar

Discrete Optimization Lecture 5. M. Pawan Kumar Discrete Optimization Lecture 5 M. Pawan Kumar pawan.kumar@ecp.fr Exam Question Type 1 v 1 s v 0 4 2 1 v 4 Q. Find the distance of the shortest path from s=v 0 to all vertices in the graph using Dijkstra

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

Lecture 8 Network Optimization Algorithms

Lecture 8 Network Optimization Algorithms Advanced Algorithms Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2013-2014 Lecture 8 Network Optimization Algorithms 1 21/01/14 Introduction Network models have

More information

Section 4.2 Polynomial Functions of Higher Degree

Section 4.2 Polynomial Functions of Higher Degree Section 4.2 Polynomial Functions of Higher Degree Polynomial Function P(x) P(x) = a degree 0 P(x) = ax +b (degree 1) Graph Horizontal line through (0,a) line with y intercept (0,b) and slope a P(x) = ax

More information

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function Linear programming Input: System of inequalities or equalities over the reals R A linear cost function Output: Value for variables that minimizes cost function Example: Minimize 6x+4y Subject to 3x + 2y

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal

More information

Lecture 2: The Simplex method. 1. Repetition of the geometrical simplex method. 2. Linear programming problems on standard form.

Lecture 2: The Simplex method. 1. Repetition of the geometrical simplex method. 2. Linear programming problems on standard form. Lecture 2: The Simplex method. Repetition of the geometrical simplex method. 2. Linear programming problems on standard form. 3. The Simplex algorithm. 4. How to find an initial basic solution. Lecture

More information

Network Flow Problems Luis Goddyn, Math 408

Network Flow Problems Luis Goddyn, Math 408 Network Flow Problems Luis Goddyn, Math 48 Let D = (V, A) be a directed graph, and let s, t V (D). For S V we write δ + (S) = {u A : u S, S} and δ (S) = {u A : u S, S} for the in-arcs and out-arcs of S

More information

Maximum flow problem CE 377K. February 26, 2015

Maximum flow problem CE 377K. February 26, 2015 Maximum flow problem CE 377K February 6, 05 REVIEW HW due in week Review Label setting vs. label correcting Bellman-Ford algorithm Review MAXIMUM FLOW PROBLEM Maximum Flow Problem What is the greatest

More information

CSE 326: Data Structures Network Flow. James Fogarty Autumn 2007

CSE 326: Data Structures Network Flow. James Fogarty Autumn 2007 CSE 36: Data Structures Network Flow James Fogarty Autumn 007 Network Flows Given a weighted, directed graph G=(V,E) Treat the edge weights as capacities How much can we flow through the graph? A 1 B 7

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 5: The Simplex method, continued Prof. John Gunnar Carlsson September 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, 2010

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

The min cost flow problem Course notes for Optimization Spring 2007

The min cost flow problem Course notes for Optimization Spring 2007 The min cost flow problem Course notes for Optimization Spring 2007 Peter Bro Miltersen February 7, 2007 Version 3.0 1 Definition of the min cost flow problem We shall consider a generalization of the

More information

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n 2 4. Duality of LPs and the duality theorem... 22 4.2 Complementary slackness... 23 4.3 The shortest path problem and its dual... 24 4.4 Farkas' Lemma... 25 4.5 Dual information in the tableau... 26 4.6

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time

directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time Network Flow 1 The Maximum-Flow Problem directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time 2 Maximum Flows and Minimum Cuts flows and cuts max flow equals

More information

Section 4.1 Solving Systems of Linear Inequalities

Section 4.1 Solving Systems of Linear Inequalities Section 4.1 Solving Systems of Linear Inequalities Question 1 How do you graph a linear inequality? Question 2 How do you graph a system of linear inequalities? Question 1 How do you graph a linear inequality?

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

Running Time. Assumption. All capacities are integers between 1 and C.

Running Time. Assumption. All capacities are integers between 1 and C. Running Time Assumption. All capacities are integers between and. Invariant. Every flow value f(e) and every residual capacities c f (e) remains an integer throughout the algorithm. Theorem. The algorithm

More information

Optimization - Examples Sheet 1

Optimization - Examples Sheet 1 Easter 0 YMS Optimization - Examples Sheet. Show how to solve the problem min n i= (a i + x i ) subject to where a i > 0, i =,..., n and b > 0. n x i = b, i= x i 0 (i =,...,n). Minimize each of the following

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1 The Graphical Method & Algebraic Technique for Solving LP s Métodos Cuantitativos M. En C. Eduardo Bustos Farías The Graphical Method for Solving LP s If LP models have only two variables, they can be

More information

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Maximum Flow Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Flow Network A low network G ( V, E) is a directed graph with a source node sv, a sink node tv, a capacity unction c. Each edge ( u,

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

Sensitivity Analysis and Duality

Sensitivity Analysis and Duality Sensitivity Analysis and Duality Part II Duality Based on Chapter 6 Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan

More information

1 Review for Lecture 2 MaxFlow

1 Review for Lecture 2 MaxFlow Comp 260: Advanced Algorithms Tufts University, Spring 2009 Prof. Lenore Cowen Scribe: Wanyu Wang Lecture 13: Back to MaxFlow/Edmonds-Karp 1 Review for Lecture 2 MaxFlow A flow network showing flow and

More information

Maximum flow problem (part I)

Maximum flow problem (part I) Maximum flow problem (part I) Combinatorial Optimization Giovanni Righini Università degli Studi di Milano Definitions A flow network is a digraph D = (N,A) with two particular nodes s and t acting as

More information

Discrete Optimization 23

Discrete Optimization 23 Discrete Optimization 23 2 Total Unimodularity (TU) and Its Applications In this section we will discuss the total unimodularity theory and its applications to flows in networks. 2.1 Total Unimodularity:

More information

Operations Research Lecture 2: Linear Programming Simplex Method

Operations Research Lecture 2: Linear Programming Simplex Method Operations Research Lecture 2: Linear Programming Simplex Method Notes taken by Kaiquan Xu@Business School, Nanjing University Mar 10th 2016 1 Geometry of LP 1.1 Graphical Representation and Solution Example

More information

Professor Alan H. Stein October 31, 2007

Professor Alan H. Stein October 31, 2007 Mathematics 05 Professor Alan H. Stein October 3, 2007 SOLUTIONS. For most maximum problems, the contraints are in the form l(x) k, where l(x) is a linear polynomial and k is a positive constant. Explain

More information

Lecture notes on the ellipsoid algorithm

Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Handout 1 18.433: Combinatorial Optimization May 14th, 007 Michel X. Goemans Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information

7. Lecture notes on the ellipsoid algorithm

7. Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Michel X. Goemans 18.433: Combinatorial Optimization 7. Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm proposed for linear

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

II. Analysis of Linear Programming Solutions

II. Analysis of Linear Programming Solutions Optimization Methods Draft of August 26, 2005 II. Analysis of Linear Programming Solutions Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston, Illinois

More information