OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE DISTRIBUTION BASED ON THE LIGHT EXTINCTION DATA

Size: px
Start display at page:

Download "OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE DISTRIBUTION BASED ON THE LIGHT EXTINCTION DATA"

Transcription

1 THERMAL SCIENCE, Year 202, Vol. 6, No. 5, pp OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE ISTRIBUTION BASE ON THE LIGHT EXTINCTION ATA y Hong TANG * College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, China Short paper OI: /TSCI205353T Introduction In this paper, the anomalous diffraction approximation method is improved for calculating the extinction efficiency of non-spherical particles. Through this step, the range of the refractive index of particles can e enlarged, and the improved anomalous diffraction approximation method can e applied easily to the calculation of extinction efficiency for the most kinds of non-spherical particles. Meanwhile, an optimal wavelength selection algorithm is proposed for the inversion of non-spherical particle size distriution in the dependent mode. Through the improved anomalous diffraction approximation method, the computation time is sustantially reduced compared with the rigorous methods, and a more accurate inversion result of particle size distriution is otained using the optimal wavelength selection method. Key words: particle size distriution, light extinction, anomalous diffraction, wavelength Atmospheric aerosols are suspensions of small solid or liquid particles in the atmosphere. To understand the effect of atmospheric aerosol on the atmospheric visiility degradation phenomena require knowledge of aerosol optical properties and their particle size distriutions []. While particle size distriution is related to some processes such as nucleation [2], atomization [3], coagulation [4], deposition [5], synthesis [6], and reakage [7]. Light scattering particle sizing techniques have een widely used during the recent years since they provide an important tool for the characterization of a large numer of industrial production processes. These techniques mostly contain the total light scattering, angle light scattering, diffraction light scattering and dynamic light scattering, and the measurement range of them ranges from nanometer to millimeter. It can in fact e used for on-line monitoring of micron or su-micron particle systems thus providing real time measurements of oth particle size distriution and particle concentration [8, 9]. But the calculation of extinction efficiency ased on the classical Mie theory is complicated and time consug, what is important is that the Mie theory can only e applied to the homogeneous spherical particle, while most particle systems are non-spherical particles. A suitale approximation method is the anomalous diffraction approximation (AA), which can cal- Author s tanghong@cjlu.edu.cn

2 354 THERMAL SCIENCE, Year 202, Vol. 6, No. 5, pp culate the extinction efficiency of spherical and non-spherical particles [0-2]. Although some rigorous methods have een developed for calculating the extinction efficiency of randomly oriented non-spherical particle such as the extended oundary-condition method (T-matrix) and the finite-difference time-domain method (FT), the AA is still an effective alternative which could avoid the complexity in calculating the extinction efficiency. In this paper, we will use the improved AA method to calculate the extinction efficiency of non-spherical particles. Meanwhile, we will propose an optimal wavelength selection algorithm for the inversion of non-spherical particle size distriution in the dependent mode. Theory and computation When a eam of parallel monochromatic light passes through a particle system (thickness L) with its refractive index different from that of the dispersant medium, oth the scattering and the asorption lead to an attenuation of the transmitted light. According to the Lamert-Beer law, the transmitted light intensity I is defined as ln I(λ)/I 0 (λ) = τ(λ)l where I 0 (λ) is the incident light intensity at wavelength λ, I(λ)/I 0 (λ) is otained y actual measurement, and τ(λ) is the turidity. In the asence of the multiple scattering and interaction effects, the transmitted light intensity I for a spherical particle system is given y the integral equation: max I( λ) 3 Qext ( λ, m, ) f( ) ln LN d I ( λ ) = 2 () 0 where Q ext (λ, m, ) is the extinction efficiency of a single spherical particle which is a function of the particle diameter, the wavelength λ in the medium and the relative refractive index m can e calculated, N is the total numer of particles, the lower and upper integration limits are denoted y and max, and f() is the frequency distriution of a particle system. Within the framework of AA, the extinction efficiency of a spheroidal particle has the same form as a sphere. When the incident light propagates along the rotation axis of the spheroidal particle, the extinction efficiency of a spheroidal particle is given y [4]: Q ad exp( iw) exp( iw) = 4Re i w w where w = 2ka(m )/λ, a is the semiaxis length of the rotation axis, and k the wave numer. For a particle whose typical size is much larger than the incident wavelength or high asoring, the edge can not e treated as sharp and the effect of the curvature y the particle must e included. After considering the edge effect term, the domain of applicaility of AA can e extended. The edge effect term is derived as: Q edge 2c 0 a 2/3 /k 2/3 4/3 where is the semiaxis length of the other axis, r = a/ is the aspect ratio, for prolate spheroid r > and for olate spheroid r < and c 0 = We use the standard AA plus the edge term to calculate the extinction efficiency of spheroidal particles when the or axis length is in the range from ~0 μm, and the standard AA is used when the or axis length is in the range from 0.~ μm. According to the Lamert-Beer s law, the extinction caused y spheroidal particles with a particle size distriution f (, r) can e expressed as [5]: (2)

3 THERMAL SCIENCE, Year 202, Vol. 6, No. 5, pp max max I( λ) ln LN Qext(, λ mrpr,,) (,) f(,)/ r Vr (,)ddr I ( ) 0 r λ = (3) r where Q ext (λ, m,, r) is the extinction efficiency of a spheroidal particle; here we use the angular averaging extinction efficiency. P(, r) is the averaging projected area of the particle, f (, r) the frequency distriution function of particles in volume, and V (, r) the volume of a spheroidal particle. The extinction values are calculated y the improve AA method. The distriution of spheroidal particles is assumed to have R-R distriution with the expression: f R-R k k kr kr k kr r r (,) r = exp exp r r r where, k, r, and k r are the characteristic parameters of spheroidal R-R distriution. The visile extinction spectrums have relationship with the characteristic parameters of spheroidal R-R particle size distriution. If the visile extinction spectrum is a monotone ascending we have < μm; > 3.5 μm for the visile extinction spectrum is a monotone descending; > 2 μm for the visile extinction spectrum is curving curve. When the relative refractive index of particles is fixed, the visile extinction spectrum are changed from a monotone ascending to curving and then to monotone descending with the increasing (fig. ). We propose an optimal wavelength selection algorithm for the inversion of non-spherical particle size distriution in the dependent mode. The corresponding wavelengths were selected as the measurement wavelengths. Furthermore, the imum and the maximal wavelengths in the visile region were also selected as the measurement wavelengths. Tale gives the inversion results of spheroidal particles with the proposed optimal wavelength selection algorithm. In ta., No. denotes that optimal wavelength selection algorithm is used and No. 2~No. 3 denote that wavelengths are selected with random methods. It is clear to see that good inversion results can e otained with the optimal wavelength selection algorithm. Tale. Inversion results of spheroidal particles [(, k, r, k r ) = (3.5, 5,.5, 5)] No. No. 2 No. 3 No. 4 (λ, λ 2, λ 3, λ 4, λ 5 )/μm (0.4, 0.46, 0.55, 0.65, 0.8) (0.46, 0.55, 0.65, 0.7, 0.76) (0.4, 0.5, 0.6, 0.7, 0.8) (0.5, 0.53, 0.6, 0.7, 0.75) Inversion results 0% random noise % random noise (3.5004, 4.985,.5024, ) (3.4998, 5.078,.4880, ) (3.4998, ,.4926, ) (3.5006, ,.4838, 3.063) (3.4898, 4.0,.4886, ) (3.4749, ,.4807, 3.394) (3.4768, 6.25,.486, 3.08) (3.5909, ,.4794, ) Inversion error ς (0% random noise) (4) Conclusions An improved AA method is used for calculating the extinction efficiency of spheroidal particles, in which the complexity in calculating the extinction efficiency of non-sphe-

4 356 THERMAL SCIENCE, Year 202, Vol. 6, No. 5, pp (,3,3.5,5) (,7,3.5,5) (,5,3.5,5) 0.9 (,5,.5,5) (,5,.5,7) 0.8 (,5,.5,3) (2,3,3.5,5) (2,7,3.5,5) (2,5,3.5,5) (2,5,.5,5) (2,5,.5,7) (2,5,.5,3) (a) λ/μm = μm () λ/μm = 2 μm (c) λ/μm = 3.5 μm rical particles is diished, and the computation time is sustantially reduced. Meanwhile, the visile extinction spectrums of spheroidal particles are analyzed, and an optimal wavelength selection algorithm is proposed for the inversion of spheroidal particle size distriution. The visile extinction spectrums have relationship with the distriution of spheroidal particles, and the optimal wavelength selection algorithm can otain good results for the inversion of spheroidal particle size distriution. Acknowledgment This work was supported y the National Natural Science Foundation of China (No , No ) and Zhejiang Province Natural Science Funds (Y6047). References (3.5,3,3.5,5) (3.5,7,3.5,5) (3.5,5,3.5,5) (3.5,5,.5,5) (3.5,5,.5,7) (3.5,5,.5,3) [] Upadhyay, R. R., Ezekoye. O. A., Treatment of Size-ependent Aerosol Transport Processes Using Quadrature Based Moment Methods, J. Aerosol Sci., 37 (2006), 7, pp [2] Yu, M. Z., Lin, J. Z., Binary Homogeneous Nucleation and Growth of Water-Sulfuric Acid Nanoparticles Using a TEMOM Model, International Journal of Heat and Mass Transfer, 53 (200), 4, pp [3] Lin, J. Z., Qian, L. J., Xiong, H. B., Effects of Operating Conditions on the roplet eposition onto Surface in the Atomization Impinging Spray with an Impinging Plate, Surface and Coatings Technology, 203 (2009), 2, pp (7.5,3,3.5,5) (7.5,7,3.5,5) (7.5,5,3.5,5) (7.5,5,.5,5) (7.5,5,.5,7) (7.5,5,.5,3) (d) λ/μm = 7.5 μm Figure. Visile extinction spectrums of spheroidal particles with R-R distriutions (m =.235)

5 THERMAL SCIENCE, Year 202, Vol. 6, No. 5, pp [4] Yu, M. Z., Lin, J. Z., Chan, T. L., A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion, Aerosol Science and Technology, 42 (2008), 9, pp [5] Lin, J. Z., Lin, P. F., Chen, H. J., Research on the Transport and eposition of Nanoparticles in a Rotating Curved Pipe, Physics of Fluids, 2 (2009), 2200, pp. - [6] Yu, M. Z., Lin, J. Z., Chan, T. L., Numerical Simulation of Nanoparticle Synthesis in iffusion Flame Reactor, Powder Technology, 8 (2008),, pp [7] Gan, F. J., Lin, J. Z., Yu, M. Z., Particle Size istriution in a Planar Jet Flow Undergoing Shear- Induced Coagulation and Breakage, Journal of Hydrodynamics, 22 (200), 4, pp [8] Pedocchi, F., Garcia, M. H., Noise-Resolution Trade-off in Projection Algorithms for Laser iffraction Particle Sizing, Applied Optics, 45 (2006), 5, pp [9] Khletsov, B. N., et al., Studies of Phosphatidylcholine Vesicles y Spectroturidimetric and ynamic Light Scattering Methods, Journal of Quantitative Spectroscopy and Radiative Transfer, (2003),, pp [0] Van de Hulst, H. C., Light Scattering y Small Particles, John Wiley and Sons, New York, USA, 957 [] Mishchenko, M. I., Travis, L.., Light Scattering y Polydispersions of Randomly Oriented Spheroids with Sizes Comparale to Wavelengths of Oservation, Applied Optics, 33 (994), 30, pp [2] Zumer, S., Light Scattering from Nematic roplets: Anomalous-iffraction Approach, Physical Review A, 37 (988), 0, pp [3] Sun, X. G., Tang, H., Yuan, G. B., Anomalous iffraction Approximation Method for Retrieval of Spherical and Spheroidal Particle Size istriutions in Total Light Scattering, Journal of Quantitative Spectroscopy and Radiative Transfer, 09 (2008),, pp [4] Jalava, J. P., Taavitsainen, V. M., Haario, H., Lameerg, L., eteration of Particle and Crystal Size istriution from Turidity Spectrum of TiO 2 Pigments y Means of T-Matrix, Journal of Quantitative Spectroscopy and Radiative Transfer, 60 (998), 3, pp Paper sumitted: August, 202 Paper revised: Septemer 3, 202 Paper accepted: Septemer 2, 202

OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE DISTRIBUTION BASED ON THE LIGHT EXTINCTION DATA

OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE DISTRIBUTION BASED ON THE LIGHT EXTINCTION DATA THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1353-1357 1353 OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE ISTRIBUTION BASE ON THE LIGHT EXTINCTION ATA by Hong TANG * College

More information

THE VERIFICATION OF THE TAYLOR-EXPANSION MOMENT METHOD IN SOLVING AEROSOL BREAKAGE

THE VERIFICATION OF THE TAYLOR-EXPANSION MOMENT METHOD IN SOLVING AEROSOL BREAKAGE 144 THERMAL SCIENCE, Year 1, Vol. 16, No. 5, pp. 144-148 THE VERIFICATION OF THE TAYLOR-EXPANSION MOMENT METHOD IN SOLVING AEROSOL BREAKAGE by Ming-Zhou YU a,b * and Kai ZHANG a a College of Science, China

More information

NANOPARTICLE COAGULATION AND DISPERSION IN A TURBULENT PLANAR JET WITH CONSTRAINTS

NANOPARTICLE COAGULATION AND DISPERSION IN A TURBULENT PLANAR JET WITH CONSTRAINTS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1497-1501 1497 NANOPARTICLE COAGULATION AND DISPERSION IN A TURBULENT PLANAR JET WITH CONSTRAINTS by Cheng-Xu TU a,b * and Song LIU a a Department of Mechanics,

More information

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION 1446 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1446-1450 MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION by Li-Juan QIAN * China Jiliang University, Hangzhou, China Short

More information

INSTANTANEOUS AEROSOL DYNAMICS IN A TURBULENT FLOW

INSTANTANEOUS AEROSOL DYNAMICS IN A TURBULENT FLOW 1492 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1492-1496 INSTANTANEOUS AEROSOL DYNAMICS IN A TURBULENT FLOW by Kun ZHOU * Clean Combustion Research Center, King Abdullah University of Science and

More information

CHARACTERISTIC DISTRIBUTION OF SUBMICRON AND NANO-PARTICLES LADEN FLOW AROUND CIRCULAR CYLINDER

CHARACTERISTIC DISTRIBUTION OF SUBMICRON AND NANO-PARTICLES LADEN FLOW AROUND CIRCULAR CYLINDER 1386 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1386-1390 CHARACTERISTIC DISTRIBUTION OF SUBMICRON AND NANO-PARTICLES LADEN FLOW AROUND CIRCULAR CYLINDER by Cheng-Xu TU a,b* and Jian ZHANG b a Department

More information

Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols Chin. Phys. B Vol. 21, No. 5 (212) 5424 Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols Wang Hai-Hua( 王海华 ) and Sun Xian-Ming( 孙贤明 ) School

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1551-1555 1551 DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS by Zhan-Hong WAN a*, Zhen-Jiang YOU b, and Chang-Bin WANG c a Department of Ocean

More information

Microwave Absorption by Light-induced Free Carriers in Silicon

Microwave Absorption by Light-induced Free Carriers in Silicon Microwave Asorption y Light-induced Free Carriers in Silicon T. Sameshima and T. Haa Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan E-mail address: tsamesim@cc.tuat.ac.jp

More information

Why is the sky blue?

Why is the sky blue? Why is the sky blue? Volcanic: June 12, 1991: Mt Pinatubo ejected 20 million tons of sulfur dioxide. Aerosols spread globally Haze lowered a drop of global temperature by 1F Size parameter: Rayleigh

More information

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2007

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2007 Supporting Information for Advanced Materials, adma.200602057 Wiley-VCH 2007 69451 Weinheim, Germany Supporting Information Polarization Properties and Switchale Assemly of Nanorods Somorata Acharya 1,

More information

Travel Grouping of Evaporating Polydisperse Droplets in Oscillating Flow- Theoretical Analysis

Travel Grouping of Evaporating Polydisperse Droplets in Oscillating Flow- Theoretical Analysis Travel Grouping of Evaporating Polydisperse Droplets in Oscillating Flow- Theoretical Analysis DAVID KATOSHEVSKI Department of Biotechnology and Environmental Engineering Ben-Gurion niversity of the Negev

More information

A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion

A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion Aerosol Science and Technology ISSN: 78-686 (Prin 5-7388 (Online Journal homepage: http://www.tandfonline.com/loi/uast A New Moment Method for Solving the Coagulation Equation for Particles in Brownian

More information

Aerosol Optical Properties

Aerosol Optical Properties ATM 507 Lecture 25 Text reading Chapter 15 Paper Due Dec. 9 Review Session Dec. 9 Final Dec. 12 (10:30 AM-12:30 PM) Today s topic Aerosol Optical Properties 1 Aerosol Optical Properties There are a number

More information

Inversion of Sun & Sky Radiance to Derive Aerosol Properties from AERONET

Inversion of Sun & Sky Radiance to Derive Aerosol Properties from AERONET Inversion of Sun & Sky Radiance to Derive Aerosol Properties from AERONET Oleg Dubovik (GEST/UMBC, NASA/GSFC) Contributors: Brent Holben,, Alexander Smirnov, Tom Eck, Ilya Slutsker, Tatyana Lapyonok, AERONET

More information

Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008.

Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008. Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008. Introduction: Mie theory provides the solution for a plane-parallel EM energy interacting with a homogeneous sphere.

More information

429 LIGHT DIFFRACTION MEASUREMENT OF PARTICLE SIZE

429 LIGHT DIFFRACTION MEASUREMENT OF PARTICLE SIZE Search USP29 429 LIGHT DIFFRACTION MEASUREMENT OF PARTICLE SIZE Light diffraction is one of the most widely used techniques for measuring the size of a wide range of particles from very fine to very coarse.

More information

Modeling of Mature Soot Dynamics and Optical Properties

Modeling of Mature Soot Dynamics and Optical Properties Modeling of Mature Soot Dynamics and Optical Properties Georgios A. Kelesidis, Sotiris E. Pratsinis Particle Technology Laboratory, ETH Zurich, Zurich, Switzerland Aleksandar Duric, Martin Allemann Siemens

More information

, analogous to an absorption coefficient k a

, analogous to an absorption coefficient k a Light Scattering When light passes through a medium some of it is directed away from its direction of travel. Any photons that are diverted from their direction of propagation are scattered. In the atmosphere

More information

On Temporal Instability of Electrically Forced Axisymmetric Jets with Variable Applied Field and Nonzero Basic State Velocity

On Temporal Instability of Electrically Forced Axisymmetric Jets with Variable Applied Field and Nonzero Basic State Velocity Availale at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 19-966 Vol. 6, Issue 1 (June 11) pp. 7 (Previously, Vol. 6, Issue 11, pp. 1767 178) Applications and Applied Mathematics: An International Journal

More information

Introduction to Dynamic Light Scattering for Particle Size Determination

Introduction to Dynamic Light Scattering for Particle Size Determination www.horiba.com/us/particle Jeffrey Bodycomb, Ph.D. Introduction to Dynamic Light Scattering for Particle Size Determination 2016 HORIBA, Ltd. All rights reserved. 1 Sizing Techniques 0.001 0.01 0.1 1 10

More information

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Zhi-Yuan Li Optical Physics Laboratory, Institute of Physics, CAS Beijing 18, China January 5-9, 7, Fudan University, Shanghai Challenges

More information

Trichomes. Trichomes. Spines

Trichomes. Trichomes. Spines Supplementary Figures Trichomes Trichomes Spines 50 µm Supplementary Figure S The structure of the trichomes at the ase of cactus spines. These trichomes have a width of approximately 28.6 μm, a thickness

More information

Scattering of EM waves by spherical particles: Overview of Mie Scattering

Scattering of EM waves by spherical particles: Overview of Mie Scattering ATMO 551a Fall 2010 Scattering of EM waves by spherical particles: Overview of Mie Scattering Mie scattering refers to scattering of electromagnetic radiation by spherical particles. Under these conditions

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

DEPOLARIZATION AND POLARIZATION OF LIGHT SCATTERING BY DUSTLIKE TROPOSPHERIC AERO- SOLS

DEPOLARIZATION AND POLARIZATION OF LIGHT SCATTERING BY DUSTLIKE TROPOSPHERIC AERO- SOLS J. of Electromagn. Waves and Appl., Vol. 24, 1353 1364, 21 DEPOLARIZATION AND POLARIZATION OF LIGHT SCATTERING BY DUSTLIKE TROPOSPHERIC AERO- SOLS X. M. Sun, H. H. Wang, J. Shen, and W. Liu School of Electrical

More information

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004 arxiv:physics/0407001v2 [physics.chem-ph] 8 Dec 2004 Size Information Obtained Using Static Light Scattering Technique Yong Sun February 2, 2008 Abstract Detailed investigation of static light scattering

More information

Light scattering by irregular interplanetary dust particles

Light scattering by irregular interplanetary dust particles Earth Planets Space, 50, 577 585, 1998 Light scattering by irregular interplanetary dust particles Hajime Okamoto 1 and Yu-lin Xu 2 1 Kashima Space Research Center, Communications Research Laboratory,

More information

One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodispersed Droplets

One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodispersed Droplets One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodispersed Droplets Jantarat Promvongsa* 1,, Yingchun Wu 1,5, Gerard Grehan 1,

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

David L. Mitchell 1 and Anthony J. Baran 2 1. Desert Research Institute, Reno, Nevada 2. U.K. Met. Office, Bracknell, U.K.

David L. Mitchell 1 and Anthony J. Baran 2 1. Desert Research Institute, Reno, Nevada 2. U.K. Met. Office, Bracknell, U.K. JP3.2 TESTING OF THE MODIFIED ANOMALOUS DIFFRACTION APPROXIMATION WITH T-MATRIX CALCULATIONS FOR HEXAGONAL COLUMNS David L. Mitchell 1 and Anthony J. Baran 2 1. Desert Research Institute, Reno, Nevada

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

A Discussion on the Applicable Condition of Rayleigh Scattering

A Discussion on the Applicable Condition of Rayleigh Scattering www.ijrsa.org International Journal of Remote Sensing Applications (IJRSA) Volume 5, 015 doi: 10.14355/ijrsa.015.05.007 A Discussion on the Applicable Condition of Rayleigh Scattering Nan Li *1, Yiqing

More information

RETRIEVAL OF MICROPHYSICAL AND OPTICAL CHARACTERISTICS OF MIXED FRONTAL CLOUDS FROM MULTISPECTRAL SATELLITE DATA

RETRIEVAL OF MICROPHYSICAL AND OPTICAL CHARACTERISTICS OF MIXED FRONTAL CLOUDS FROM MULTISPECTRAL SATELLITE DATA RETRIEVAL OF MICROPHYSICAL AND OPTICAL CHARACTERISTICS OF MIXED FRONTAL CLOUDS FROM MULTISPECTRAL SATELLITE DATA Vladimir Bakhanov, Olexiy Kryvobok, Boris Dorman Ukrainian Hydrometeorological Research

More information

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal nomenclature Sun Earth Y-axis: Spectral radiance, aka monochromatic intensity units: watts/(m^2*ster*wavelength) Blackbody curves provide

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Fundamentals of Particle Counting

Fundamentals of Particle Counting Fundamentals of Particle Counting 1 Particle Counting: Remains the most significant technique for determining the cleanliness level of a fluid Useful as a tool for qualification and monitoring cleanroom

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

Scattering by Groups of Particles

Scattering by Groups of Particles Scattering by Groups of Particles 2 Overview The interactions between light and groups of particles in paint films are highly complex. While we can accurately calculate the scattering of an individual

More information

University of Pécs Institute of Pharmaceutical Technology and Biopharmacy

University of Pécs Institute of Pharmaceutical Technology and Biopharmacy University of Pécs Institute of Pharmaceutical Technology and Biopharmacy Particle Definition In a continuous phase the particle is an (mostly in gaseous or liquid material) existing, dispersed, interface

More information

ATMO/OPTI 656b Spring Scattering of EM waves by spherical particles: Mie Scattering

ATMO/OPTI 656b Spring Scattering of EM waves by spherical particles: Mie Scattering Scattering of EM waves by spherical particles: Mie Scattering Why do we care about particle scattering? Examples of scattering aerosols (note: ugly looking air when the relative humidity > 80%) clouds,

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

What is the value of multi-angle DLS?

What is the value of multi-angle DLS? What is the value of multi-angle DLS? A common question from users of dynamic light scattering (DLS) instrumentation is "what is the resolution of the technique". The rule of thumb response to this question

More information

EVOLUTION OF PARTICLE SIZE DISTRIBUTION IN AIR IN THE RAINFALL PROCESS VIA THE MOMENT METHOD

EVOLUTION OF PARTICLE SIZE DISTRIBUTION IN AIR IN THE RAINFALL PROCESS VIA THE MOMENT METHOD 137 THERMAL SCIENCE, Year 1, Vol. 16, No. 5, pp. 137-1376 EVOLUTION OF PARTICLE SIZE DISTRIBUTION IN AIR IN THE RAINFALL PROCESS VIA THE MOMENT METHOD by Fu-Jun GAN a an Jian-Zhong LIN a,b * a Department

More information

Particles, drops, and bubbles. Lecture 3

Particles, drops, and bubbles. Lecture 3 Particles, drops, and bubbles Lecture 3 Brownian Motion is diffusion The Einstein relation between particle size and its diffusion coefficient is: D = kt 6πηa However gravitational sedimentation tends

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Physical processes in lidar (continued) Doppler effect (Doppler shift and broadening) Boltzmann distribution Reflection

More information

PARTICLE SIZE ANALYTICAL RANGES AND APPLICABILITY. m mm (10-6 m) nm (10-9 m)

PARTICLE SIZE ANALYTICAL RANGES AND APPLICABILITY. m mm (10-6 m) nm (10-9 m) P A R T I C L E S I Z E A N A L Y S I S PARTICLE SIZE Accurately determining particle size has become essential in many industries, as it is a fundamental physical characteristic that must be selected,

More information

Lecture 31. Constituent Lidar (3)

Lecture 31. Constituent Lidar (3) Lecture 31. Constituent Lidar (3) otational Vibrational-otational (V) aman DIAL Multiwavelength DIAL Comparison of Constituent Lidar Techniques Summary for Constituent Lidar Conventional aman DIAL for

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

APPLICATION INFORMATION

APPLICATION INFORMATION A-1995A APPLICATION INFORMATION Particle Characterization THE SIZING OF NON-SPHERICAL,SUB-MICRON PARTICLES USING POLARIZATION INTENSITY DIFFERENTIAL SCATTERING (PIDS ) Introduction Nearly all laser-based

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

Nanoparticle Synthesis and Delivery by an Aerosol Route for Watermelon Plant Foliar Uptake

Nanoparticle Synthesis and Delivery by an Aerosol Route for Watermelon Plant Foliar Uptake Nanoparticle Synthesis and Delivery by an Aerosol Route for Watermelon Plant Foliar Uptake Wei-Ning Wang 1, Jagadish C. Tarafdar 2, and Pratim Biswas 1 * 1. Aerosol and Air Quality Research Laboratory,

More information

Mie theory for light scattering by a spherical particle in an absorbing medium

Mie theory for light scattering by a spherical particle in an absorbing medium Mie theory for light scattering by a spherical particle in an absorbing medium Qiang Fu and Wenbo Sun Analytic equations are developed for the single-scattering properties of a spherical particle embedded

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Optics of Liquid Crystal Displays

Optics of Liquid Crystal Displays Optics of Liquid Crystal Displays Second Edition POCHIYEH CLAIRE GU WILEY A John Wiley & Sons, Inc., Publication Contents Preface Preface to the First Edition xiii xv Chapter 1. Preliminaries 1 1.1. Basic

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Scattering of EM waves by spherical particles: Mie Scattering

Scattering of EM waves by spherical particles: Mie Scattering ATMO/OPTI 656b Spring 2010 Scattering of EM waves by spherical particles: Mie Scattering Mie scattering refers to scattering of electromagnetic radiation by spherical particles. Under these conditions

More information

Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar

Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar Light interaction with objects (continued) Polarization of light Polarization in scattering Comparison of lidar equations

More information

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories FTIR Spectrometer Basic Theory of Infrared Spectrometer FTIR Spectrometer FTIR Accessories What is Infrared? Infrared radiation lies between the visible and microwave portions of the electromagnetic spectrum.

More information

Review: ISO Colloidal systems Methods for zeta potential determination

Review: ISO Colloidal systems Methods for zeta potential determination Review: ISO 13099 Colloidal systems Methods for zeta potential determination Mark Bumiller mark.bumiller@horiba.com www.horiba.com/particle New ISO Standards www.iso.org Outline ISO standards Zeta potential

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Measurement of the effective refractive index of a turbid colloidal suspension using light refraction

Measurement of the effective refractive index of a turbid colloidal suspension using light refraction Measurement of the effective refractive index of a turbid colloidal suspension using light refraction A Reyes-Coronado 1,, A García-Valenzuela,4, C Sánchez-Pérez and R G Barrera 1,3 1 Instituto de Física,

More information

Extinction. Aerosols

Extinction. Aerosols Extinction Extinction is the loss of energy out of a beam of radiation as it propagates. Extinction = absorption + scattering Extinction cross section analogous to the cross-sectional area of absorbers

More information

Interpreting Your PSA Results

Interpreting Your PSA Results Interpreting Your PSA Results Decoding the Acronyms and Finding Insights Ian Treviranus ian.treviranus@horiba.com www.horiba.com/us/particle Outline The Basics Define Parameters Choose Parameters Interpret

More information

Satellite remote sensing of aerosols & clouds: An introduction

Satellite remote sensing of aerosols & clouds: An introduction Satellite remote sensing of aerosols & clouds: An introduction Jun Wang & Kelly Chance April 27, 2006 junwang@fas.harvard.edu Outline Principals in retrieval of aerosols Principals in retrieval of water

More information

Optical properties of atmospheric constituents

Optical properties of atmospheric constituents Optical properties of atmospheric constituents Direct effects of aerosols optical properties on climate Scattering Aerosols Absorbing Aerosols heat heat heat heat heat Cooling Clouds evaporation Graphics:

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles Nanophotonics: principle and application Khai Q. Le Lecture 4 Light scattering by small particles Previous lecture Drude model, Drude-Sommerfeld model and Drude-Lorentz model for conducting media (metal):

More information

PHYSICAL OPTICS. Ans: 1 Sol: The condition to form bright band at a point is to have a path difference of x = nλ From the given problem

PHYSICAL OPTICS. Ans: 1 Sol: The condition to form bright band at a point is to have a path difference of x = nλ From the given problem PHYSCAL OPTCS PREVOUS EAMCET BTS (ENGNEERNG PAPER). n the Young s doule slit experiment the intensities at two points P and P on the screen are respectively and. f P is located at the centre of right fringe

More information

Topic 1: Models in Optics. Ray Optics

Topic 1: Models in Optics. Ray Optics V Topic 1: Models in ptics Aim: eview the of models used in optics, and the range of validity of each Contents: ffl ay ptics ffl ay Wave Theory ffl Vector ay Theory ffl calar Wave Theory ffl Vector Wave

More information

Progress In Electromagnetics Research, PIER 97, , 2009

Progress In Electromagnetics Research, PIER 97, , 2009 Progress In Electromagnetics Research, PIER 97, 407 416, 2009 PRACTICAL LIMITATIONS OF AN INVISIBILITY CLOAK B. L. Zhang Research Laboratory of Electronics Massachusetts Institute of Technology MA 02139,

More information

PROCEEDINGS OF SPIE. Sorting and measurement of single gold nanoparticles in an optofluidic chip

PROCEEDINGS OF SPIE. Sorting and measurement of single gold nanoparticles in an optofluidic chip PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Sorting and measurement of single gold nanoparticles in an optofluidic chip Y. Z. Shi, S. Xiong, Y. Zhang, L. K. Chin, J. H. Wu,

More information

Inform is a series of white papers designed to provide advice on material characterization issues. Mie theory The rst 100 years

Inform is a series of white papers designed to provide advice on material characterization issues. Mie theory The rst 100 years Inform is a series of white papers designed to provide advice on material characterization issues Mie theory The rst 100 years Mie theory the rst 100 years One hundred years ago Gustav Mie developed an

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

Light Scattering by Marine Particles: Modeling with Non-spherical Shapes DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes Howard R. Gordon Department of Physics

More information

Recent Advances on the Effective Optical Properties of Turbid Colloids. Rubén G. Barrera Instituto de Física, UNAM Mexico

Recent Advances on the Effective Optical Properties of Turbid Colloids. Rubén G. Barrera Instituto de Física, UNAM Mexico Recent Advances on the Effective Optical Properties of Turbid Colloids Rubén G. Barrera Instituto de Física, UNAM Mexico In In collaboration with: Augusto García Edahí Gutierrez Celia Sánchez Pérez Felipe

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

NUMERICAL MODELING OF FINE PARTICLE FRACTAL AGGREGATES IN TURBULENT FLOW

NUMERICAL MODELING OF FINE PARTICLE FRACTAL AGGREGATES IN TURBULENT FLOW THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1189-1193 1189 NUMERICAL MODELING OF FINE PARTICLE FRACTAL AGGREGATES IN TURBULENT FLOW by Feifeng CAO a, Zhanhong WAN b,c*, Minmin WANG b, Zhenjiang YOU

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008 A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide Ryan Huschka LANP Seminar February 19, 2008 TiO 2 Applications White Pigment Photocatalyst Previous methods to

More information

Chemistry Instrumental Analysis Lecture 15. Chem 4631

Chemistry Instrumental Analysis Lecture 15. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 15 IR Instruments Types of Instrumentation Dispersive Spectrophotometers (gratings) Fourier transform spectrometers (interferometer) Single beam Double beam

More information

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique Zhigang Chen and Allen Taflove Department of Electrical and Computer

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November ISSN

International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November ISSN International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November -2014 30 HEAT TRANSFER INTENSIFICATION USING NANOFLUIDS INTRODUCTION Prof. B.N. Havaraddi Assistant Professor

More information

Particle Size Determination with Dynamic Light Scattering DLS

Particle Size Determination with Dynamic Light Scattering DLS Particle Size Determination with Dynamic Light Scattering DLS Applications with the Nano Particle Sizer ANALYSETTE 12 DynaSizer The new ANALYSETTE 12 DynaSizer uses the dynamic light scattering as a measuring

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Atmospheric Optics. Lecture 17!! Nature s Light Show. Scattering. Atmospheric Optics. Atmospheric Optics. Scattering Reflection Ahrens Chapter 15

Atmospheric Optics. Lecture 17!! Nature s Light Show. Scattering. Atmospheric Optics. Atmospheric Optics. Scattering Reflection Ahrens Chapter 15 Lecture 17!! Nature s Light Show Atmospheric Optics Nature s Light Show Atmospheric Optics Scattering Reflection Ahrens Chapter 15 1 2 Scattering Reflection Refraction Diffraction Atmospheric Optics The

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Facile synthesis of halogenated carbon quantum dots as an important intermediate for surface modification Jin Zhou, Pei Lin, Juanjuan Ma, Xiaoyue Shan, Hui Feng, Congcong

More information

A Scheme to Classify Clouds with the Depolarization Ratio and Backscattering Coefficient Measured by Lidar

A Scheme to Classify Clouds with the Depolarization Ratio and Backscattering Coefficient Measured by Lidar Memoirs of the Faculty of Engineering, Okayama University, Vol.39, pp.93-11, January, 25 A Scheme to Classify Clouds with the Depolarization Ratio and Backscattering Coefficient Measured by Lidar Kengo

More information

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Scattering Introduction - Consider a localized object that contains charges

More information

BACKSCATTERING BY NON-SPHERICAL NATURAL PARTICLES: INSTRUMENT DEVELOPMENT, IOP S, AND IMPLICATIONS FOR RADIATIVE TRANSFER

BACKSCATTERING BY NON-SPHERICAL NATURAL PARTICLES: INSTRUMENT DEVELOPMENT, IOP S, AND IMPLICATIONS FOR RADIATIVE TRANSFER BACKSCATTERING BY NON-SPHERICAL NATURAL PARTICLES: INSTRUMENT DEVELOPMENT, IOP S, AND IMPLICATIONS FOR RADIATIVE TRANSFER Emmanuel Boss School of Marine Sciences 5741 Libby Hall University Of Maine Orono,

More information

The Planck Distribution. The Planck law describes theoretical spectral distribution for the emissive power of a black body. It can be written as

The Planck Distribution. The Planck law describes theoretical spectral distribution for the emissive power of a black body. It can be written as Thermal energy emitted y matter as a result of virational and rotational movements of molecules, atoms and electrons. The energy is transported y electromagnetic waves (or photons). adiation reuires no

More information

Journal of Aerosol Science

Journal of Aerosol Science Journal of Aerosol Science 5 (1) 3 8 Contents lists available at SciVerse ScienceDirect Journal of Aerosol Science journal homepage: www.elsevier.com/locate/jaerosci A TEMOM model to simulate nanoparticle

More information

PACE: Radiative Transfer studies for Atmosphere-Ocean Systems

PACE: Radiative Transfer studies for Atmosphere-Ocean Systems Summary Project What did we propose What did we accomplish relevant for PACE instrument design Ø PACE ST polarimeter document ACROSS Ø Perform sensitivity analyses for proposed PACE instrument options

More information

Optical Imaging Chapter 5 Light Scattering

Optical Imaging Chapter 5 Light Scattering Optical Imaging Chapter 5 Light Scattering Gabriel Popescu University of Illinois at Urbana-Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical

More information

Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets Xu Li Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 xuli@northwestern.edu

More information

The mathematics of scattering and absorption and emission

The mathematics of scattering and absorption and emission The mathematics of scattering and absorption and emission The transmittance of an layer depends on its optical depth, which in turn depends on how much of the substance the radiation has to pass through,

More information