International Journal of Advance Research in Computer Science and Management Studies

Size: px
Start display at page:

Transcription

1 Volume 2, Issue 9, September 2014 ISSN: (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: Effect of plant parameter variation on feedback control loop (DC motor temperature effect model) Musaab Ali mohammed Sidahmed 1 PG student Control Engineering Department, Faculty of Engineering AL Neelain University Khartoum Sudan Muawia Mohamed Ahmed Mahmoud 2 Associate Professor Control Engineering AL Neelain University Khartoum Sudan Abstract: The variation of system parameters in field of control represents a series problem. This variation should be determined and measured. This paper focuses on the effects of temperature variation on DC motor. This effect is usually not considered by the designers of control system, which may lead to misleading in the controller design. Keywords: DC motor; temperature; parameter variation; feedback. I. INTRODUCTION DC motor is a power actuator which converts electrical energy into mechanical energy. DC motor is used in many applications. The greatest advantage of dc motors control may be the speed control. The term speed control stand for speed variation carried out manually or automatically. DC motors are most suitable for wide range speed control and are therefore used in many adjustable speed produced by its poles, adjusting the armature voltage and/or the field current will change the rotor speed. DC motors have been widely used in many industrial applications such as electric vehicles, steel rolling mills, electric cranes, and robotic manipulators due to precise, wide, simple, and continuous control characteristics [3]. One of the problems facing the operation of the dc motor is the temperature rising during operation. The increase in temperature leads to some deviation in the internal parameters of the dc motor transfer function. The following sections of the paper study this variation and describe its effect. II. DC MOTOR MODELING A common actuator in control system is the DC motor. It directly Provides rotary motion and, coupled with wheels or drums and cables, can provide transitional motion. The electric circuit of the armature and the free body diagram of the rotor are shown in the Fig. 1. Fig. 1 DC motor modelling The motor torque, T, is related to the armature current,, by a constant factor Kt. The back emf rotational velocity by the constant factor as in the following equations: is related to the (1) The motor back emf, which is also known as speed voltage, is expressed as: 2014, IJARCSMS All Rights Reserved 384 P age

2 (2) The torque developed by the motor: Substituting equations (2) in (1) and (3) in (4) (3) (4) (5) (6) Used Laplace transforms of equations (5) and (6) (7) (8) Simplification and eliminating the current from equations and get the result (9) The transfer function from the input armature voltagev_a (s), to the rotational speed in (rad/sec)ω(s), directly follows: (10) Armature voltage (V) Armature resistance (Ω) Armature current (A) W Armature inductance angular speed Motor torque (H) (rad/s) (Nm/A) Motor inertia (kg ) Viscous fraction constant (Nms/rad) Torque constant (Nm/A) Back emf constant (vs/rad) III. EFFECT OF T EMPERATURE ON DC MOTOR TRANSFER FUNCTION The phrase motor constants, however, is somewhat of a misnomer. Winding resistance and permanent magnet flux density will change as temperature changes. As the motor temperature increases, winding resistance will increase based on the temperature coefficien t of copper. The flux density of the permanent magnets will also decrease as a function of temperature. This will lead an effect of dc motor performance during operation under varies temperature.[1] 2014, IJARCSMS All Rights Reserved ISSN: (Online) 385 P age

3 A. Temperature Effects of Motor Winding Resistance Motor winding resistance ( ) is the main cause of heat generation within the motor. In order for any electric motor to generate torque, current needs to be forced through the motor windings. Copper is an excellent conductor, however, it s not perfect; material physics and impurities will cause the atoms to vibrate at a faster rate as more current flows. The result is a steady temperature increase in temperature increases, the resistance of the material also increases as a function of the type of conductor used. Electric motors typically use copper conductor material, follow Equation illustrate the relationship between winding temperature, winding resistance[1]. [1+ ( _ ) (11) Temperature coefficient for copper which is winding Resistance at 25 for copper which is 0.59Ω B. Temperature Effects on Magnetic Flux Density The motor torque constant ( ) and voltage constant ( ) are directly related to the magnetic flux density ( ) of the permanent magnets. Depending on th e physics of the magnet material used, overall flux density will change at a given percentage with an increase in magnet temperature. As the material temperature increases, atomic vibrations cause once-aligned magnetic moments to randomize resulting in a decrease in magnetic flux density. Assuming the motor is operating within its intended design window, the decrease in flux density is temporary and will begin to recover as the magnet cools. If the maximum temperature rating of the magnets is exceeded, however, partial demagnetization will occur and permanently alter the performance of the motor.[1] [1+ ( _ )] (12) Temperature coefficient for permanent magnet which is for copper Motor torque and voltage continent which is 0.71 at temp 25 IV. FEEDBACK CHARACTERISTICS Estimated motor characteristics at elevated temperature of 125 Usin g the equations (11) & (12) to find the value of & at Ω ].83Ω Substituting the real value of & into the transfer function equation (10) At temperature 25 the real transfer function for DC motor will be as.... (13) At temperature 125 the transfer function will be as 2014, IJARCSMS All Rights Reserved ISSN: (Online) 386 P age

4 .... (14) applying feedback control to the transfer function of dc motor at temperature 25& 125 at temperature 25 the controlled system will be as At temperature 125 the controlled system will be as. 1 (15) (16) Mat labs Plot for two controlled systems are shown in Fig 2. V. RESULTS Fig. 2 Mat lap plot for 1 and 2 As shown in the table there are some differences in system response when temperature increase to 125 the rise time will increase with small value, this will also lead to decrease the peak amplitude of the system response, noted that the settling time is fixed for both responses of the systems, also the differences seem small but have considerable effect on control design process. Knowing that for high power DC motor this effect will be greater. Controlled System at Temperature () TABLE 1. Characteristics of step response of effected and unaffected systems Rise Time (s) Settling Tim e (s) Peak AMP& Overshoot PEAK AMP OVERS HOOT %:2.22 PEAK AMP OVER SHOOT(%):0 2014, IJARCSMS All Rights Reserved ISSN: (Online) 387 P age

5 VI. CONCLUSION From the previous discussed cases, it is clear that changing in temperature due to actual operation for a well defined period of time has an effect on DC motor performance after applying feedback control, so the theoretical treatment of DC motor characteristics could not obtain the desired performance of DC motor. However the controller designers should take the variations of these parameters into account. References 1. Dan Montone Haydon Kerk Motion Solutions accessed on 24 sep Hénao H., Capolino G. A., "Methodologies application du diagnostic pour les systèmes électriques, Article 'Electricité", French, Jun /#1on 1 march S. J. Chapman, Electric Machinery Fundamentals", WCB/Mc Graw, Hill, New York, J. David Irwin power electronics handbook, Prentice Hall, academic PRESS, Canada, , IJARCSMS All Rights Reserved ISSN: (Online) 388 P age

Encoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics

November 2013 www.designworldonline.com INSIDE: design for industry: Help clean up the ocean Page 18 3D CAD: FEA aids Deepwater Horizon failure forensics Page 37 Understanding NETWORKING: Enhancing enterprise

DC Motor Position: System Modeling

1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE Authored By: Dan Montone Haydon Kerk Motion Solutions / Pittman Motors hen applying DC motors to any type of application, temperature effects need to be considered

Example: DC Motor Speed Modeling

Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and open-loop response Physical setup and system equations A common actuator in

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK 1 Mr.Dhaval K.Patel 1 Assistant Professor, Dept. of Electrical Engineering. Gidc Degree Engineering College Abrama, Navsari. ABSTRACT:

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response

Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Physical Setup A common actuator in control systems is the

Mechatronics Engineering. Li Wen

Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

Electro-Mechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s - Domain

Lab 3: Quanser Hardware and Proportional Control

Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

FEEDBACK CONTROL SYSTEMS

FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

Motor Info on the WWW Motorola Motors DC motor» /MOTORDCTUT.

Motor Info on the WWW Motorola Motors DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material /MOTORDCTUT.html Brushless DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics Introduction Often, due to budget constraints or convenience, engineers must use whatever tools are available to create new or improved

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout

SRV02-Series Rotary Experiment # 1 Position Control Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the

Predictive Cascade Control of DC Motor

Volume 49, Number, 008 89 Predictive Cascade Control of DC Motor Alexandru MORAR Abstract: The paper deals with the predictive cascade control of an electrical drive intended for positioning applications.

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy

Introduction Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy What does AC and DC stand for? Electrical machines Motors

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

Overview of motors and motion control

Overview of motors and motion control. Elements of a motion-control system Power upply High-level controller ow-level controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

EE 410/510: Electromechanical Systems Chapter 4

EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement 3.1 Introduction There are two common methods for determining a plant s transfer function. They are: 1. Measure all the physical parameters

E11 Lecture 13: Motors. Professor Lape Fall 2010

E11 Lecture 13: Motors Professor Lape Fall 2010 Overview How do electric motors work? Electric motor types and general principles of operation How well does your motor perform? Torque and power output

Lab 3: Model based Position Control of a Cart

I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

King Saud University

motor speed (rad/sec) Closed Loop Step Response ing Saud University College of Engineering, Electrical Engineering Department Labwork Manual EE 356 Control and Instrumentation Laboratory (كهر 356 معمل

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor Bai-zhou Li 1, Yu Wang 2, Qi-chang Zhang 3 1, 2, 3 School of Mechanical

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

QUESTION PAPER INTERNAL ASSESSMENT TEST 2 Date : /10/2016 Marks: 0 Subject & Code: BASIC ELECTRICAL ENGINEERING -15ELE15 Sec : F,G,H,I,J,K Name of faculty : Dhanashree Bhate, Hema B, Prashanth V Time :

System Modeling: Motor position, θ The physical parameters for the dc motor are:

Dept. of EEE, KUET, Sessional on EE 3202: Expt. # 2 2k15 Batch Experiment No. 02 Name of the experiment: Modeling of Physical systems and study of their closed loop response Objective: (i) (ii) (iii) (iv)

(a) Torsional spring-mass system. (b) Spring element.

m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional spring-mass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Spring-mass-damper system. (b)

Rotational Systems, Gears, and DC Servo Motors

Rotational Systems Rotational Systems, Gears, and DC Servo Motors Rotational systems behave exactly like translational systems, except that The state (angle) is denoted with rather than x (position) Inertia

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment K. Kalaiselvi 1, K.Abinaya 2, P. Ramesh Babu 3 1,2 Under Graduate Scholar, Department of EEE, Saranathan College

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1-DOF Torsion 1-DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF

DcMotor_ Model Help File

Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 2002-10-26 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

Tutorial 1 - Drive fundamentals and DC motor characteristics

University of New South Wales School of Electrical Engineering & elecommunications ELEC4613 ELECRIC DRIVE SYSEMS utorial 1 - Drive fundamentals and DC motor characteristics 1. In the hoist drive system

UNIVERSITÀ DEGLI STUDI DI PAVIA ADMISSION TEST INDUSTRIAL AUTOMATION ENGINEERING September 26, 2016 The candidates are required to answer the following multiple choice test which includes 30 questions;

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL

DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL Yasunobu Uchino Department of Mechanical Engineering, Hosei University 3-7-2 Kajinocho, Koganei-shi, TOKYO, JAPAN Tatsuhito Aihara Department of

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation

Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

(Refer Slide Time: 00:01:30 min)

Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems

ET3-7: Modelling I(V) Introduction and Objectives Electrical, Mechanical and Thermal Systems Objectives analyse and model basic linear dynamic systems -Electrical -Mechanical -Thermal Recognise the analogies

Optimization of PI Parameters for Speed Controller of a Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Technique

Optimization of PI Parameters for Speed Controller of a Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Technique Aiffah Mohammed 1, Wan Salha Saidon 1, Muhd Azri Abdul Razak 2,

Full Order Observer Controller Design for DC Motor Based on State Space Approach

ISSN (Online): 2319-764 Index Copernicus Value (213): 6.14 Impact Factor (214): 5.611 Full Order Observer Controller Design for DC Motor Based on State Space Approach Debabrata Pal Aksum University, College

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: 2321-7782 (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at:

Positioning Servo Design Example

Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

Dynamic Performance Analysis of Permanent Magnet Hybrid Stepper Motor by Transfer Function Model for Different Design Topologies

International Journal of Electrical and Computer Engineering (IJECE) Vol.2, No.2, April 2012, pp. 191~196 ISSN: 2088-8708 191 Dynamic Performance Analysis of Permanent Magnet Hybrid Stepper Motor by Transfer

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles

Student Name Date Manipulating Magnetization Electric dipole moment: Magnetic dipole moment: -magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles -physical separation

MCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers

MCE380: Measurements and Instrumentation Lab Chapter 5: Electromechanical Transducers Part I Topics: Transducers and Impedance Magnetic Electromechanical Coupling Reference: Holman, CH 4. Cleveland State

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

Rotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

Automatic Control Systems. -Lecture Note 15-

-Lecture Note 15- Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Cost-effective ii)

Stepping Motors. Chapter 11 L E L F L D

Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota

Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

Feedback Control Systems

ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems- attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model

6) Motors and Encoders

6) Motors and Encoders Electric motors are by far the most common component to supply mechanical input to a linear motion system. Stepper motors and servo motors are the popular choices in linear motion

LO-COG DC Gearmotors. Series GM8000. Series GM9000. Series GM BULLETIN LCG Series GM8000, GM9000, GM Power Your Ideas

BULLETIN LCG Series GM8, GM9, GM149 LO-COG DC Gearmotors Pittman brand LO-COG brush-commutated DC gearmotors offer smooth, quiet operation and long life. LO-COG gearmotors feature sintered steel spur gears

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS Janaki Pakalapati 1 Assistant Professor, Dept. of EEE, Avanthi Institute of Engineering and Technology,

Motor-CAD combined electromagnetic and thermal model (January 2015)

Motor-CAD combined electromagnetic and thermal model (January 2015) Description The Motor-CAD allows the machine performance, losses and temperatures to be calculated for a BPM machine. In this tutorial

PID Control. Objectives

PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

Applied Electronics and Electrical Machines

School of Electrical and Computer Engineering Applied Electronics and Electrical Machines (ELEC 365) Fall 2015 DC Machines 1 DC Machines Key educational goals: Develop the basic principle of operation

Loss analysis of a 1 MW class HTS synchronous motor

Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

Revised October 6, EEL 3211 ( 2008, H. Zmuda) 7. DC Machines 1

DC Machines Revised October 6, 2008 EEL 3211 ( 2008, H. Zmuda) 7. DC Machines 1 DC Machines: DC Motors are rapidly losing popularity. Until recent advances in power electronics DC motors excelled in terms

SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB

olume No.0, Issue No. 08, August 014 ISSN (online): 48 7550 SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB Harish Kumar Mishra 1, Dr.Anurag Tripathi 1 Research Scholar,

2002 Prentice Hall, Inc. Gene F. Franklin, J. David Powell, Abbas Emami-Naeini Feedback Control of Dynamic Systems, 4e

u Figure 2.1 Cruise-control model x Friction force bx m x u Figure 2.2 Free-body diagram for cruise control S P 278 Figure 2.3 Automobile suspension y m 2 k s b v car x m 1 k w Road surface r Inertial

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Chapter # 4 Three-Phase Induction Machines 1- Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In

Modeling of Belt-Pulley and Flexible Coupling Effects on Submarine Driven System Electrical Motors

Modeling of Belt-Pulley and Flexible Coupling Effects on 319 JPE 11-3-10 Modeling of Belt-Pulley and Flexible Coupling Effects on Submarine Driven System Electrical Motors Mehrdad Jafarboland and Mahmoud

Real-Time Implementation of a LQR-Based Controller for the Stabilization of a Double Inverted Pendulum

Proceedings of the International MultiConference of Engineers and Computer Scientists 017 Vol I,, March 15-17, 017, Hong Kong Real-Time Implementation of a LQR-Based Controller for the Stabilization of

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS

ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1

Chapter 6: Efficiency and Heating 9/18/2003 Electromechanical Dynamics 1 Losses As a machine transforms energy from one form to another there is always a certain power loss the loss is expressed as heat,

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor

International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sensorless

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system.

1-The steady-state error of a feedback control system with an acceleration input becomes finite in a a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 2-A good control system has

Chapter three. Mathematical Modeling of mechanical end electrical systems. Laith Batarseh

Chapter three Mathematical Modeling of mechanical end electrical systems Laith Batarseh 1 Next Previous Mathematical Modeling of mechanical end electrical systems Dynamic system modeling Definition of

Modelling of Ball and Plate System Based on First Principle Model and Optimal Control

2017 21st International Conference on Process Control (PC) June 6 9, 2017, Štrbské Pleso, Slovakia Modelling of Ball and Plate System Based on First Principle Model and Optimal Control František Dušek,

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

Anakapalli Andhra Pradesh, India I. INTRODUCTION

Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Title Loss analysis of permanent magnet hybrid brushless machines with and without HTS field windings Author(s) Liu, C; Chau, KT; Li, W Citation The 21st International Conference on Magnet Technology,

Exam IV, Magnetism May 1 st, Exam IV, Magnetism

Exam IV, Magnetism Prof. Maurik Holtrop Department of Physics PHYS 408 University of New Hampshire March 27 th, 2003 Name: Student # NOTE: There are 4 questions. You have until 9 pm to finish. You must

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: _ Date: _ w9final Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If C = 36 µf, determine the equivalent capacitance for the

Static Analysis of 18-Slot/16-Pole Permanent Magnet Synchronous Motor Using FEA

International Journal of Engineering and Technology Volume 5 No. 3,March, 2015 Static Analysis of 18-Slot/16-Pole Permanent Magnet Synchronous Motor Using FEA M. Rezal 1, Dahaman Ishak 2, M. Sabri 1, Al-Hapis

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems 5.1 Hydraulic Turbines Whole courses are dedicated to the analysis of gas turbines. For the aim of modeling hydraulic systems, we analyze here