Quantum Modeling of Solids: Basic Properties

Size: px
Start display at page:

Download "Quantum Modeling of Solids: Basic Properties"

Transcription

1 1.021, 3.021, , : Introduction to Modeling and Simulation : Spring 2012 Part II Quantum Mechanical Methods : Lecture 7 Quantum Modeling of Solids: Basic Properties Jeffrey C. Grossman Department of Materials Science and Engineering Massachusetts Institute of Technology 1

2 Part II Topics 1. It s a Quantum World:The Theory of Quantum Mechanics 2. Quantum Mechanics: Practice Makes Perfect 3. From Many-Body to Single-Particle; Quantum Modeling of Molecules 4. Application of Quantum Modeling of Molecules: Solar Thermal Fuels 5. Application of Quantum Modeling of Molecules: Hydrogen Storage 6. From Atoms to Solids 7. Quantum Modeling of Solids: Basic Properties 8. Advanced Prop. of Materials:What else can we do? 9. Application of Quantum Modeling of Solids: Solar Cells Part I 10. Application of Quantum Modeling of Solids: Solar Cells Part II 11. Application of Quantum Modeling of Solids: Nanotechnology 2

3 The purpose of computing is insight, not numbers.! Richard Hamming source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see What are the most important problems in your field? Are you working on one of them? Why not? It is better to solve the right problem the wrong way than to solve the wrong problem the right way. In research, if you know what you are doing, then you shouldn't be doing it. 3 Machines should work. People should think....and related: With great power comes great responsibility. (Spiderman s Uncle)

4 Lesson outline Review (A) (B) (C) structural properties 3 2 Band Structure 1 0 DOS energy [ev] Metal/insulator Magnetization -5 Γ X W L Γ K X DOS source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 4 Let s take a walk through memory lane for a moment... 4

5 In the Beginning... There were some strange observations by some very smart people. e - Photos unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see + _ Image by MIT OpenCourseWare. unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 5

6 In the Beginning... The weirdness just kept going. Courtesy of Dan Lurie on Flickr. Creative Commons BY-NC-SA. Lord of the Wind Films. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 6 John Richardson for Physics World, March All rights reserved. This content is excluded from our Creative Commons license. For more information, see

7 It Became Clear......that matter behaved like waves (and vice versa). And that we had to lose our classical concepts of absolute position and momentum. And instead consider a particle as a wave, whose square is the probability of finding it. Ψ(r,t) = Aexp[i(k r ωt)] But how would we describe the behavior of this wave? 7

8 Then, F=ma for Quantum Mechanics V M m v Image by MIT OpenCourseWare. 2 2m 2 + V (r, t) (r, t) = i (r, t) t 8

9 It Was Wonderful It explained many things. unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see hydrogen s 3p 3d 2s 2p Courtesy of David Manthey. Used with permission. Source: It gave us atomic orbitals. 1s It predicted the energy levels in hydrogen. 9

10 It Was Wonderful It gave us the means to understand much of chemistry. This image is in the public domain. Source: Wikimedia Commons. BUT... 10

11 Nature Does > 1 electron! It was impossible to solve for more than a single electron. Enter computational quantum mechanics! But... 11

12 We Don t Have The Age of the Universe Which is how long it would take currently to solve the Schrodinger equation exactly on a computer. So...we looked at this guy s back. And started making some approximations. 12 Discover Magazine Online. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

13 The Two Paths Ψ is a wave function of all positions & time. 2 2m 2 + V ( r, t) ( r, t) = i t ( r, t) Chemists (mostly) Physicists (mostly) Ψ = something simpler - H = something simpler 13 mean field methods

14 Working with the Density E[n] = T [n] + V ii + V ie [n] + V ee [n] kinetic ion-electron ion-ion electron-electron Walter Kohn unknown. All rights reserved. This content is excluded fromour Creative Commons license. For more information,see help/faq-fair-use/. n=# Ψ(N 3n ) ρ(n 3 ) , ion potential Hartree potential exchange-correlation potential 14

15 Review:Why DFT? 100,000 Number of Atoms 10, QMC Linear scaling DFT DFT MP2 10 Exact treatment CCSD(T) Year 15 Image by MIT OpenCourseWare.

16 Review: Self-consistent cycle Kohn-Sham equations Iterations to selfconsistency scf loop n( r) = i i( r) j Introduction to Modeling and Simulation - N. Marzari (MIT, May 2003) 16

17 Review: Crystal symmetries A crystal is built up of a unit cell and periodic replicas thereof. lattice unit cell Image of Sketch 96 (Swans) by M.C. Escher removed due to copyright restrictions. 17

18 Review: Crystal symmetries Image of August Bravais is in the public domain. Bravais The most common Bravais lattices are the cubic ones (simple, bodycentered, and facecentered) plus the hexagonal closepacked arrangement....why? S = simple BC = body centered FC = face centered 18 Sandeep Sangal/IITK. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

19 Reciprocal Lattice & Brillouin Zone Associated with each real space lattice, there exists something we call a reciprocal lattice. The reciprocal lattice is the set of wave-vectors which are commensurate with the real space lattice. Sometimes we like to call it G. It is defined by a set of vectors a*, b*, and c* such that a* is perpendicular to b and c of the Bravais lattice, and the product a* x a is 1. 19

20 Review:The inverse lattice real space lattice (BCC) inverse lattice (FCC) z a a2 a 1 x a 3 y 20 Image by MIT OpenCourseWare.

21 The Brillouin zone inverse lattice The Brillouin zone is a special unit cell of the inverse lattice. Image by Gang65 on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see 21

22 The Brillouin zone Brillouin zone of the FCC lattice 22

23 Bloch s Theorem The periodicity of the lattice in a solid means that the values of a function (e.g., density) will be identical at equivalent points on the lattice. The wavefunction, on the other hand, is periodic but only when multiplied by a phase factor. This is known as Bloch s theorem. NEW quantum number k that lives in the inverse lattice! ( r) = e k i k r u ( r) k 23 u ( r) = u ( r + R ) k k

24 Periodic potentials Results of the Bloch theorem: ( r + R ) = k ( r)e k ( r + R ) 2 = k ( r) 2 k i k R Courtesy Stanford News Service. License CC-BY. charge density is lattice periodic if solution l k ( r) l k+ G ( r) also solution with E k = E k+ G 24

25 Periodic potentials Schrödinger certain quantum equation symmetry number hydrogen atom spherical symmetry [H, L 2 ] = HL 2 L 2 H = 0 [H, L z ] = 0 n,l,m( r) periodic solid translational symmetry [H, T ] = 0 n, k ( r) 25

26 Origin of band structure Different wave functions can satisfy the Bloch theorem for the same k: eigenfunctions and eigenvalues labelled with k and the index n energy bands 26

27 From atoms to bands Atom Molecule Solid Energy Antibonding p Conduction band from antibonding p orbitals p Antibonding s Conduction band from antibonding s orbitals s Bonding p Valence band from p bonding orbitals Bonding s Valence band from s bonding orbitals k Image by MIT OpenCourseWare. 27

28 The inverse lattice kz some G ky kx l ( r) l ( r) k E = E k k+ G k+ G 28

29 The inverse lattice R l 0 ( r + R ) = l 0 ( r) periodic over unit cell l ( r + 2 R ) = l ( r) G/2 G/2 periodic over larger domain R R 29

30 The inverse lattice choose certain k-mesh e.g. 8x8x8 N=512 number of k-points (N) unit cells in the periodic domain (N) 30

31 The inverse lattice Distribute all electrons over the lowest states. N k-points You have (electrons per unit cell)*n electrons to distribute! 31

32 The band structure Silicon 6 E (ev) 0 Γ 15 Γ' 25 X 1 E C E V S 1-10 energy levels in the Brillouin zone k is a continuous variable L Λ Γ 1 Figure by MIT OpenCourseWare. Γ X U,K Σ Γ k Image by MIT OpenCourseWare. 32

33 The band structure Silicon 6 E (ev) 0 unoccupied Γ 15 E Γ' C 25 X 1 E V S 1 occupied -10 energy levels in the Brillouin zone k is a continuous variable L Λ Γ 1 Figure by MIT OpenCourseWare. Γ X U,K Σ Γ k Image by MIT OpenCourseWare. 33

34 The Fermi energy E (ev) 6 0 unoccupied Γ 15 E Γ' C 25 X 1 E V gap: also visible in the DOS Fermi energy S 1 occupied one band can hold two electrons (spin up and -10 down) Γ 1 Figure by MIT OpenCourseWare. L Λ Γ k X U,K Σ Γ Image by MIT OpenCourseWare. 34

35 The electron density electron density of silicon source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 35

36 Structural properties Forces on the atoms can be calculated with the Hellmann Feynman theorem: For λ=atomic position, we get the force on that atom. Forces automatically in most codes. 36

37 Structural properties Etot finding the equilibrium lattice constant alat a mass density mu= Kg 37

38 Structural properties finding the Etot stress/pressure and the bulk modulus V0 V BE p 2 E p = l bulk = -V = V BV V V 2 38

39 Calculating the band structure 1. Find the converged ground state density and potential. 3-step procedure 2. For the converged potential calculate the energies at k-points along lines. 3. Use some software to plot the band structure. 6 Kohn-Sham equations E (ev) 0 Γ 15 Γ' 25 X 1 E C E V S 1 n( r) = i i( r) 2-10 L Λ Γ 1 Figure by MIT OpenCourseWare. Γ X U,K Σ Γ k 39 Image by MIT OpenCourseWare.

40 Calculating the DOS 1. Find the converged ground state density and potential. 3-step procedure 2. For the converged potential calculate energies at a VERY dense k-mesh. 3. Use some software to plot the DOS. Kohn-Sham equations n( r) = i i( r) 2 40 WolfWikis/UNC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

41 Metal/insulator silicon E (ev) 6 0 Γ 15 Γ' 25 X 1 E C E V Fermi energy Are any bands crossing the Fermi energy? YES: METAL NO: INSULATOR -10 S 1 Number of electrons in unit cell: EVEN: MAYBE INSULATOR ODD: FOR SURE METAL Γ 1 Figure by MIT OpenCourseWare. L Λ Γ X U,K Σ Γ k Image by MIT OpenCourseWare. 41

42 Metal/insulator diamond: insulator 42

43 Metal/insulator (A) (B) (C) 5 4 BaBiO3: metal energy [ev] Fermi energy Γ X W L Γ K X DOS source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

44 Simple optical properties 6 E=hv E (ev) 0 unoccupied Γ 15 E Γ' C 25 X 1 E V gap photon has almost no momentum: only vertical transitions possible energy conversation and momentum conversation apply -10 L Λ S 1 occupied Γ 1 Figure by MIT OpenCourseWare. Γ X U,K k Σ Γ 44 Image by MIT OpenCourseWare.

45 Silicon Solar Cells Have to Be Thick ($$$) It s all in the band- structure! 45 Helmut Föll. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

46 Literature Charles Kittel, Introduction to Solid State Physics Ashcroft and Mermin, Solid State Physics wikipedia, solid state physics, condensed matter physics,... 46

47 MIT OpenCourseWare J / 1.021J / J / J / 22.00J Introduction to Modelling and Simulation Spring 2012 For information about citing these materials or our Terms of Use, visit:

Quantum Modeling of Solids: Basic Properties

Quantum Modeling of Solids: Basic Properties 1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2011 Part II Quantum Mechanical Methods : Lecture 5 Quantum Modeling of Solids: Basic Properties Jeffrey C. Grossman Department

More information

Advanced Prop. of Materials: What else can we do?

Advanced Prop. of Materials: What else can we do? 1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2011 Part II Quantum Mechanical Methods : Lecture 6 Advanced Prop. of Materials: What else can we do? Jeffrey C. Grossman

More information

Some Review & Introduction to Solar PV

Some Review & Introduction to Solar PV 1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012 Part II Quantum Mechanical Methods : Lecture 9 Some Review & Introduction to Solar PV Jeffrey C. Grossman Department

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

Lecture 14 The Free Electron Gas: Density of States

Lecture 14 The Free Electron Gas: Density of States Lecture 4 The Free Electron Gas: Density of States Today:. Spin.. Fermionic nature of electrons. 3. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.

More information

From Atoms to Solids. Outline. - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene

From Atoms to Solids. Outline. - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene From Atoms to Solids Outline - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene 1 A Simple Approximation for an Atom Let s represent the atom in space by its Coulomb potential centered

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 11 CHEM6085: Density Functional Theory DFT for periodic crystalline solids C.-K. Skylaris 1 Electron in a one-dimensional periodic box (in atomic units) Schrödinger equation Energy eigenvalues

More information

5.111 Lecture Summary #13 Monday, October 6, 2014

5.111 Lecture Summary #13 Monday, October 6, 2014 5.111 Lecture Summary #13 Monday, October 6, 2014 Readings for today: Section 3.8 3.11 Molecular Orbital Theory (Same in 5 th and 4 th ed.) Read for Lecture #14: Sections 3.4, 3.5, 3.6 and 3.7 Valence

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes Overview 1. Electronic Band Diagram Review 2. Spin Review 3. Density of States 4. Fermi-Dirac Distribution 1. Electronic Band Diagram Review Considering 1D crystals with periodic potentials of the form:

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney Solid State Physics Lecture 10 Band Theory Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK s.sweeney@surrey.ac.uk Recap from

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Lecture 10 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 10 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lecture 10 Waves in Periodic Potentials Today: 1. Direct lattice and periodic potential as a convolution of a lattice and a basis. 2. The discrete translation operator: eigenvalues and eigenfunctions.

More information

Lecture 4: Band theory

Lecture 4: Band theory Lecture 4: Band theory Very short introduction to modern computational solid state chemistry Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonding in Reciprocal space

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

A Bit More Solar PV, Some V&V and a Few Concluding Thoughts

A Bit More Solar PV, Some V&V and a Few Concluding Thoughts 1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012 Part II Quantum Mechanical Methods : Lecture 11 A Bit More Solar PV, Some V&V and a Few Concluding Thoughts Jeffrey C.

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics The Reciprocal Lattice M.P. Vaughan Overview Overview of the reciprocal lattice Periodic functions Reciprocal lattice vectors Bloch functions k-space Dispersion

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

5.111 Lecture Summary #6

5.111 Lecture Summary #6 5.111 Lecture Summary #6 Readings for today: Section 1.9 (1.8 in 3 rd ed) Atomic Orbitals. Read for Lecture #7: Section 1.10 (1.9 in 3 rd ed) Electron Spin, Section 1.11 (1.10 in 3 rd ed) The Electronic

More information

Chancellor Phyllis Wise invites you to a birthday party!

Chancellor Phyllis Wise invites you to a birthday party! Chancellor Phyllis Wise invites you to a birthday party! 50 years ago, Illinois alumnus Nick Holonyak Jr. demonstrated the first visible light-emitting diode (LED) while working at GE. Holonyak returned

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Electrons in Crystals. Chris J. Pickard

Electrons in Crystals. Chris J. Pickard Electrons in Crystals Chris J. Pickard Electrons in Crystals The electrons in a crystal experience a potential with the periodicity of the Bravais lattice: U(r + R) = U(r) The scale of the periodicity

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

5.111 Lecture Summary #7 Wednesday, September 17, 2014

5.111 Lecture Summary #7 Wednesday, September 17, 2014 5.111 Lecture Summary #7 Wednesday, September 17, 2014 Readings for today: Section 1.12 Orbital Energies (of many-electron atoms), Section 1.13 The Building-Up Principle. (Same sections in 5 th and 4 th

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Section 10: Many Particle Quantum Mechanics Solutions

Section 10: Many Particle Quantum Mechanics Solutions Physics 143a: Quantum Mechanics I Section 10: Many Particle Quantum Mechanics Solutions Spring 015, Harvard Here is a summary of the most important points from this week (with a few of my own tidbits),

More information

Quantum Condensed Matter Physics

Quantum Condensed Matter Physics QCMP-2017/18 Problem sheet 2: Quantum Condensed Matter Physics Band structure 1. Optical absorption of simple metals Sketch the typical energy-wavevector dependence, or dispersion relation, of electrons

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Quantum Condensed Matter Physics Lecture 4

Quantum Condensed Matter Physics Lecture 4 Quantum Condensed Matter Physics Lecture 4 David Ritchie QCMP Lent/Easter 2019 http://www.sp.phy.cam.ac.uk/drp2/home 4.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Chap 7 Non-interacting electrons in a periodic potential

Chap 7 Non-interacting electrons in a periodic potential Chap 7 Non-interacting electrons in a periodic potential Bloch theorem The central equation Brillouin zone Rotational symmetry Dept of Phys M.C. Chang Bloch recalled, The main problem was to explain how

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008 Home Problem Set #1 Due : September 10 (Wed), 008 1. Answer the following questions related to the wave-particle duality. (a) When an electron (mass m) is moving with the velocity of υ, what is the wave

More information

For the case of S = 1/2 the eigenfunctions of the z component of S are φ 1/2 and φ 1/2

For the case of S = 1/2 the eigenfunctions of the z component of S are φ 1/2 and φ 1/2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 03 Excited State Helium, He An Example of Quantum Statistics in a Two Particle System By definition He has

More information

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm Name:.57/.570 Midterm Exam No. April 4, 0 :00 am -:30 pm Instructions: ().57 students: try all problems ().570 students: Problem plus one of two long problems. You can also do both long problems, and one

More information

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Lecture Review of quantum mechanics, statistical physics, and solid state Band structure of materials Semiconductor band structure Semiconductor nanostructures Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Reminder

More information

Semiconductor Physics and Devices Chapter 3.

Semiconductor Physics and Devices Chapter 3. Introduction to the Quantum Theory of Solids We applied quantum mechanics and Schrödinger s equation to determine the behavior of electrons in a potential. Important findings Semiconductor Physics and

More information

DFT / SIESTA algorithms

DFT / SIESTA algorithms DFT / SIESTA algorithms Javier Junquera José M. Soler References http://siesta.icmab.es Documentation Tutorials Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

C2: Band structure. Carl-Olof Almbladh, Rikard Nelander, and Jonas Nyvold Pedersen Department of Physics, Lund University.

C2: Band structure. Carl-Olof Almbladh, Rikard Nelander, and Jonas Nyvold Pedersen Department of Physics, Lund University. C2: Band structure Carl-Olof Almbladh, Rikard Nelander, and Jonas Nyvold Pedersen Department of Physics, Lund University December 2005 1 Introduction When you buy a diamond for your girl/boy friend, what

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

nanohub.org learning module: Prelab lecture on bonding and band structure in Si

nanohub.org learning module: Prelab lecture on bonding and band structure in Si nanohub.org learning module: Prelab lecture on bonding and band structure in Si Ravi Vedula, Janam Javerhi, Alejandro Strachan Center for Predictive Materials Modeling and Simulation, School of Materials

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

Electronic structure of solids: basic concepts and methods

Electronic structure of solids: basic concepts and methods Electronic structure of solids: basic concepts and methods Ondřej Šipr II. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 21st October 2016 Outline A bit of formal mathematics for the beginning

More information

Band Structure Calculations; Electronic and Optical Properties

Band Structure Calculations; Electronic and Optical Properties ; Electronic and Optical Properties Stewart Clark University of Outline Introduction to band structures Calculating band structures using Castep Calculating optical properties Examples results Some applications

More information

References. Documentation Manuals Tutorials Publications

References.   Documentation Manuals Tutorials Publications References http://siesta.icmab.es Documentation Manuals Tutorials Publications Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang atomic energy unit = 1 Hartree =

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Michael Fowler, University of Virginia Einstein s Solution of the Specific Heat Puzzle The simple harmonic oscillator, a nonrelativistic particle in a potential ½C, is a

More information

Electrons in a weak periodic potential

Electrons in a weak periodic potential Electrons in a weak periodic potential Assumptions: 1. Static defect-free lattice perfectly periodic potential. 2. Weak potential perturbative effect on the free electron states. Perfect periodicity of

More information

Lecture 2: Bonding in solids

Lecture 2: Bonding in solids Lecture 2: Bonding in solids Electronegativity Van Arkel-Ketalaar Triangles Atomic and ionic radii Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonds in Reciprocal space

More information

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Prepared by Lydia Nemec and Volker Blum Berlin, May 2012 Some rules on expected documentation

More information

Write your name here:

Write your name here: MSE 102, Fall 2013 Final Exam Write your name here: Instructions: Answer all questions to the best of your abilities. Be sure to write legibly and state your answers clearly. The point values for each

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Electronic Structure of Crystalline Solids

Electronic Structure of Crystalline Solids Electronic Structure of Crystalline Solids Computing the electronic structure of electrons in solid materials (insulators, conductors, semiconductors, superconductors) is in general a very difficult problem

More information

Reactive potentials and applications

Reactive potentials and applications 1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011 Part I Continuum and particle methods Reactive potentials and applications Lecture 8 Markus J. Buehler Laboratory for Atomistic

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Phys 460 Describing and Classifying Crystal Lattices

Phys 460 Describing and Classifying Crystal Lattices Phys 460 Describing and Classifying Crystal Lattices What is a material? ^ crystalline Regular lattice of atoms Each atom has a positively charged nucleus surrounded by negative electrons Electrons are

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function: Essay outline and Ref to main article due next Wed. HW 9: M Chap 5: Exercise 4 M Chap 7: Question A M Chap 8: Question A From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation

More information

Section 10 Metals: Electron Dynamics and Fermi Surfaces

Section 10 Metals: Electron Dynamics and Fermi Surfaces Electron dynamics Section 10 Metals: Electron Dynamics and Fermi Surfaces The next important subject we address is electron dynamics in metals. Our consideration will be based on a semiclassical model.

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester Christopher J. Cramer. Lecture 30, April 10, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester Christopher J. Cramer. Lecture 30, April 10, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 20056 Christopher J. Cramer Lecture 30, April 10, 2006 Solved Homework The guess MO occupied coefficients were Occupied

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics Final Exam Monday, December 17, 2012 / 14:00 17:00 / CCIS 4-285 Student s Name: Instructions There are 24 questions. You should attempt all of them. Mark your response

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1 Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred rectangular

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices EE321 Fall 2015 September 28, 2015 Semiconductor Physics and Devices Weiwen Zou ( 邹卫文 ) Ph.D., Associate Prof. State Key Lab of advanced optical communication systems and networks, Dept. of Electronic

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Microscopic Ohm s Law

Microscopic Ohm s Law Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.

More information

May 21, Final (Total 150 points) Your name:

May 21, Final (Total 150 points) Your name: 1. (40 points) After getting into a fight with your PhD adviser over the future of graphene (E g =0 ev) in electronic device applications, you now only have one weekend to prove that MoS 2 (E g =1.8 ev,

More information

Lecture 6 Quantum Mechanical Systems and Measurements

Lecture 6 Quantum Mechanical Systems and Measurements Lecture 6 Quantum Mechanical Systems and Measurements Today s Program: 1. Simple Harmonic Oscillator (SHO). Principle of spectral decomposition. 3. Predicting the results of measurements, fourth postulate

More information

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8,

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8, Lecture 2 Unit Cells and Miller Indexes Reading: (Cont d) Anderson 2 1.8, 2.1-2.7 Unit Cell Concept The crystal lattice consists of a periodic array of atoms. Unit Cell Concept A building block that can

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 20, March 8, 2006 Solved Homework We determined that the two coefficients in our two-gaussian

More information

University of Michigan Physics Department Graduate Qualifying Examination

University of Michigan Physics Department Graduate Qualifying Examination Name: University of Michigan Physics Department Graduate Qualifying Examination Part II: Modern Physics Saturday 17 May 2014 9:30 am 2:30 pm Exam Number: This is a closed book exam, but a number of useful

More information

From here we define metals, semimetals, semiconductors and insulators

From here we define metals, semimetals, semiconductors and insulators Topic 11-1: Heat and Light for Intrinsic Semiconductors Summary: In this video we aim to discover how intrinsic semiconductors respond to heat and light. We first look at the response of semiconductors

More information

Nearly-Free Electrons Model

Nearly-Free Electrons Model Nearly-Free Electrons Model Jacob Shapiro March 30, 2013 Abstract The following is my attempt to explain to myself what is going on in the discussion of the Nearly-Free Electron Model which can be found

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10 Lecture 9 Symmetry III: Molecular Orbital Theory Reading: Shriver and Atkins 2.7-2.9 and g 6.6-6.7, 6.10 The orbitals of molecules H H The electron energy in each H atom is -13.6 ev below vacuum. What

More information

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Assoc. Prof Timothy Schmidt Room 315 timothy.schmidt@sydney.edu.au 93512781 12pm Assoc. Prof. Adam J Bridgeman Room 222 adam.bridgeman@sydney.edu.au

More information

PHYSICS 231 Electrons in a Weak Periodic Potential

PHYSICS 231 Electrons in a Weak Periodic Potential 1 One Dimension PHYSICS 231 Electrons in a Weak Periodic Potential Consider electrons in a weak periodic potential in one-dimension. A state k is mixed with states k + G, where G = 2πn/a is reciprocal

More information

ECE 535 Notes for Lecture # 3

ECE 535 Notes for Lecture # 3 ECE 535 Notes for Lecture # 3 Class Outline: Quantum Refresher Sommerfeld Model Part 1 Quantum Refresher 1 But the Drude theory has some problems He was nominated 84 times for the Nobel Prize but never

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Welcome to the Solid State

Welcome to the Solid State Max Planck Institut für Mathematik Bonn 19 October 2015 The What 1700s 1900s Since 2005 Electrical forms of matter: conductors & insulators superconductors (& semimetals & semiconductors) topological insulators...

More information

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]:

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]: MSE 102, Fall 2014 Midterm #2 Write your name here [10 points]: Instructions: Answer all questions to the best of your abilities. Be sure to write legibly and state your answers clearly. The point values

More information