On the Value Function of a Mixed Integer Linear Program

Size: px
Start display at page:

Download "On the Value Function of a Mixed Integer Linear Program"

Transcription

1 On the Value Function of a Mixed Integer Linear Program MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University ted@lehigh.edu AIRO, Ischia, Italy, 11 September 008 Thanks: Work supported in part by the National Science Foundation

2 Outline 1 Definitions Linear Approximations Properties 3 4

3 Motivation The goal of this work is to study the structure of the value function of a general mixed integer linear program (MILP). We hope this will lead to methods for approximation useful for Sensitivity analysis Warm starting Multi-level/hierarchical mathematical programming Other methods that require dual information Constructing the value function (or even an approximation to it) is difficult, even in a small neighborhood. We begin by considering the value functions of single-row relaxations.

4 Definitions Definitions Linear Approximations Properties We consider the MILP min cx, x S (P) c R n, S = {x Z r + R n r + a x = b} with a Q n, b R. The value function of (P) is z(d) = min x S(d) cx, where for a given d R, S(d) = {x Z r + R n r + a x = d}. Assumptions: Let I = {1,...,r}, C = {r + 1,...,n}, N = I C. z(0) = 0 = z : R R {+ }, N + = {i N a i > 0} and N = {i N a i < 0}, r < n, that is, C 1 = z : R R.

5 Example Definitions Linear Approximations Properties min 3x x + 3x 3 + 6x 4 + 7x 5 + 5x 6 s.t 6x 1 + 5x 4x 3 + x 4 7x 5 + x 6 = b and x 1, x, x 3 Z +, x 4, x 5, x 6 R +. (SP) z d

6 Simple Bounding Functions Definitions Linear Approximations Properties F L : LP Relaxation Lower Bounding function F U : Continuous Relaxation Upper Bounding function ηd if d > 0, η C d if d > 0 F L (d) = 0 if d = 0, F U (d) = 0 if d = 0 ζd if d < 0. ζ C d if d < 0 where, setting C + = {i C a i > 0} and C = {i C a i < 0}, η = min{ ci a i i N + } and ζ = max{ ci a i i N } η C = min{ ci a i i C + } and ζ C = max{ ci a i i C }. By convention: C + η C = and C ζ C =. F U z F L

7 Example (cont d) Definitions Linear Approximations Properties η = 1, ζ = 3 4, ηc = 3 and ζ C = 1: 18 z F U F L ζ C η C ζ η d {η = η C } {z(d) = F U (d) = F L (d) d R + } {ζ = ζ C } {z(d) = F U (d) = F L (d) d R }

8 Observations Definitions Linear Approximations Properties Consider d + U, d U, d+ L, d L : d L d L d L d U d + d + d + 3d + 4d + U L L L L d The relation between F U and the linear segments of z: {η C,ζ C }

9 Redundant Variables Definitions Linear Approximations Properties Let T C be such that t + T if and only if η C < and η C = c t + a t + t T if and only if ζ C > and ζ C = c t a t. and define and similarly, ν(d) = min s.t. c I x I + c T x T a I x I + a T x T = d x I Z I +, x T R T + Then ν(d) = z(d) for all d R. The variables in C\T are redundant. z can be represented with at most continuous variables.

10 Example Definitions Linear Approximations Properties min x 1 3/4x + 3/4x 3 s.t 5/4x 1 x + 1/x 3 = b, x 1, x Z +, x 3 R +. η c = 3/, ζ C = For each discontinuous point d i, we have d i (5/4y i 1 y i ) = 0 and each linear segment has the slope of η C = 3/.

11 Jeroslow Formula Definitions Linear Approximations Properties Let M Z + be such that for any t T, Maj a t Z for all j I. Then there is a Gomory function g such that z(d) = min t T {g( d t ) + c t a t (d d t )}, d t = a t M Md a t, d R Such a Gomory function can be obtained from the value function of a related PILP. For t T, setting ω t (d) = g( d t ) + c t a t (d d t ) d R, we can write z(d) = min t T ω t(d) d R

12 Definitions Linear Approximations Properties Piecewise Linearity and Continuity For t T, ω t is piecewise linear with finitely many linear segments on any closed interval and each of those linear segments has a slope of η C if t = t + or ζ C if t = t. ω t + is continuous from the right, ω t is continuous from the left. ω t + and ω t are both lower-semicontinuous. Theorem z is piecewise-linear with finitely many linear segments on any closed interval and each of those linear segments has a slope of η C or ζ C. (Meyer 1975) z is lower-semicontinuous. η C < if and only if z is continuous from the right. ζ C > if and only if z is continuous from the left. Both η C and ζ C are finite if and only if z is continuous everywhere.

13 Maximal Let f : [0, h] R, h > 0 be subadditive and f(0) = 0. The maximal subadditive extension of f from [0, h] to R + is f(d) if d [0, h] f S (d) = inf f(ρ) if d > h, C C(d) ρ C C(d) is the set of all finite collections {ρ 1,..., ρ R} such that ρ i [0, h], i = 1,..., R and P R i=1 ρi = d. Each collection {ρ 1,..., ρ R} is called an h-partition of d. We can also extend a subadditive function f : [h, 0] R, h < 0 to R similarly. (Bruckner 1960) f S is subadditive and if g is any other subadditive extension of f from [0, h] to R +, then g f S (maximality).

14 Extending the Value Function Lemma Suppose we use z itself as the seed function. Observe that we can change the inf to min : Let the function f : [0, h] R be defined by f(d) = z(d) d [0, h]. Then, z(d) if d [0, h] f S (d) = min z(ρ) if d > h. C C(d) ρ C For any h > 0, z(d) f S (d) d R +. Observe that for d R +, f S (d) z(d) while h. Is there an h < such that f S (d) = z(d) d R +?

15 Yes! For large enough h, maximal extension produces the value function itself. Theorem Let d r = max{a i i N} and d l = min{a i i N} and let the functions f r and f l be the maximal subadditive extensions of z from the intervals [0, d r ] and [d l, 0] to R + and R, respectively. Let { fr (d) d R F(d) = + f l (d) d R then, z = F. Outline of the Proof. z F : By construction. z F : Using MILP duality, F is dual feasible. In other words, the value function is completely encoded by the breakpoints in [d l, d r ] and slopes.

16 General Procedure We will construct the value function in two steps Construct the value function on [d l, d r]. Extend the value function to the entire real line from [d l, d r]. For the rest of the talk We assume η C < and ζ C <. We construct the value function over R + only. These assmuptions are only needed to simplify the presentation.

17 on [0, d r ] If both η C and ζ C are finite, the value function is continuous and the slopes of the linear segments alternate between η C and ζ C. For d 1, d [0, d r ], if z(d 1 ) and z(d ) are connected by a line with slope η C or ζ C, then z is linear over [d 1, d ] with the respective slope (subadditivity). With these observations, we can formulate a finite algorithm to evaluate z in [d l, d r ].

18 Example (cont d) d r = 6: η C ζ C Figure: Evaluating z in [0, 6]

19 Example (cont d) d r = 6: η C ζ C Figure: Evaluating z in [0, 6]

20 Example (cont d) d r = 6: η C ζ C Figure: Evaluating z in [0, 6]

21 Example (cont d) d r = 6: η C ζ C Figure: Evaluating z in [0, 6]

22 Example (cont d) d r = 6: η C ζ C Figure: Evaluating z in [0, 6]

23 Extending the Value Function Consider evaluating z(d) = min C C(d) ρ C Can we limit C, C C(d)? Yes! Can we limit C(d)? Yes! Theorem z(ρ) for d [0, d r ]. Let d > d r and let k d be the integer such that d ( k d d r, k d+1 d r ]. Then z(d) = min{ k d i=1 z(ρ i ) k d i=1 ρ i = d,ρ i [0, d r ], i = 1,..., k d }. Therefore, C k d for any C C(d). How about C(d)?

24 Lower Break Points Let Ψ be the lower break points of z in [0, d r ]. Theorem For any d R + \[0, d r ] there is an optimal d r -partition C C(d) such that C\Ψ 1. In particular, we only need to consider the collection Λ(d) {H {µ} H C(d µ) Ψ k d 1, ρ Hρ + µ = d, µ [0, d r ]} In other words, z(d) = min C Λ(d) ρ C Observe that the set Λ(d) is finite. z(ρ) d R + \[0, d r ]

25 Example (cont d) For the interval [0, 6], we have Ψ = {0, 5, 6}. For b = 31, C = {5, 5, 11 } is an optimal d r -partition with C\Ψ = z U-bp L-bp d

26 Getting z over R + Recursive Construction: Let Ψ((0, p]) to the set of the lower break points of z in the interval (0, p] p R +. 1 Let p := d r. For any d `p, p + p, let z(d) = min{z(ρ 1) + z(ρ ) ρ 1 + ρ = d, ρ 1 Ψ((0, p]), ρ (0, p]} Let p := p + p and repeat this step.

27 In other words, we do the following at each iteration: ( z(d) = min g j (d) d p, p + p ] j where, for each d j Ψ((0, p]), the functions g j : [ 0, p + p ] R { } are defined as z(d) if d d j, g j (d) = z(d j ) + z(d d j ) if d j < d p + d j, otherwise. Because of subadditivity, we can then write z(d) = min g j (d) d j ( 0, p + p ].

28 Example (cont d) Extending the value function of (SP) from [0, 6] to [0, 9] 18 z F U F L g 1 g d

29 Example (cont d) Extending the value function of (SP) from [0, 6] to [0, 9] 18 z F U F L d

30 Example (cont d) Extending the value function of (SP) from [0, 9] to [ 0, 7 ] 18 z F U F L g g 1 6 g d

31 Example (cont d) Extending the value function of (SP) from [0, 9] to [ 0, 7 ] 18 z F U F L d

32 A Combinatorial Procedure Observe that it is enough to get the lower break points and this can be done more easily. Theorem If d is a lower break-point of z on (p, p + p ] then there exist ρ 1,ρ Ψ((0, p]) such that z(d) = z(ρ 1 ) + z(ρ ) and d = ρ 1 + ρ. Set Υ(p) {z(ρ 1 ) + z(ρ ) p < ρ 1 + ρ p + p,ρ 1,ρ Ψ((0, p])}. Then, z is obtained by connecting the points on the lower envelope of Υ(p). Can we make the procedure finite?

33 Termination Yes! Periodicity Let D = {d z(d) = F L (d)}. Note that D =. Furthermore, let λ = min{d d d r, d D}. Define the functions f j : R + R, j Z + \{0} as follows { z(d), d jλ f j (d) = kz(λ) + z(d kλ), d ((k + j 1)λ,(k + j)λ], k Z + \{0}. Theorem 1 f j(d) f j+1(d) z(d) for all d R +, j Z +\{0}. There exists q Z +\{0} such that z(d) = f q(d) d R +. 3 In addition, z(d) = f q(d) d R + if and only if f q(d) = f q+1(d) d R +. Therefore, we can extend over the intervals of size λ and stop when we reach the 3. condition above.

34 Example (cont d) λ = 6, f 1 (d) = { z(d), d 6 kz(6) + z(d 6k), d (6k, 6(k + 1)], k Z + \{0} z F U F L f d

35 Example (cont d) f (d) = { z(d), d 1 kz(6) + z(d 6k), d (6(k + 1), 6(k + )], k Z + \{0} z F U F L f d

36 Example (cont d) f 3 (d) = { z(d), d 18 kz(6) + z(d 6k), d (6(k + ), 6(k + 3)], k Z + \{0} z F U F L f d

37 Example (cont d) f 4 (d) = { z(d), d 4 kz(6) + z(d 6k), d (6(k + 3), 6(k + 4)], k Z + \{0} z F U F L f d Note that f 4 (d) = f 5 (d) d R +. Therefore, z(d) = f 4 (d) d R +.

38 A Finite Procedure We can further restrict the search space by again using maximal extension and the fact that z(kλ) = kz(λ) and λ d r. Theorem For a given k, k Z +, z(d) = min{z(ρ 1 ) + z(ρ ) ρ 1 + ρ = d,ρ 1 (0, λ],ρ ((k 1)λ, kλ]} d (kλ,(k + 1)λ]. Revised Recursive Construction: 1 Let p := λ. Set Υ(p) {z(ρ 1) + z(ρ ) p < ρ 1 + ρ p + λ, ρ 1 Ψ((0, λ]), ρ Ψ((p λ, p])} and obtain z over [p, p + λ] by considering the lower subadditive envelope of Υ(p). 3 If z(d) = z(d λ) + z(λ) d Ψ((p, p + λ)), then stop. Otherwise, let p := p + λ and repeat the last step.

39 Example (cont d) Extending the value function of (SP) from [0, 1] to [0, 18] z F U F L Υ d

40 Example (cont d) Extending the value function of (SP) from [0, 1] to [0, 18] z F U F L Υ d

41 Example (cont d) Extending the value function of (SP) from [0, 18] to [0, 4] z F U F L Υ d

42 Example (cont d) Extending the value function of (SP) from [0, 18] to [0, 4] z F U F L Υ d

43 Consider a general mixed integer linear program (MILP) z P = min x S cx, (P) c R n, S = {x Z r + R n r + Ax = b} with A Q m n, b R m. The value function of the primal problem (P) is z(d) = min x S(d) cx, where for a given d R m, S(d) = {x Z r + R n r + Ax = d}.

44 Jeroslow Formula for General MILP Let the set E consist of the index sets of dual feasible bases of the linear program min{ 1 M c Cx C : 1 M A Cx C = b, x 0} where M Z + such that for any E E, MA 1 E aj Z m for all j I. Theorem (Jeroslow Formula) There is a g G m such that z(d) = min E E g( d E ) + v E(d d E ) d R m with S(d), where for E E, d E = A E A 1 E d and v E is the corresponding basic feasible solution.

45 For E E, setting ω E (d) = g( d E ) + v E (d d E ) d R m with S(d), we can write z(d) = min E E ω E(d) d R m with S(d). Many of our previous results can be extended to general case in the obvious way. Similarly, we can use maximal subadditive extensions to construct the value function.. However, an obvious combinatorial explosion occurs. Therefore, we consider using single row relaxations to get a subadditive approximation.

46 Basic Idea Consider the value functions of each single row relaxation: z i (q) = min{cx a i x = q, x Z r + R n r + } q R, i M {1,...,m} where a i is the i th row of A. Theorem Let F(d) = max i M {z i(d i )}, d = (d 1,...,d m ), d R m. Then F is subadditive and z(d) F(d) d R m.

47 Maximal Assume that A Q m +. Let S M and q r Q S + be the vector of the maximum of the coefficients of rows a i, i S. Define max {z i(q i )} q i [0, q r i i S ] i M G S (q) = max max{z q i [0, q r i ] i K i(q i )}, inf G S (ρ) q i > q r i i S\K i K C C(q S\K ) ρ C K S inf G S (ρ) q i R + \[0, q r i ] i M C C(q) ρ C for all q R S where for T S, C(q T ) is the set of all finite collections {ρ 1,...,ρ R },ρ j R T such that ρ j i T [0, q r i ], j = 1,..., R and R j=1 ρ j = q T.

48 Maximal G S is simply the maximal subadditive extension of the function max {z i(q i )} from the box i S [0, q r i ] to R S +. i S Theorem { } Let F S (d) = max G S (d S ), max {z i (d i )}. F S max {z i(d i )}, is i M\S i M subadditive and z(d) F S (d) for all d R m +.

49 Aggregation For S M, ω R S, set G S (q,ω) = min{cx ωa S x = ωq, x Z r + R n r + } q R S Theorem Let { } F S (ω, d) = max G S (d S,ω), max {z i (d i )} i M\S, d R m. F S is subadditive and z(d) F S (ω, d) for any ω R S, d R m. As with cutting planes, different aggregation procedures are possible.

50 Using Cuts Assume that S(d) = {x Z n + Ax d}. Consider the set of Gomory cuts Πx Π 0, Π Q k n,π 0 Q k defined by the sets of multipliers Ω = {ω 1,...ω k 1 }, ω i Q+ m+i 1 as follows m i 1 Π ij = ωla i lj + ωm+lπ i lj i = 1,...,k, j = 1,...,n Theorem Π 0 i = l=1 l=1 m i 1 ωld i l + l=1 l=1 ω i m+lπ 0 l i = 1,...,k For Ω = {ω 1,...ω k 1 },ω i Q+ m+i 1, k Z +, let z m+i (ω i, d) denote the value function of row m + { i, i = 1,...,k 1 and } F(Ω, d) = max max z(d i), max z m+i (ω i, d). i M i=1,...,k 1,ω i Ω Then, F is subadditive and z(d) F(Ω, d) for any d R m.

51 Extending the theory and algorithms to the general case. Developing upper bounding approximations. Integrating these procedures in with applications Bilevel programming Combinatorial auctions Answering the question Can we do anything practical with any of this?

The Value function of a Mixed-Integer Linear Program with a Single Constraint

The Value function of a Mixed-Integer Linear Program with a Single Constraint The Value Function of a Mixed Integer Linear Programs with a Single Constraint MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu OPT 008, Atlanta, March 4, 008 Thanks:

More information

The Value function of a Mixed-Integer Linear Program with a Single Constraint

The Value function of a Mixed-Integer Linear Program with a Single Constraint The Value Function of a Mixed Integer Linear Programs with a Single Constraint MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu University of Wisconsin February

More information

Bilevel Integer Linear Programming

Bilevel Integer Linear Programming Bilevel Integer Linear Programming TED RALPHS SCOTT DENEGRE ISE Department COR@L Lab Lehigh University ted@lehigh.edu MOPTA 2009, Lehigh University, 19 August 2009 Thanks: Work supported in part by the

More information

Bilevel Integer Programming

Bilevel Integer Programming Bilevel Integer Programming Ted Ralphs 1 Joint work with: Scott DeNegre 1, Menal Guzelsoy 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University Norfolk Southern Ralphs, et al.

More information

Integer Programming Duality

Integer Programming Duality Integer Programming Duality M. Guzelsoy T. K. Ralphs July, 2010 1 Introduction This article describes what is known about duality for integer programs. It is perhaps surprising that many of the results

More information

Duality for Mixed-Integer Linear Programs

Duality for Mixed-Integer Linear Programs Duality for Mixed-Integer Linear Programs M. Guzelsoy T. K. Ralphs Original May, 006 Revised April, 007 Abstract The theory of duality for linear programs is well-developed and has been successful in advancing

More information

Bilevel Integer Linear Programming

Bilevel Integer Linear Programming Bilevel Integer Linear Programming SCOTT DENEGRE TED RALPHS ISE Department COR@L Lab Lehigh University ted@lehigh.edu Université Bordeaux, 16 December 2008 Thanks: Work supported in part by the National

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

Bilevel Integer Optimization: Theory and Algorithms

Bilevel Integer Optimization: Theory and Algorithms : Theory and Algorithms Ted Ralphs 1 Joint work with Sahar Tahernajad 1, Scott DeNegre 3, Menal Güzelsoy 2, Anahita Hassanzadeh 4 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction

On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction Ted K. Ralphs and Anahita Hassanzadeh Department of Industrial and Systems Engineering, Lehigh

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

IP Duality. Menal Guzelsoy. Seminar Series, /21-07/28-08/04-08/11. Department of Industrial and Systems Engineering Lehigh University

IP Duality. Menal Guzelsoy. Seminar Series, /21-07/28-08/04-08/11. Department of Industrial and Systems Engineering Lehigh University IP Duality Department of Industrial and Systems Engineering Lehigh University COR@L Seminar Series, 2005 07/21-07/28-08/04-08/11 Outline Duality Theorem 1 Duality Theorem Introduction Optimality Conditions

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

A non-standart approach to Duality

A non-standart approach to Duality Department of Industrial and Systems Engineering Lehigh University COR@L Seminar Series, 2005 10/27/2005 Outline 1 Duality Integration & Counting Duality for Integration Brion and Vergne s continuous formula

More information

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set ON THE FACETS OF THE MIXED INTEGER KNAPSACK POLYHEDRON ALPER ATAMTÜRK Abstract. We study the mixed integer knapsack polyhedron, that is, the convex hull of the mixed integer set defined by an arbitrary

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Duality, Warm Starting, and Sensitivity Analysis for MILP

Duality, Warm Starting, and Sensitivity Analysis for MILP Duality, Warm Starting, and Sensitivity Analysis for MILP Ted Ralphs and Menal Guzelsoy Industrial and Systems Engineering Lehigh University SAS Institute, Cary, NC, Friday, August 19, 2005 SAS Institute

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

On the Relative Strength of Split, Triangle and Quadrilateral Cuts On the Relative Strength of Split, Triangle and Quadrilateral Cuts Amitabh Basu Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 53 abasu@andrew.cmu.edu Pierre Bonami LIF, Faculté

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University MOA 2016, Beijing, China, 27 June 2016 What Is This Talk

More information

Lagrangean relaxation

Lagrangean relaxation Lagrangean relaxation Giovanni Righini Corso di Complementi di Ricerca Operativa Joseph Louis de la Grange (Torino 1736 - Paris 1813) Relaxations Given a problem P, such as: minimize z P (x) s.t. x X P

More information

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem Network Interdiction Stochastic Network Interdiction and to Solve a Stochastic Network Interdiction Problem Udom Janjarassuk Jeff Linderoth ISE Department COR@L Lab Lehigh University jtl3@lehigh.edu informs

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University COLGEN 2016, Buzios, Brazil, 25 May 2016 What Is This Talk

More information

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology for Some for Asteroide Santana, Santanu S. Dey School of Industrial Systems Engineering, Georgia Institute of Technology December 4, 2016 1 / 38 1 1.1 Conic integer programs for Conic integer programs

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Yuping Huang, Dr. Qipeng Phil Zheng Department of Industrial and Management Systems Engineering West Virginia University IENG 593G Nonlinear Programg, Spring 2012 Yuping Huang (IMSE@WVU)

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 1 Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function,

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38 1 / 38 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 38 1 The L-Shaped Method 2 Example: Capacity Expansion Planning 3 Examples with Optimality Cuts [ 5.1a of BL] 4 Examples

More information

Multiobjective Mixed-Integer Stackelberg Games

Multiobjective Mixed-Integer Stackelberg Games Solving the Multiobjective Mixed-Integer SCOTT DENEGRE TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu EURO XXI, Reykjavic, Iceland July 3, 2006 Outline Solving the 1 General

More information

Chapter 1 Linear Programming. Paragraph 5 Duality

Chapter 1 Linear Programming. Paragraph 5 Duality Chapter 1 Linear Programming Paragraph 5 Duality What we did so far We developed the 2-Phase Simplex Algorithm: Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution

More information

Linear programming. Saad Mneimneh. maximize x 1 + x 2 subject to 4x 1 x 2 8 2x 1 + x x 1 2x 2 2

Linear programming. Saad Mneimneh. maximize x 1 + x 2 subject to 4x 1 x 2 8 2x 1 + x x 1 2x 2 2 Linear programming Saad Mneimneh 1 Introduction Consider the following problem: x 1 + x x 1 x 8 x 1 + x 10 5x 1 x x 1, x 0 The feasible solution is a point (x 1, x ) that lies within the region defined

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO350 Linear Programming Chapter 6: The Simplex Method 8th June 2005 Chapter 6: The Simplex Method 1 Minimization Problem ( 6.5) We can solve minimization problems by transforming it into a maximization

More information

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis:

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Sensitivity analysis The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Changing the coefficient of a nonbasic variable

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University Joint work with Sercan Yıldız

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Linear Programming Redux

Linear Programming Redux Linear Programming Redux Jim Bremer May 12, 2008 The purpose of these notes is to review the basics of linear programming and the simplex method in a clear, concise, and comprehensive way. The book contains

More information

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

On the Relative Strength of Split, Triangle and Quadrilateral Cuts On the Relative Strength of Split, Triangle and Quadrilateral Cuts Amitabh Basu Pierre Bonami Gérard Cornuéjols François Margot Abstract Integer programs defined by two equations with two free integer

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 13 Dr. Ted Ralphs IE406 Lecture 13 1 Reading for This Lecture Bertsimas Chapter 5 IE406 Lecture 13 2 Sensitivity Analysis In many real-world problems,

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Benders' Method Paul A Jensen

Benders' Method Paul A Jensen Benders' Method Paul A Jensen The mixed integer programming model has some variables, x, identified as real variables and some variables, y, identified as integer variables. Except for the integrality

More information

Reformulation and Decomposition of Integer Programs

Reformulation and Decomposition of Integer Programs Reformulation and Decomposition of Integer Programs François Vanderbeck 1 and Laurence A. Wolsey 2 (Reference: CORE DP 2009/16) (1) Université Bordeaux 1 & INRIA-Bordeaux (2) Université de Louvain, CORE.

More information

1 Review of last lecture and introduction

1 Review of last lecture and introduction Semidefinite Programming Lecture 10 OR 637 Spring 2008 April 16, 2008 (Wednesday) Instructor: Michael Jeremy Todd Scribe: Yogeshwer (Yogi) Sharma 1 Review of last lecture and introduction Let us first

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

A New Subadditive Approach to Integer Programming: Theory and Algorithms

A New Subadditive Approach to Integer Programming: Theory and Algorithms A New Subadditive Approach to Integer Programming: Theory and Algorithms Diego Klabjan Department of Mechanical and Industrial Engineering University of Illinois at Urbana-Champaign Urbana, IL email: klabjan@uiuc.edu

More information

Lecture 7 Duality II

Lecture 7 Duality II L. Vandenberghe EE236A (Fall 2013-14) Lecture 7 Duality II sensitivity analysis two-person zero-sum games circuit interpretation 7 1 Sensitivity analysis purpose: extract from the solution of an LP information

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

The master equality polyhedron with multiple rows

The master equality polyhedron with multiple rows The master equality polyhedron with multiple rows Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Ricardo Fukasawa University of Waterloo rfukasaw@math.uwaterloo.ca September 16, 2010 Oktay Günlük IBM Research

More information

Approximate Farkas Lemmas in Convex Optimization

Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality CSCI5654 (Linear Programming, Fall 013) Lecture-7 Duality Lecture 7 Slide# 1 Lecture 7 Slide# Linear Program (standard form) Example Problem maximize c 1 x 1 + + c n x n s.t. a j1 x 1 + + a jn x n b j

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight.

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the multi-dimensional knapsack problem, additional

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Department of Mathematics & Risk Management Institute National University of Singapore (Based on a joint work with Shujun

More information

The Strong Duality Theorem 1

The Strong Duality Theorem 1 1/39 The Strong Duality Theorem 1 Adrian Vetta 1 This presentation is based upon the book Linear Programming by Vasek Chvatal 2/39 Part I Weak Duality 3/39 Primal and Dual Recall we have a primal linear

More information

PART 4 INTEGER PROGRAMMING

PART 4 INTEGER PROGRAMMING PART 4 INTEGER PROGRAMMING 102 Read Chapters 11 and 12 in textbook 103 A capital budgeting problem We want to invest $19 000 Four investment opportunities which cannot be split (take it or leave it) 1.

More information

Integer Programming. The focus of this chapter is on solution techniques for integer programming models.

Integer Programming. The focus of this chapter is on solution techniques for integer programming models. Integer Programming Introduction The general linear programming model depends on the assumption of divisibility. In other words, the decision variables are allowed to take non-negative integer as well

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009 Lessons from MIP Search John Hooker Carnegie Mellon University November 2009 Outline MIP search The main ideas Duality and nogoods From MIP to AI (and back) Binary decision diagrams From MIP to constraint

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

A METHOD FOR SOLVING 0-1 MULTIPLE OBJECTIVE LINEAR PROGRAMMING PROBLEM USING DEA

A METHOD FOR SOLVING 0-1 MULTIPLE OBJECTIVE LINEAR PROGRAMMING PROBLEM USING DEA Journal of the Operations Research Society of Japan 2003, Vol. 46, No. 2, 189-202 2003 The Operations Research Society of Japan A METHOD FOR SOLVING 0-1 MULTIPLE OBJECTIVE LINEAR PROGRAMMING PROBLEM USING

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

BBM402-Lecture 20: LP Duality

BBM402-Lecture 20: LP Duality BBM402-Lecture 20: LP Duality Lecturer: Lale Özkahya Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html An easy LP? which is compact form for max cx subject to

More information

On the knapsack closure of 0-1 Integer Linear Programs

On the knapsack closure of 0-1 Integer Linear Programs On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti 1 Dipartimento di Ingegneria dell Informazione University of Padova Padova, Italy Andrea Lodi 2 Dipartimento di Elettronica, Informatica

More information

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n 2 4. Duality of LPs and the duality theorem... 22 4.2 Complementary slackness... 23 4.3 The shortest path problem and its dual... 24 4.4 Farkas' Lemma... 25 4.5 Dual information in the tableau... 26 4.6

More information

MATH 4211/6211 Optimization Linear Programming

MATH 4211/6211 Optimization Linear Programming MATH 4211/6211 Optimization Linear Programming Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 The standard form of a Linear

More information

On the facets of the mixed integer knapsack polyhedron

On the facets of the mixed integer knapsack polyhedron Math. Program., Ser. B 98: 145 175 (2003) Digital Object Identifier (DOI) 10.1007/s10107-003-0400-z Alper Atamtürk On the facets of the mixed integer knapsack polyhedron Received: April 8, 2002 / Accepted:

More information

Structure of Valid Inequalities for Mixed Integer Conic Programs

Structure of Valid Inequalities for Mixed Integer Conic Programs Structure of Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University 18 th Combinatorial Optimization Workshop Aussois, France January

More information

15.083J/6.859J Integer Optimization. Lecture 10: Solving Relaxations

15.083J/6.859J Integer Optimization. Lecture 10: Solving Relaxations 15.083J/6.859J Integer Optimization Lecture 10: Solving Relaxations 1 Outline The key geometric result behind the ellipsoid method Slide 1 The ellipsoid method for the feasibility problem The ellipsoid

More information

Aggregation and Mixed Integer Rounding to Solve MILPs (Marchand and Wolsey)

Aggregation and Mixed Integer Rounding to Solve MILPs (Marchand and Wolsey) Aggregation and Mixed Integer Rounding to Solve MILPs (Marchand and Wolsey) SAS Institute - Analytical Solutions Lehigh University - Department of Industrial and Systems Engineering July 7, 2005 Classical

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity Mohammadreza Samadi, Lehigh University joint work with Frank E. Curtis (stand-in presenter), Lehigh University

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Robert M. Freund March, 2004 2004 Massachusetts Institute of Technology. The Problem The logarithmic barrier approach

More information

n-step mingling inequalities: new facets for the mixed-integer knapsack set

n-step mingling inequalities: new facets for the mixed-integer knapsack set Math. Program., Ser. A (2012) 132:79 98 DOI 10.1007/s10107-010-0382-6 FULL LENGTH PAPER n-step mingling inequalities: new facets for the mixed-integer knapsack set Alper Atamtürk Kiavash Kianfar Received:

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Multi-Row Cuts in Integer Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh

Multi-Row Cuts in Integer Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh Multi-Row Cuts in Integer Programming Gérard Cornuéjols Tepper School o Business Carnegie Mellon University, Pittsburgh March 2011 Mixed Integer Linear Programming min s.t. cx Ax = b x j Z or j = 1,...,

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Gérard Cornuéjols 1 and Yanjun Li 2 1 Tepper School of Business, Carnegie Mellon

More information

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2 ex-5.-5. Foundations of Operations Research Prof. E. Amaldi 5. Branch-and-Bound Given the integer linear program maxz = x +x x +x 6 x +x 9 x,x integer solve it via the Branch-and-Bound method (solving

More information