Let F be a foliation of dimension p and codimension q on a smooth manifold of dimension n.

Size: px
Start display at page:

Download "Let F be a foliation of dimension p and codimension q on a smooth manifold of dimension n."

Transcription

1 Trends in Mathematics Information Center for Mathematical Sciences Volume 5, Number 2,December 2002, Pages VARIATIONAL PROPERTIES OF HARMONIC RIEMANNIAN FOLIATIONS KYOUNG HEE HAN AND HOBUM KIM Abstract. We obtain a second variation formula for the energy functional for a harmonic Riemannian foliation in terms of the second and third fundamental tensors, integrability tensor and curvature regarding the foliation. From this formula, we conclude that if the second fundamental tensor and the integrability tensor of a harmonic Riemannian foliation is small compared with the partial Ricci tensor, then it is stable. 1. Introduction. A foliation F on a Riemannian manifold (M, ) is called Riemannian and bundle-like if all the leaves are locally equi-distant to each other. Such a foliation is characterized by the property that a geodesic orthogonal to the foliation at one point is orthogonal everywhere. F is said to be harmonic if all the leaves of F are minimal submanifolds([4]). F. Kamber and Ph. Tondeur([4],[5],[6]) showed that a Riemannian foliation is harmonic if and only if it is critical for the energy functional under an appropriate class of so-called special variations defined by sections of the normal bundle([4]). They also derived a second variational formula for the energy functional and considered the stability of a harmonic Riemannian foliations ([5],[6]). In this note, exploiting the second variation formula by Kamber and Tondeur([5]), we obtain a second variation formula for the energy functional for a harmonic Riemannian foliation in terms of the second fundamental tensor, integrability tensor and curvature regarding the foliation. As an immediate consequence it will follow that if the second fundamental tensor and the integrability tensor of a harmonic Riemannian foliation is small compaired with the partial Ricci tensor, then it is stable. This result manifests the fact that the second fundamental tensor, integrability tensor and curvature reflects fundamental aspects of geometry of foliations. 2. Energy of a foliation Let F be a foliation of dimension p and codimension q on a smooth manifold of dimension n Mathematics Subject Classification. 53C12, 58E30. Key words and phrases. Riemannian foliations, harmonic foliations, energy functional, stability. Received October 1, c 2002 Information Center for Mathematical Sciences

2 60 KYOUNG HEE HAN AND HOBUM KIM The tangent bundle L of a foliation F is the subbundle of T M, consisting of all vectors tangent to the leaves of F. The normal bundle Q of codimension-q foliation F on M is the quotient bundle Q = T M/L. The tangent bundle L of F is integrable or involutive and Q appears in exact sequence of vector bundles (2.1) 0 L T M π Q 0. Consider a Riemannian metric on M. Then T M splits orthogonally as T M = L L with σ : Q L T M splitting the sequence (2.1). The metric on T M is then a direct sum = g. With g = L Q σ g L, the splitting map σ : (Q, ) (L, g L ) is a metric isomorphism. Let denote the (partial) Bott connection in Q defined by (2.2) X s = π[x, Y s ] for X ΓL, Y s ΓT M with π(y s ) = s. We observe that the RHS in (2.2) is independent of the choice of Y s. Let M denote the Levi-Civita connection associated to the Riemannian metric on M. A connection in Q is defined by { π[x, Ys ] for X ΓL (2.3) X s = π( M Y X s) for X ΓσQ, where s ΓQ and Y s = σ(s) ΓσQ. The first condition says that is an adapted connection on Q, i.e. a connection extending the (partial) Bott connection alon. A foliation F is Riemannian (or an R-foliation), if the normal bundle is equipped with a holonomy invariant fiber metric. This condition is expressed in terms of the Bott connection by X = 0 for X ΓL. A Riemannian metric on M is bundle-like with respect to the foliation F, if the fiber metric induced on Q turns the foliation into an R-foliation. An R-foliation admits a bundle-like metric. Let F be an R-foliation with a metric on the normal bundle Q. For r 0, We denote by Ω r (M, Q) the space of all smooth Q-valued r-forms on M. For a connection on Q, we consider the exterior derivative d : Ω r (M, Q) Ω r+1 (M, Q), r 0, given by for ω Ω r (M, Q), (2.4) r+1 (d ω)(x 1,, X r+1 ) = ( 1) i+1 Xi ω(x 1,, X i,, X r+1 ) + i<j( 1) i+j ω([x i, X j ], X 1,, X i,, X j,, X r+1 ),

3 VARIATIONAL PROPERTIES OF HARMONIC RIEMANNIAN FOLIATIONS 61 where the X i s are vector fields on M. The covariant derivative X : Ω r (M, Q) Ω r (M, Q), X ΓT M, r 0, is given by (2.5) ( X ω)(x 1,, X r ) = X ω(x 1,, X r ) r ω(x 1,, M X X i,, X r ), where ω Ω r (M, Q) and X i ΓT M. Since M is torsion-free, d ω can be expressed as (2.6) r+1 (d ω)(x 1,, X r+1 ) = ( 1) i+1 ( Xi ω)(x 1,, X i 1, X i+1,, X r+1 ). For the case r = 1, this formula reads (2.7) (d ω)(x, Y ) = ( X ω)(y ) ( Y ω)(x). The Q-valued bilinear form on M α(x, Y ) = ( π)(x, Y ) = π( M X Y ) X π(y ) for X, Y ΓT M is called the second fundamental form of the foliation. For each ν ΓQ the map W (ν) : L L defined by (W (ν)u, V ) = (α(u, V ), ν) for U, V ΓL is called theweingarten operator. F is said to be harmonic if Trace W(ν) = 0 for each ν ΓQ. The harmonicity of the foliation is related with the Laplacian (2.8) = d d + d d where the star operator on M extends to Q-valued forms : Ω r (M, Q) Ω n r (M, Q) and the codifferential d : Ωr (M, Q) Ω r 1 (M, Q), r > 0 of the exterior differential d is given in terms of the star operator by (2.9) d ω = ( 1)n(r+1)+1 d ω, ω Ω r (M, Q).

4 62 KYOUNG HEE HAN AND HOBUM KIM The codifferential d becomes the formal adjoint of d with respect to the naturally induced scalar product (2.10) µ, ν = M (µ, ν) η M of sections µ, ν ΓQ on Q-valued forms over a compact oriented manifold M. Here η M is the volume form associated to the metric on M. The kernel of the Laplacian coincides precisely with the forms which are both d -closed and d -closed. A foliation is harmonic if and only if π = 0([4]). The energy of the foliation F is (2.11) E(F) = 1 2 π 2 where π Ω 1 (M, Q) is the canonical projection π : T M Q and the norm is given by the scalar product, on Ω r (M, Q), r 1 such that (2.12) ω, ω = M (ω ω ). 3. Second variation formula and stability of a harmonic Riemannian foliation. Assume to be bundle-like. A section ν ΓQ defines a special variation F t of F 0 = F through Riemannian foliations by patching the local data (3.1) Φ α t (x) = exp f α (x)(tν α (x)), where f α is a local submersion defining F in an open set U α. Φ α t is then the local submersion defining F t for t ɛ, where ɛ > 0 is sufficiently small. The RHS in (3.1) denotes the endpoint of the geodesic segment starting at f α (x) and determined by tν α (x). This is the construction of Eells-Sampson. Clearly (3.2) ν α (x) = d dt Φ α t (x). t=0 The following facts are due to Kamber and Tondeur([4],[5]). Lemma 3.1. Let M be a compact oriented manifold with a Riemannian foliation F and bundle-like metric. Then F is harmonic if and only if it is an extremal of the energy functional for special variations of F.

5 VARIATIONAL PROPERTIES OF HARMONIC RIEMANNIAN FOLIATIONS 63 Lemma 3.2(Second variation formula). Let M be a compact oriented manifold and F a harmonic Riemannian foliation with respect to a bundle-like metric. Consider the 2-parameter family F s,t of special variations of F = F 0,0 defined by two sections µ, ν of the normal bundle Q. Then for the second derivative of the energy we have (3.3) ( 2 / s t)e(f s,t ) s=0,t=0 = ( ρ )µ, ν, where ρ is the Ricci operator given by (ρ µ) x = n γ=p+1 R (µ, e γ)e γ orthonormal basis {e p+1,, e n } of Q x. for an Theorem 3.3. Let F be a harmonic Riemannian foliation of dimension p with normal bundle Q on a compact oriented Riemannian manifold M of dimension n. Let M be the Levi-Civita connection on M and the connection on Q defined by (2.3). Consider the family F t of special variations of F = F 0 defined by ν ΓQ. Then for the second derivative of the energy we have (3.4) d 2 dt 2 E(F t ) t=0 = ( M ν, ν) W (ν) 2 A(ν) 2 (ρ ν, ν), M where W is the Weingarten operator and A is the integrability tensor given by (3.6) A E F = π ( M π(e) π(f )) + π( M π(e) π (F )) for E, F ΓT M. Proof. Consider the family F t of special variations of F = F 0 defined by the section ν ΓQ. Let be a bundle-like metric and E 1,, E n an orthonormal local frame of T M on a neighborhood of x M such that E 1,, E p ΓL and E p+1,, E n ΓQ. From (3.3), we have (3.7) d 2 dt 2 E(F t ) = ( ρ )ν, ν t=0 = ( EA ν, EA ν) (ρ ν, ν). M A=1

6 64 KYOUNG HEE HAN AND HOBUM KIM Using the integrability tensor A and the Weingarten operator W, we find that ( EA ν, EA ν) A=1 = = ( Ei ν, Ei ν) + ( M ν, M ν) E i E i ( E α ν, Eα ν) (π ( M ν), π ( M ν)) E i E i (π( M E ν i), π( M E ν i)) + = ( M ν, ν) (π ( E α ν), π ( E α ν)) (W (ν)e i, W (ν)e i ) (A ν E i, A ν E i ) = ( M ν, ν) W (ν) 2 A(ν) 2. ( M Eα ν, M Eα ν) (A Eα ν, A Eα ν) In the above caculations, we have used the fact that W (ν)e α = 0 and A Eα ν = A ν E α for α = p + 1,, n. If there is an ɛ > 0 such that for all t < ɛ, E(F t ) E(F), then the foliation F is said to be a stable. Corollary 3.4. Let F be a harmonic Riemannian foliation on a compact oriented Riemannian manifold M with a bundle-like metric. If W 2 + A 2 ρ(z) for any z L, where ρ(z) is the partial Ricci curvature in the direction of z, then F is stable. Acknowledgements. The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, BSRI References 1. James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), Franz W. Kamber and Philppe Tondeur, Harmonic foliations, Sprin- ger lecture notes in mathematics 949 (1982), Franz W. Kamber and Philppe Tondeur, The index of harmonic foliations on spheres, Transactions of the American Mathematical Society 279; 1 (1983), Franz W. Kamber and Philppe Tondeur, Infinitesimal automorphisms and second variarion of the energy for harmonic foliations, Tôhoku Math. Journ. 34 (1982), Barrett O Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), Philppe Tondeur, Foliations on Riemannian manifold, Lecture note (1986). Department of Mathematics, Yonsei University, Seoul , Korea address: kimhb@yonsei.ac.kr

RIEMANNIAN SUBMERSIONS NEED NOT PRESERVE POSITIVE RICCI CURVATURE

RIEMANNIAN SUBMERSIONS NEED NOT PRESERVE POSITIVE RICCI CURVATURE RIEMANNIAN SUBMERSIONS NEED NOT PRESERVE POSITIVE RICCI CURVATURE CURTIS PRO AND FREDERICK WILHELM Abstract. If π : M B is a Riemannian Submersion and M has positive sectional curvature, O Neill s Horizontal

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

Advanced Course: Transversal Dirac operators on distributions, foliations, and G-manifolds. Ken Richardson and coauthors

Advanced Course: Transversal Dirac operators on distributions, foliations, and G-manifolds. Ken Richardson and coauthors Advanced Course: Transversal Dirac operators on distributions, foliations, and G-manifolds Ken Richardson and coauthors Universitat Autònoma de Barcelona May 3-7, 2010 Universitat Autònoma de Barcelona

More information

Jeong-Sik Kim, Yeong-Moo Song and Mukut Mani Tripathi

Jeong-Sik Kim, Yeong-Moo Song and Mukut Mani Tripathi Bull. Korean Math. Soc. 40 (003), No. 3, pp. 411 43 B.-Y. CHEN INEQUALITIES FOR SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS Jeong-Sik Kim, Yeong-Moo Song and Mukut Mani Tripathi Abstract. Some B.-Y.

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

1 First and second variational formulas for area

1 First and second variational formulas for area 1 First and second variational formulas for area In this chapter, we will derive the first and second variational formulas for the area of a submanifold. This will be useful in our later discussion on

More information

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES ASIAN J. MATH. c 2008 International Press Vol. 12, No. 3, pp. 289 298, September 2008 002 ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES RAUL QUIROGA-BARRANCO Abstract.

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES

TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES KEN RICHARDSON Abstract. In these lectures, we investigate generalizations of the ordinary Dirac operator to manifolds

More information

From holonomy reductions of Cartan geometries to geometric compactifications

From holonomy reductions of Cartan geometries to geometric compactifications From holonomy reductions of Cartan geometries to geometric compactifications 1 University of Vienna Faculty of Mathematics Berlin, November 11, 2016 1 supported by project P27072 N25 of the Austrian Science

More information

CHAPTER 1 PRELIMINARIES

CHAPTER 1 PRELIMINARIES CHAPTER 1 PRELIMINARIES 1.1 Introduction The aim of this chapter is to give basic concepts, preliminary notions and some results which we shall use in the subsequent chapters of the thesis. 1.2 Differentiable

More information

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström A brief introduction to Semi-Riemannian geometry and general relativity Hans Ringström May 5, 2015 2 Contents 1 Scalar product spaces 1 1.1 Scalar products...................................... 1 1.2 Orthonormal

More information

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18 Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18 Required problems (to be handed in): 2bc, 3, 5c, 5d(i). In doing any of these problems, you may assume the results

More information

Qing-Ming Cheng and Young Jin Suh

Qing-Ming Cheng and Young Jin Suh J. Korean Math. Soc. 43 (2006), No. 1, pp. 147 157 MAXIMAL SPACE-LIKE HYPERSURFACES IN H 4 1 ( 1) WITH ZERO GAUSS-KRONECKER CURVATURE Qing-Ming Cheng and Young Jin Suh Abstract. In this paper, we study

More information

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria. Foliated CR Manifolds

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria. Foliated CR Manifolds ESI The Erwin Schrödinger International oltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Foliated CR Manifolds Sorin Dragomir Seiki Nishikawa Vienna, Preprint ESI 1290 (2003) March

More information

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES 1. Introduction Until now we have been considering homogenous spaces G/H where G is a Lie group and H is a closed subgroup. The natural

More information

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction ACTA MATHEMATICA VIETNAMICA 205 Volume 29, Number 2, 2004, pp. 205-216 GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE HANDAN BALGETIR AND MAHMUT ERGÜT Abstract. In this paper, we define

More information

Curvature homogeneity of type (1, 3) in pseudo-riemannian manifolds

Curvature homogeneity of type (1, 3) in pseudo-riemannian manifolds Curvature homogeneity of type (1, 3) in pseudo-riemannian manifolds Cullen McDonald August, 013 Abstract We construct two new families of pseudo-riemannian manifolds which are curvature homegeneous of

More information

EXISTENCE THEORY FOR HARMONIC METRICS

EXISTENCE THEORY FOR HARMONIC METRICS EXISTENCE THEORY FOR HARMONIC METRICS These are the notes of a talk given by the author in Asheville at the workshop Higgs bundles and Harmonic maps in January 2015. It aims to sketch the proof of the

More information

WELL-POSEDNESS OF THE LAPLACIAN ON MANIFOLDS WITH BOUNDARY AND BOUNDED GEOMETRY

WELL-POSEDNESS OF THE LAPLACIAN ON MANIFOLDS WITH BOUNDARY AND BOUNDED GEOMETRY WELL-POSEDNESS OF THE LAPLACIAN ON MANIFOLDS WITH BOUNDARY AND BOUNDED GEOMETRY BERND AMMANN, NADINE GROSSE, AND VICTOR NISTOR Abstract. Let M be a Riemannian manifold with a smooth boundary. The main

More information

η = (e 1 (e 2 φ)) # = e 3

η = (e 1 (e 2 φ)) # = e 3 Research Statement My research interests lie in differential geometry and geometric analysis. My work has concentrated according to two themes. The first is the study of submanifolds of spaces with riemannian

More information

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar Geometry of almost-product (pseudo-)riemannian manifolds and the dynamics of the observer University of Wrocªaw Barcelona Postgrad Encounters on Fundamental Physics, October 2012 Outline 1 Motivation 2

More information

Metrics and Holonomy

Metrics and Holonomy Metrics and Holonomy Jonathan Herman The goal of this paper is to understand the following definitions of Kähler and Calabi-Yau manifolds: Definition. A Riemannian manifold is Kähler if and only if it

More information

TRANSITIVE HOLONOMY GROUP AND RIGIDITY IN NONNEGATIVE CURVATURE. Luis Guijarro and Gerard Walschap

TRANSITIVE HOLONOMY GROUP AND RIGIDITY IN NONNEGATIVE CURVATURE. Luis Guijarro and Gerard Walschap TRANSITIVE HOLONOMY GROUP AND RIGIDITY IN NONNEGATIVE CURVATURE Luis Guijarro and Gerard Walschap Abstract. In this note, we examine the relationship between the twisting of a vector bundle ξ over a manifold

More information

The local geometry of compact homogeneous Lorentz spaces

The local geometry of compact homogeneous Lorentz spaces The local geometry of compact homogeneous Lorentz spaces Felix Günther Abstract In 1995, S. Adams and G. Stuck as well as A. Zeghib independently provided a classification of non-compact Lie groups which

More information

LECTURE 10: THE PARALLEL TRANSPORT

LECTURE 10: THE PARALLEL TRANSPORT LECTURE 10: THE PARALLEL TRANSPORT 1. The parallel transport We shall start with the geometric meaning of linear connections. Suppose M is a smooth manifold with a linear connection. Let γ : [a, b] M be

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

H-convex Riemannian submanifolds

H-convex Riemannian submanifolds H-convex Riemannian submanifolds Constantin Udrişte and Teodor Oprea Abstract. Having in mind the well known model of Euclidean convex hypersurfaces [4], [5] and the ideas in [1], many authors defined

More information

Fundamental Materials of Riemannian Geometry

Fundamental Materials of Riemannian Geometry Chapter 1 Fundamental aterials of Riemannian Geometry 1.1 Introduction In this chapter, we give fundamental materials in Riemannian geometry. In this book, we assume basic materials on manifolds. We give,

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 16 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields 16.1 Isometries and Local Isometries Recall that a local isometry between two Riemannian manifolds M

More information

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing). An Interlude on Curvature and Hermitian Yang Mills As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing). Suppose we wanted

More information

Riemannian submersions and eigenforms of the Witten Laplacian

Riemannian submersions and eigenforms of the Witten Laplacian Proceedings of The Sixteenth International Workshop on Diff. Geom. 16(2012) 143-153 Riemannian submersions and eigenforms of the Witten Laplacian Hyunsuk Kang Department of Mathematics, Korea Institute

More information

HARMONIC MAPS INTO GRASSMANNIANS AND A GENERALIZATION OF DO CARMO-WALLACH THEOREM

HARMONIC MAPS INTO GRASSMANNIANS AND A GENERALIZATION OF DO CARMO-WALLACH THEOREM Proceedings of the 16th OCU International Academic Symposium 2008 OCAMI Studies Volume 3 2009, pp.41 52 HARMONIC MAPS INTO GRASSMANNIANS AND A GENERALIZATION OF DO CARMO-WALLACH THEOREM YASUYUKI NAGATOMO

More information

Legendre surfaces whose mean curvature vectors are eigenvectors of the Laplace operator

Legendre surfaces whose mean curvature vectors are eigenvectors of the Laplace operator Note di Matematica 22, n. 1, 2003, 9 58. Legendre surfaces whose mean curvature vectors are eigenvectors of the Laplace operator Tooru Sasahara Department of Mathematics, Hokkaido University, Sapporo 060-0810,

More information

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013 Smooth Dynamics 2 Problem Set Nr. 1 University of Chicago Winter 2013 Instructor: Submitted by: Prof. Wilkinson Clark Butler Problem 1 Let M be a Riemannian manifold with metric, and Levi-Civita connection.

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 15 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields The goal of this chapter is to understand the behavior of isometries and local isometries, in particular

More information

TRANSVERSE LS-CATEGORY FOR RIEMANNIAN FOLIATIONS

TRANSVERSE LS-CATEGORY FOR RIEMANNIAN FOLIATIONS TRANSVERSE LS-CATEGORY FOR RIEMANNIAN FOLIATIONS STEVEN HURDER AND DIRK TÖBEN Abstract. We study the transverse Lusternik-Schnirelmann category theory of a Riemannian foliation F on a closed manifold M.

More information

On the 5-dimensional Sasaki-Einstein manifold

On the 5-dimensional Sasaki-Einstein manifold Proceedings of The Fourteenth International Workshop on Diff. Geom. 14(2010) 171-175 On the 5-dimensional Sasaki-Einstein manifold Byung Hak Kim Department of Applied Mathematics, Kyung Hee University,

More information

The Calabi Conjecture

The Calabi Conjecture The Calabi Conjecture notes by Aleksander Doan These are notes to the talk given on 9th March 2012 at the Graduate Topology and Geometry Seminar at the University of Warsaw. They are based almost entirely

More information

Surfaces with Parallel Mean Curvature in S 3 R and H 3 R

Surfaces with Parallel Mean Curvature in S 3 R and H 3 R Michigan Math. J. 6 (202), 75 729 Surfaces with Parallel Mean Curvature in S 3 R and H 3 R Dorel Fetcu & Harold Rosenberg. Introduction In 968, J. Simons discovered a fundamental formula for the Laplacian

More information

Orientation transport

Orientation transport Orientation transport Liviu I. Nicolaescu Dept. of Mathematics University of Notre Dame Notre Dame, IN 46556-4618 nicolaescu.1@nd.edu June 2004 1 S 1 -bundles over 3-manifolds: homological properties Let

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES

THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES Denis Bell 1 Department of Mathematics, University of North Florida 4567 St. Johns Bluff Road South,Jacksonville, FL 32224, U. S. A. email: dbell@unf.edu This

More information

Hyperkähler geometry lecture 3

Hyperkähler geometry lecture 3 Hyperkähler geometry lecture 3 Misha Verbitsky Cohomology in Mathematics and Physics Euler Institute, September 25, 2013, St. Petersburg 1 Broom Bridge Here as he walked by on the 16th of October 1843

More information

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS SHOO SETO Abstract. These are the notes to an expository talk I plan to give at MGSC on Kähler Geometry aimed for beginning graduate students in hopes to motivate

More information

Universität Regensburg Mathematik

Universität Regensburg Mathematik Universität Regensburg Mathematik Harmonic spinors and local deformations of the metric Bernd Ammann, Mattias Dahl, and Emmanuel Humbert Preprint Nr. 03/2010 HARMONIC SPINORS AND LOCAL DEFORMATIONS OF

More information

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let Chapter 1 Complex line bundles 1.1 Connections of line bundle Consider a complex line bundle L M. For any integer k N, let be the space of k-forms with values in L. Ω k (M, L) = C (M, L k (T M)) Definition

More information

Many of the exercises are taken from the books referred at the end of the document.

Many of the exercises are taken from the books referred at the end of the document. Exercises in Geometry I University of Bonn, Winter semester 2014/15 Prof. Christian Blohmann Assistant: Néstor León Delgado The collection of exercises here presented corresponds to the exercises for the

More information

class # MATH 7711, AUTUMN 2017 M-W-F 3:00 p.m., BE 128 A DAY-BY-DAY LIST OF TOPICS

class # MATH 7711, AUTUMN 2017 M-W-F 3:00 p.m., BE 128 A DAY-BY-DAY LIST OF TOPICS class # 34477 MATH 7711, AUTUMN 2017 M-W-F 3:00 p.m., BE 128 A DAY-BY-DAY LIST OF TOPICS [DG] stands for Differential Geometry at https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf [DFT]

More information

AN ALMOST KÄHLER STRUCTURE ON THE DEFORMATION SPACE OF CONVEX REAL PROJECTIVE STRUCTURES

AN ALMOST KÄHLER STRUCTURE ON THE DEFORMATION SPACE OF CONVEX REAL PROJECTIVE STRUCTURES Trends in Mathematics Information Center for Mathematical ciences Volume 5, Number 1, June 2002, Pages 23 29 AN ALMOT KÄHLER TRUCTURE ON THE DEFORMATION PACE OF CONVEX REAL PROJECTIVE TRUCTURE HONG CHAN

More information

Cohomology of the Mumford Quotient

Cohomology of the Mumford Quotient Cohomology of the Mumford Quotient Maxim Braverman Abstract. Let X be a smooth projective variety acted on by a reductive group G. Let L be a positive G-equivariant line bundle over X. We use a Witten

More information

Topic: First Chern classes of Kähler manifolds Mitchell Faulk Last updated: April 23, 2016

Topic: First Chern classes of Kähler manifolds Mitchell Faulk Last updated: April 23, 2016 Topic: First Chern classes of Kähler manifolds itchell Faulk Last updated: April 23, 2016 We study the first Chern class of various Kähler manifolds. We only consider two sources of examples: Riemann surfaces

More information

The spectral action for Dirac operators with torsion

The spectral action for Dirac operators with torsion The spectral action for Dirac operators with torsion Christoph A. Stephan joint work with Florian Hanisch & Frank Pfäffle Institut für athematik Universität Potsdam Tours, ai 2011 1 Torsion Geometry, Einstein-Cartan-Theory

More information

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University,

More information

INTEGRATION BY PARTS AND QUASI-INVARIANCE FOR THE HORIZONTAL WIENER MEASURE ON A FOLIATED COMPACT MANIFOLD

INTEGRATION BY PARTS AND QUASI-INVARIANCE FOR THE HORIZONTAL WIENER MEASURE ON A FOLIATED COMPACT MANIFOLD INTEGRATION BY PARTS AND QUASI-INVARIANCE FOR THE HORIZONTAL WIENER MEASURE ON A FOLIATED COMPACT MANIFOLD FABRICE BAUDOIN, QI FENG, AND MARIA GORDINA Abstract. We prove a version of Driver s integration

More information

On Einstein Nearly Kenmotsu Manifolds

On Einstein Nearly Kenmotsu Manifolds International Journal of Mathematics Research. ISSN 0976-5840 Volume 8, Number 1 (2016), pp. 19-24 International Research Publication House http://www.irphouse.com On Einstein Nearly Kenmotsu Manifolds

More information

SUSPENSION FOLIATIONS: INTERESTING EXAMPLES OF TOPOLOGY AND GEOMETRY

SUSPENSION FOLIATIONS: INTERESTING EXAMPLES OF TOPOLOGY AND GEOMETRY SUSPENSION FOLIATIONS: INTERESTING EXAMPLES OF TOPOLOGY AND GEOMETRY KEN RICHARDSON Abstract. We give examples of foliations on suspensions and comment on their topological and geometric properties 1.

More information

Constructing compact 8-manifolds with holonomy Spin(7)

Constructing compact 8-manifolds with holonomy Spin(7) Constructing compact 8-manifolds with holonomy Spin(7) Dominic Joyce, Oxford University Simons Collaboration meeting, Imperial College, June 2017. Based on Invent. math. 123 (1996), 507 552; J. Diff. Geom.

More information

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH 1. Differential Forms To start our discussion, we will define a special class of type (0,r) tensors: Definition 1.1. A differential form of order

More information

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE JOHANNES EBERT 1.1. October 11th. 1. Recapitulation from differential topology Definition 1.1. Let M m, N n, be two smooth manifolds

More information

1 Normal (geodesic) coordinates

1 Normal (geodesic) coordinates Riemannian Geometry The Bochner- Weitzenbock formula If we need to verify some tensor identity (or inequality) on Riemannina manifolds, we only need to choose, at every point, a suitable local coordinate,

More information

APPROXIMATE YANG MILLS HIGGS METRICS ON FLAT HIGGS BUNDLES OVER AN AFFINE MANIFOLD. 1. Introduction

APPROXIMATE YANG MILLS HIGGS METRICS ON FLAT HIGGS BUNDLES OVER AN AFFINE MANIFOLD. 1. Introduction APPROXIMATE YANG MILLS HIGGS METRICS ON FLAT HIGGS BUNDLES OVER AN AFFINE MANIFOLD INDRANIL BISWAS, JOHN LOFTIN, AND MATTHIAS STEMMLER Abstract. Given a flat Higgs vector bundle (E,, ϕ) over a compact

More information

Codimension 2 submanifolds with flat normal bundle in euclidean space

Codimension 2 submanifolds with flat normal bundle in euclidean space Codimension 2 submanifolds with flat normal bundle in euclidean space J.J. Nuño-Ballesteros and M.C. Romero-Fuster Abstract Given an immersed submanifold M n R n+2, we characterize the vanishing of the

More information

arxiv: v1 [math.dg] 21 Sep 2007

arxiv: v1 [math.dg] 21 Sep 2007 ON THE GAUSS MAP WITH VANISHING BIHARMONIC STRESS-ENERGY TENSOR arxiv:0709.3355v1 [math.dg] 21 Sep 2007 WEI ZHANG Abstract. We study the biharmonic stress-energy tensor S 2 of Gauss map. Adding few assumptions,

More information

L 2 Geometry of the Symplectomorphism Group

L 2 Geometry of the Symplectomorphism Group University of Notre Dame Workshop on Innite Dimensional Geometry, Vienna 2015 Outline 1 The Exponential Map on D s ω(m) 2 Existence of Multiplicity of Outline 1 The Exponential Map on D s ω(m) 2 Existence

More information

Geometric and Spectral Properties of Hypoelliptic Operators

Geometric and Spectral Properties of Hypoelliptic Operators Geometric and Spectral Properties of Hypoelliptic Operators aster Thesis Stine. Berge ay 5, 017 i ii Acknowledgements First of all I want to thank my three supervisors; Erlend Grong, Alexander Vasil ev

More information

Infinitesimal Einstein Deformations. Kähler Manifolds

Infinitesimal Einstein Deformations. Kähler Manifolds on Nearly Kähler Manifolds (joint work with P.-A. Nagy and U. Semmelmann) Gemeinsame Jahrestagung DMV GDM Berlin, March 30, 2007 Nearly Kähler manifolds Definition and first properties Examples of NK manifolds

More information

Hodge theory for bundles over C algebras

Hodge theory for bundles over C algebras Hodge theory for bundles over C algebras Svatopluk Krýsl Mathematical Institute, Charles University in Prague Varna, June 2013 Symplectic linear algebra Symplectic vector space (V, ω 0 ) - real/complex

More information

OBSTRUCTION TO POSITIVE CURVATURE ON HOMOGENEOUS BUNDLES

OBSTRUCTION TO POSITIVE CURVATURE ON HOMOGENEOUS BUNDLES OBSTRUCTION TO POSITIVE CURVATURE ON HOMOGENEOUS BUNDLES KRISTOPHER TAPP Abstract. Examples of almost-positively and quasi-positively curved spaces of the form M = H\((G, h) F ) were discovered recently

More information

Reduction of Homogeneous Riemannian structures

Reduction of Homogeneous Riemannian structures Geometric Structures in Mathematical Physics, 2011 Reduction of Homogeneous Riemannian structures M. Castrillón López 1 Ignacio Luján 2 1 ICMAT (CSIC-UAM-UC3M-UCM) Universidad Complutense de Madrid 2 Universidad

More information

Stable minimal cones in R 8 and R 9 with constant scalar curvature

Stable minimal cones in R 8 and R 9 with constant scalar curvature Revista Colombiana de Matemáticas Volumen 6 (2002), páginas 97 106 Stable minimal cones in R 8 and R 9 with constant scalar curvature Oscar Perdomo* Universidad del Valle, Cali, COLOMBIA Abstract. In this

More information

Symmetries of Parabolic Geometries

Symmetries of Parabolic Geometries ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Symmetries of Parabolic Geometries Lenka Zalabová Vienna, Preprint ESI 2082 (2008 December

More information

The automorphism groups of foliations with transverse linear connection. Author copy

The automorphism groups of foliations with transverse linear connection. Author copy Cent. Eur. J. Math. 11(12) 2013 2076-2088 DOI: 10.2478/s11533-013-0307-8 Central European Journal of Mathematics The automorphism groups of foliations with transverse linear connection Research Article

More information

VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE

VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE KRISTOPHER TAPP Abstract. The volume growth of an open manifold of nonnegative sectional curvature is proven to be bounded above by the difference between

More information

2-harmonic maps and their first and second variational formulas i

2-harmonic maps and their first and second variational formulas i Note di atematica Note at. 1(2008, suppl. n. 1, 209-232 ISSN 1123-2536, e-issn 1590-0932 DOI 10.1285/i15900932v28n1supplp209 Note http://siba2.unile.it/notemat di atematica 28, suppl. n. 1, 2009, 209 232.

More information

Submanifolds of. Total Mean Curvature and. Finite Type. Bang-Yen Chen. Series in Pure Mathematics Volume. Second Edition.

Submanifolds of. Total Mean Curvature and. Finite Type. Bang-Yen Chen. Series in Pure Mathematics Volume. Second Edition. le 27 AIPEI CHENNAI TAIPEI - Series in Pure Mathematics Volume 27 Total Mean Curvature and Submanifolds of Finite Type Second Edition Bang-Yen Chen Michigan State University, USA World Scientific NEW JERSEY

More information

HYPERKÄHLER MANIFOLDS

HYPERKÄHLER MANIFOLDS HYPERKÄHLER MANIFOLDS PAVEL SAFRONOV, TALK AT 2011 TALBOT WORKSHOP 1.1. Basic definitions. 1. Hyperkähler manifolds Definition. A hyperkähler manifold is a C Riemannian manifold together with three covariantly

More information

Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces Differential Geometry, Lie Groups, and Symmetric Spaces Sigurdur Helgason Graduate Studies in Mathematics Volume 34 nsffvjl American Mathematical Society l Providence, Rhode Island PREFACE PREFACE TO THE

More information

Coordinate Finite Type Rotational Surfaces in Euclidean Spaces

Coordinate Finite Type Rotational Surfaces in Euclidean Spaces Filomat 28:10 (2014), 2131 2140 DOI 10.2298/FIL1410131B Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Coordinate Finite Type

More information

DIFFERENTIAL GEOMETRY HW 12

DIFFERENTIAL GEOMETRY HW 12 DIFFERENTIAL GEOMETRY HW 1 CLAY SHONKWILER 3 Find the Lie algebra so(n) of the special orthogonal group SO(n), and the explicit formula for the Lie bracket there. Proof. Since SO(n) is a subgroup of GL(n),

More information

A Semi-Riemannian Manifold of Quasi-Constant Curvature Admits Lightlike Submanifolds

A Semi-Riemannian Manifold of Quasi-Constant Curvature Admits Lightlike Submanifolds International Journal of Mathematical Analysis Vol. 9, 2015, no. 25, 1215-1229 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.5255 A Semi-Riemannian Manifold of Quasi-Constant Curvature

More information

Hard Lefschetz Theorem for Vaisman manifolds

Hard Lefschetz Theorem for Vaisman manifolds Hard Lefschetz Theorem for Vaisman manifolds Antonio De Nicola CMUC, University of Coimbra, Portugal joint work with B. Cappelletti-Montano (Univ. Cagliari), J.C. Marrero (Univ. La Laguna) and I. Yudin

More information

A CHARACTERIZATION OF WARPED PRODUCT PSEUDO-SLANT SUBMANIFOLDS IN NEARLY COSYMPLECTIC MANIFOLDS

A CHARACTERIZATION OF WARPED PRODUCT PSEUDO-SLANT SUBMANIFOLDS IN NEARLY COSYMPLECTIC MANIFOLDS Journal of Mathematical Sciences: Advances and Applications Volume 46, 017, Pages 1-15 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.1864/jmsaa_71001188 A CHARACTERIATION OF WARPED

More information

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS by J. Szenthe Abstract. In case of Riemannian manifolds isometric actions admitting submanifolds

More information

Notes on quotients and group actions

Notes on quotients and group actions Notes on quotients and group actions Erik van den Ban Fall 2006 1 Quotients Let X be a topological space, and R an equivalence relation on X. The set of equivalence classes for this relation is denoted

More information

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II LECTURES BY JOACHIM SCHWERMER, NOTES BY TONY FENG Contents 1. Review 1 2. Lifting differential forms from the boundary 2 3. Eisenstein

More information

Transverse Euler Classes of Foliations on Non-atomic Foliation Cycles Steven HURDER & Yoshihiko MITSUMATSU. 1 Introduction

Transverse Euler Classes of Foliations on Non-atomic Foliation Cycles Steven HURDER & Yoshihiko MITSUMATSU. 1 Introduction 1 Transverse Euler Classes of Foliations on Non-atomic Foliation Cycles Steven HURDER & Yoshihiko MITSUMATSU 1 Introduction The main purpose of this article is to give a geometric proof of the following

More information

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3.

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3. CHAPTER 3 Gauss map In this chapter we will study the Gauss map of surfaces in R 3. 3.1. Surfaces in R 3 Let S R 3 be a submanifold of dimension 2. Let {U i, ϕ i } be a DS on S. For any p U i we have a

More information

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 6. Geodesics A parametrized line γ : [a, b] R n in R n is straight (and the parametrization is uniform) if the vector γ (t) does not depend on t. Thus,

More information

PSEUDOHOLOMORPHICITY OF CLOSED MINIMAL SURFACES IN CONSTANTLY CURVED 4-SPACES

PSEUDOHOLOMORPHICITY OF CLOSED MINIMAL SURFACES IN CONSTANTLY CURVED 4-SPACES proceedings of the american mathematical society Volume 110, Number 4, December 1990 PSEUDOHOLOMORPHICITY OF CLOSED MINIMAL SURFACES IN CONSTANTLY CURVED 4-SPACES CHI-MING YAU (Communicated by Jonathan

More information

arxiv: v3 [math.dg] 13 Mar 2011

arxiv: v3 [math.dg] 13 Mar 2011 GENERALIZED QUASI EINSTEIN MANIFOLDS WITH HARMONIC WEYL TENSOR GIOVANNI CATINO arxiv:02.5405v3 [math.dg] 3 Mar 20 Abstract. In this paper we introduce the notion of generalized quasi Einstein manifold,

More information

arxiv: v1 [math.dg] 30 Mar 2017

arxiv: v1 [math.dg] 30 Mar 2017 HOOTOPY INVARIANCE OF COHOOLOGY AND SIGNATURE OF A RIEANNIAN FOLIATION arxiv:1703.10448v1 [math.dg] 30 ar 2017 GEORGES HABIB AND KEN RICHARDSON Abstract. We prove that any smooth foliation that admits

More information

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map Filomat 29:3 (205), 38 392 DOI 0.2298/FIL50338B Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Timelike Rotational Surfaces of

More information

Strictly convex functions on complete Finsler manifolds

Strictly convex functions on complete Finsler manifolds Proc. Indian Acad. Sci. (Math. Sci.) Vol. 126, No. 4, November 2016, pp. 623 627. DOI 10.1007/s12044-016-0307-2 Strictly convex functions on complete Finsler manifolds YOE ITOKAWA 1, KATSUHIRO SHIOHAMA

More information

arxiv: v1 [math.sg] 8 Sep 2017

arxiv: v1 [math.sg] 8 Sep 2017 ON THE GEOMETRY OF COMPATIBLE POISSON AND RIEMANNIAN STRUCTURES NICOLÁS MARTÍNEZ ALBA AND ANDRÉS VARGAS arxiv:1709.02525v1 [math.sg] 8 Sep 2017 Abstract. We consider compatibility conditions between Poisson

More information

Fundamentals of Differential Geometry

Fundamentals of Differential Geometry - Serge Lang Fundamentals of Differential Geometry With 22 luustrations Contents Foreword Acknowledgments v xi PARTI General Differential Theory 1 CHAPTERI Differential Calculus 3 1. Categories 4 2. Topological

More information

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi Principal Invariants of Jacobi Curves Andrei Agrachev 1 and Igor Zelenko 2 1 S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy and Steklov Mathematical Institute, ul. Gubkina 8, 117966 Moscow, Russia; email:

More information

Lecture 8. Connections

Lecture 8. Connections Lecture 8. Connections This lecture introduces connections, which are the machinery required to allow differentiation of vector fields. 8.1 Differentiating vector fields. The idea of differentiating vector

More information

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, 205 Elementary tensor calculus We will study in this section some basic multilinear algebra and operations on tensors. Let

More information