At right: Closeups of the graphs of. with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1

Size: px
Start display at page:

Download "At right: Closeups of the graphs of. with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1"

Transcription

1 Know the graphs of f(x) = x n for n = odd, positive: 1, 3, 5, The Domain is All Real Numbers, (, ), or R. The Range is All Real Numbers, (, ), or R. It is an Odd function because f( x) = f(x). It is symmetric with respect to the origin: for each point (x, y) has a twin at ( x, y). For example, for f(x) = x 3, f( 7) = 343, f(7) = +343 As the exponent gets larger, o the graph becomes narrower and steeper when x < 1 and x > +1 o but the graph flattens more around the origin, where 1 < x < +1 y = x y = x 3 y = x 5 At right: Closeups of the graphs of y = x 3 and y = x 5 near the origin, with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1 Compare: What s the difference between y = x 3 and y = x 5 near the points x = 0.5 and x = +0.5?

2 Know the graphs of f(x) = x n for n = even, positive: 2, 4, 6, The Domain is All Real Numbers, (, ), or R. The Range is All Non-Negative Real Numbers, [0, ). It is an Even function because f( x) = f(x). It is symmetric with respect to the y-axis: for each point (x, y) has a twin at ( x, y). For example, for f(x) = x 2, f( 7) = +49, f(7) = +49 As the exponent gets larger, o the graph becomes narrower and steeper when x < 1 and x > +1 o but the graph flattens more around the origin, where 1 < x < +1 y = x 2 y = x 4 y = x 6 At left: Closeups of the graphs of y = x 2 and y = x 4 near the origin, with WINDOW settings Xmin=-1, Xmax=1, Xscl=0.1, Ymin=-1, Ymax=1, Yscl=0.1 Compare: What s the difference between y = x 2 and y = x 4 near the points x = 0.5 and x = +0.5?

3 n Know the graphs of f(x) = x, x o 2 Square Root y = x = x 3 Cube Root y = x even 4 6 and similarly for x, even roots, x, x, etc. odd 5 7 and similarly for x, odd roots,, x, x, etc. Domain [0, ) and Range [0, ) Domain (, ) and Range (, ) Symmetric with respect to the origin, (0,0) As the index (the little number in the nest) gets larger, the graph goes lower, closer to the x-axis when x > 1 but the graph goes higher, closer to y = 1 when x < 1 4 Example: > The 4 th root is larger. 4 But < The 2 nd (square) root is larger. 4 Here are graphs of y = x and in bold, y = x in the window Xmin=0, Xmax=2, Xscl=0.5, Ymin=0, Ymax=1.5, Yscl=0.5. Observe that they cross at (1,1) because for any n th n root, 1 = 1.

4 Know the graphs of f(x) = 1 x n for n = odd, positive: 1, 3, 5, The Domain is All Real Numbers except x = 0, (, 0) (0, ). The Range is All Real Numbers except x = 0, (, 0) (0, ). It is an Odd function because f( x) = f(x). It is symmetric with respect to the origin: for each point (x, y) has a twin at ( x, y). For example, for f(x) = 1/x 3, f( 2) = 1, f(2) = 1. ( 2, 1 ) and (+2, + 1 ) are both on the graph As the exponent gets larger, o the curve seems flatter when x < 1 and x > +1 o but it gets steeper when 1 < x < +1 These graphs were produced with WINDOW Xmin=-5, Xmax=5, Ymin=-5, Ymax=5. y = 1 x y = 1 x 3 y = 1 x 5

5 Know the graphs of f(x) = 1 x n for n = even, positive: 2, 4, 6, The Domain is All Real Numbers except x = 0, (, 0) (0, ). The Range is All Positive Real Numbers, (0, ). It is an Even function because f( x) = f(x). It is symmetric with respect to the y-axis: Each point (x, y) has a twin at ( x, y). For example, for f(x) = 1/x 2, f( 2) = 1, f(2) = 1. ( 2, 1 ) and (+2, 1 ) are both on the graph As the exponent gets larger, o the curve seems flatter when x < 1 and x > +1 o but it gets steeper when 1 < x < +1 These graphs were produced with WINDOW Xmin=-5, Xmax=5, Ymin=-5, Ymax=5. y = 1 x 2 y = 1 x 4 y = 1 x 6

6 Know the graph of f(x) = x, the absolute value function It is a V shape. It has a corner at the Origin, (0,0). The Domain is All Real Numbers, or R. The Range is All Non-Negative Real Numbers, [0, ). To put this function into your TI-84, press the MATH key, then right arrow to the NUM submenu, and choose 1:abs( It is an Even function because f( x) = f(x). It is symmetric with respect to the y-axis: Each point (x, y) has a twin at ( x, y). For example, for f(x) = x, f( 7) = 7, f(7) = 7. ( 7,7) and (+7, 7) are both on the graph. These graphs were produced with WINDOW Xmin=-5, Xmax=5, Ymin=-5, Ymax=5. y = x y = 3 x y = 1 3 x This is the standard building block graph for absolute value Multiplying by a > 1 makes it steeper and narrower. Multiplying by 0 < a < 1 makes it broader and of gentler slope.

7 Multiplying by 1 flips the graph vertically, across the x-axis. Each (x, y) in the original graph is transformed into (x, y). For example, consider f(x) = x 2 at x = 5. f(5) = 25. The point (5,25) is on the graph. But when f(x) = x 2, f(5) = 25. The point (5, 25) is on the graph. y = x 2 and y = x 2 y = x 3 and y = x 3 y = 1 x and y = 1 x y = x and y = x

8 Know the graph of f(x) = x the Floor function It is a Step function because it looks like the steps in a flight of stairs. It means What is the largest integer x? Examples: 4.7 = 4 and 4.7 = 5. The Domain is All Real Numbers, or R. The Range is the set of Integers, Z, or {, 3, 2, 1, 0, 1, 2, 3 } To put this function into your TI-84, press the MATH key, then right arrow to the NUM submenu, and choose 5:int( In better resolution, the left endpoints of each segment are solid dots (because int(5) = 5, for example) and the right endpoints are open dots (because int(6)=6, not 5, so the segment from x = 5 to x = 6 has a solid dot at the left end where x = 5 and an open dot at the right end where x = 6. y = x y = 3 x y = x/2 Step height is 1. Step length is 1. Multiplying x outside the int() sets the height of each step. The range is multiples of 3: {, 9, 6, 3, 0, 3, 6, 9, } Multiplying x inside the int() sets the length of each step to the reciprocal of the multiplier. Here, multiplier 1/2 sets step length to 2.

9 Piecewise Functions are really easy Example: f(x) = { 2x 2 x 2 when x 1 when x > 1 The function is made up of two pieces. That s why we call it a piecewise function. When x 1, that is, on the interval (, 1], the rule = 2x 2 is in effect. When x > 1, that is, on the interval (1, ), the rule = x 2 is in effect. There is a closed dot at ( 1,0) and an open dot at ( 1,1) That s how the graph tells us which of the pieces rules that point in the domain. In this example, at x = 1, the straight line 2x 2 determines the value at x = 1. And immediately to the right of x = 1 is where the parabola x 2 takes over.

( ) ( ) SECTION 1.1, Page ( x 3) 5 = 4( x 5) = 7. x = = = x x+ 0.12(4000 x) = 432

( ) ( ) SECTION 1.1, Page ( x 3) 5 = 4( x 5) = 7. x = = = x x+ 0.12(4000 x) = 432 CHAPTER Functions and Graphs SECTION., Page. x + x + x x x. x + x x x x x. ( x ) ( x ) x 6 x x x x x + x x 7. x + x + x + 6 8 x 8 6 x x. x x 6 x 6 x x x 8 x x 8 + x..x +..6.x. x 6 ( n + ) ( n ) n + n.

More information

A repeated root is a root that occurs more than once in a polynomial function.

A repeated root is a root that occurs more than once in a polynomial function. Unit 2A, Lesson 3.3 Finding Zeros Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial function. This information allows

More information

Graphing Calculator Computations 2

Graphing Calculator Computations 2 Graphing Calculator Computations A) Write the graphing calculator notation and B) Evaluate each epression. 4 1) 15 43 8 e) 15 - -4 * 3^ + 8 ^ 4/ - 1) ) 5 ) 8 3 3) 3 4 1 8 3) 7 9 4) 1 3 5 4) 5) 5 5) 6)

More information

Section 4.4 Z-Scores and the Empirical Rule

Section 4.4 Z-Scores and the Empirical Rule Section 4.4 Z-Scores and the Empirical Rule 1 GPA Example A sample of GPAs of 40 freshman college students appear below (sorted in increasing order) 1.40 1.90 1.90 2.00 2.10 2.10 2.20 2.30 2.30 2.40 2.50

More information

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 Chapter

More information

CHAPTER 1. Functions and Linear Models

CHAPTER 1. Functions and Linear Models CHAPTER 1 Functions and Linear Models 1. Functions Definition. A function is a rule that associates each input with exactly one output. Example. (1) Millions of cameras made Cost in million $ 1 175 5 260

More information

Unit 7 Graphs and Graphing Utilities - Classwork

Unit 7 Graphs and Graphing Utilities - Classwork A. Graphing Equations Unit 7 Graphs and Graphing Utilities - Classwork Our first job is being able to graph equations. We have done some graphing in trigonometry but now need a general method of seeing

More information

FLEX Mathematics Introduction to Trigonometry. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FLEX Mathematics Introduction to Trigonometry. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FLEX Mathematics Introduction to Trigonometry Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Evaluate the expression. 1) 8 tan 0 + 3 csc 20

More information

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions Study Resources For Algebra I Unit 2A Graphs of Quadratic Functions This unit examines the graphical behavior of quadratic functions. Information compiled and written by Ellen Mangels, Cockeysville Middle

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Unit 2 Linear Equations and Inequalities 9/26/2016 10/21/2016 Name: By the end of this unit, you will be able to Use rate of change to solve problems Find the slope of a line Model real-world data with

More information

H(t) = 16t Sketch a diagram illustrating the Willis Tower and the path of the baseball as it falls to the ground.

H(t) = 16t Sketch a diagram illustrating the Willis Tower and the path of the baseball as it falls to the ground. Name Period Date Introduction to Quadratic Functions Activity 2 Imagine yourself standing on the roof of the 1450-foot-high Willis Tower (formerly called the Sears Tower) in Chicago. When you release and

More information

PART 1 - CALCULATOR ACTIVE QUESTIONS

PART 1 - CALCULATOR ACTIVE QUESTIONS Name: Date : IM 3 UNIT TEST Linear Functions Teacher: Mr. Santowski and Mr. Smith Score: PART 1 - CALCULATOR ACTIVE QUESTIONS SHOW ALL WORK AND WRITE ALL ANSWERS IN THE SPACES PROVIDED. Maximum marks will

More information

Sect 2.6 Graphs of Basic Functions

Sect 2.6 Graphs of Basic Functions Sect. Graphs of Basic Functions Objective : Understanding Continuity. Continuity is an extremely important idea in mathematics. When we say that a function is continuous, it means that its graph has no

More information

Chapter 1: January 26 January 30

Chapter 1: January 26 January 30 Chapter : January 26 January 30 Section.7: Inequalities As a diagnostic quiz, I want you to go through the first ten problems of the Chapter Test on page 32. These will test your knowledge of Sections.

More information

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 CHAPTER

More information

Name: Date: Period: Activity 5.1.1: Hurricanes

Name: Date: Period: Activity 5.1.1: Hurricanes Name: Date: Period: Activity 5.1.1: Hurricanes Each year tropical storms that form in the Atlantic Ocean are given names. The first named storm starts with A, the second starts with B, and so on. A tropical

More information

Objectives. Materials

Objectives. Materials . Objectives Activity 6 To investigate the relationship between mass and volume To find the x value of a function, given the y value To find the y value of a function, given the x value To use technology

More information

Moving Straight Ahead Practice Answers

Moving Straight Ahead Practice Answers Copright Pearson Education, Inc., or its affiliates. All Rights Reserved. Investigation Additional Practice. a. Francine:. mph; Geraldo: mph; Jennifer: 7. mph; Divide the number of miles traveled in hours

More information

Epsilon-Delta Window Challenge Name Student Activity

Epsilon-Delta Window Challenge Name Student Activity Open the TI-Nspire document Epsilon-Delta.tns. In this activity, you will get to visualize what the formal definition of limit means in terms of a graphing window challenge. Informally, lim f( x) Lmeans

More information

AP Calculus AB Summer Assignment. Due Date: First day of school.

AP Calculus AB Summer Assignment. Due Date: First day of school. AP Calculus AB Summer Assignment Name: Due Date: First day of school. The purpose of this assignment is to have you practice the mathematical skills necessary to be successful in Calculus AB. All of the

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

Unit 2 Linear Equations and Inequalities

Unit 2 Linear Equations and Inequalities Unit 2 Linear Equations and Inequalities Test Date: Name: By the end of this unit, you will be able to Use rate of change to solve problems Find the slope of a line Model real-world data with linear equations

More information

Math 148. Polynomial Graphs

Math 148. Polynomial Graphs Math 148 Lab 1 Polynomial Graphs Due: Monday Wednesday, April April 10 5 Directions: Work out each problem on a separate sheet of paper, and write your answers on the answer sheet provided. Submit the

More information

Foundations for Functions

Foundations for Functions Activity: TEKS: Overview: Materials: Regression Exploration (A.2) Foundations for functions. The student uses the properties and attributes of functions. The student is expected to: (D) collect and organize

More information

Lesson 5 Practice Problems

Lesson 5 Practice Problems Name: Date: Lesson 5 Section 5.1: Linear Functions vs. Exponential Functions 1. Complete the table below. Function Linear or Exponential? Linear: Increasing or Decreasing? Exponential: Growth or Decay?

More information

Chapter 1. Functions 1.1. Functions and Their Graphs

Chapter 1. Functions 1.1. Functions and Their Graphs 1.1 Functions and Their Graphs 1 Chapter 1. Functions 1.1. Functions and Their Graphs Note. We start by assuming that you are familiar with the idea of a set and the set theoretic symbol ( an element of

More information

3.2 Quadratic Equations by Graphing

3.2 Quadratic Equations by Graphing www.ck12.org Chapter 3. Quadratic Equations and Quadratic Functions 3.2 Quadratic Equations by Graphing Learning Objectives Identify the number of solutions of quadratic equations. Solve quadratic equations

More information

IM3 Unit 1 TEST - Working with Linear Relations SEP 2015

IM3 Unit 1 TEST - Working with Linear Relations SEP 2015 Name: Date : IM 3 UNIT TEST Linear Functions Teacher: Mr. Santowski and Ms. Aschenbrenner Score: PART 1 - CALCULATOR ACTIVE QUESTIONS Maximum marks will be given for correct answers. Where an answer is

More information

5.1 Polynomial Functions

5.1 Polynomial Functions 5.1 Polynomial Functions In this section, we will study the following topics: Identifying polynomial functions and their degree Determining end behavior of polynomial graphs Finding real zeros of polynomial

More information

1.) Suppose the graph of f(x) looks like this (each tick mark denotes 1 unit). x y

1.) Suppose the graph of f(x) looks like this (each tick mark denotes 1 unit). x y College Algebra Summer 2014 Exam File Exam #1 1.) Suppose the graph of f(x) looks like this (each tick mark denotes 1 unit). Graph g(x) = -0.5 f(x + 1) - 3 2.) Consider the following table of values. x

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

Section 1.1: THE DISTANCE AND MIDPOINT FORMULAS; GRAPHING UTILITIES; INTRODUCTION TO GRAPHING EQUATIONS

Section 1.1: THE DISTANCE AND MIDPOINT FORMULAS; GRAPHING UTILITIES; INTRODUCTION TO GRAPHING EQUATIONS PRECALCULUS I: COLLEGE ALGEBRA GUIDED NOTEBOOK FOR USE WITH SULLIVAN AND SULLIVAN PRECALCULUS ENHANCED WITH GRAPHING UTILITIES, BY SHANNON MYERS (FORMERLY GRACEY) Section 1.1: THE DISTANCE AND MIDPOINT

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, )

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, ) p332 Section 5.3: Inverse Functions By switching the x & y coordinates of an ordered pair, the inverse function can be formed. (The domain and range switch places) Denoted by f 1 Definition of Inverse

More information

Instructional Materials for the WCSD Math Common Finals

Instructional Materials for the WCSD Math Common Finals 201-2014 Algebra 2 Semester 1 Instructional Materials for the WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the Math Common Final blueprint for

More information

Name Typical Applications in Algebra 1

Name Typical Applications in Algebra 1 1. Graph the information below as a scatter plot. Turn your graph paper to landscape. Use 1960 as year 0. Let each square along the x-axis represent one year. Let each square on the y axis represent 100

More information

Ch. 7.6 Squares, Squaring & Parabolas

Ch. 7.6 Squares, Squaring & Parabolas Ch. 7.6 Squares, Squaring & Parabolas Learning Intentions: Learn about the squaring & square root function. Graph parabolas. Compare the squaring function with other functions. Relate the squaring function

More information

Problems and Notes for MTHT 466

Problems and Notes for MTHT 466 Problems and Notes for MTHT 466 Review: Beckmann Section 2.2: starting on page 30 #1, #5, #6 Beckmann Section 13.3: starting on page 739 #6, #9, #10,#12, #13 Calculus for Teachers Saunders 2008 1 Problem

More information

Functions and Their Graphs

Functions and Their Graphs Functions and Their Graphs DEFINITION Function A function from a set D to a set Y is a rule that assigns a unique (single) element ƒ(x) Y to each element x D. A symbolic way to say y is a function of x

More information

The standard form of the equation of a circle is based on the distance formula. The distance formula, in turn, is based on the Pythagorean Theorem.

The standard form of the equation of a circle is based on the distance formula. The distance formula, in turn, is based on the Pythagorean Theorem. Unit, Lesson. Deriving the Equation of a Circle The graph of an equation in and is the set of all points (, ) in a coordinate plane that satisf the equation. Some equations have graphs with precise geometric

More information

2.1 Identifying Patterns

2.1 Identifying Patterns I. Foundations for Functions 2.1 Identifying Patterns: Leaders' Notes 2.1 Identifying Patterns Overview: Objective: s: Materials: Participants represent linear relationships among quantities using concrete

More information

Regressions of Olympic Proportions

Regressions of Olympic Proportions About the Lesson In this activity, students use the Manual-Fit and Linear Regression commands to find lines of best fit to model data from the Olympic Games. As a result, students will: Develop and evaluate

More information

Chapter 3: Polynomial and Rational Functions

Chapter 3: Polynomial and Rational Functions .1 Power and Polynomial Functions 155 Chapter : Polynomial and Rational Functions Section.1 Power Functions & Polynomial Functions... 155 Section. Quadratic Functions... 16 Section. Graphs of Polynomial

More information

Section 3.4 Library of Functions; Piecewise-Defined Functions

Section 3.4 Library of Functions; Piecewise-Defined Functions Section. Library of Functions; Piecewise-Defined Functions Objective #: Building the Library of Basic Functions. Graph the following: Ex. f(x) = b; constant function Since there is no variable x in the

More information

`Name: Period: Unit 4 Modeling with Advanced Functions

`Name: Period: Unit 4 Modeling with Advanced Functions `Name: Period: Unit 4 Modeling with Advanced Functions 1 2 Piecewise Functions Example 1: f 1 3 2 x, if x) x 3, if ( 2 x x 1 1 For all x s < 1, use the top graph. For all x s 1, use the bottom graph Example

More information

Graphing Radicals Business 7

Graphing Radicals Business 7 Graphing Radicals Business 7 Radical functions have the form: The most frequently used radical is the square root; since it is the most frequently used we assume the number 2 is used and the square root

More information

Practice A. Name Date. (8x 2 6) 5 1; 1. (m 2 4) 5 5. (w 2 7) 5 5. (d 2 5) (m 1 6) Total amount in piggy bank.

Practice A. Name Date. (8x 2 6) 5 1; 1. (m 2 4) 5 5. (w 2 7) 5 5. (d 2 5) (m 1 6) Total amount in piggy bank. Practice A For use with pages 48 53 Check whether the given number is a solution of the equation.. 6x 2 5x 5 7; 2 2. 7 2(m 2 4) 5 3; 3. } 2 (8x 2 6) 5 ; State the first step in solving the equation. 4.

More information

ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY

ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY Name Partner(s) Section Date ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY Astronomers deal with very, very large distances, some incredible temperatures, and even really, really small wavelengths.

More information

The Mathematics of a Football Kick (Parametric Equations) (Adapted from an article in COMAP)

The Mathematics of a Football Kick (Parametric Equations) (Adapted from an article in COMAP) The Mathematics of a Football Kick (Parametric Equations) (Adapted from an article in COMAP) I. Problem The punter on the 1994 Handley State Championship Football team, Michael Partlow, was also a calculus

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n- 1,, a 2, a 1, a 0, be real numbers with a n 0. The function defined by f (x) a

More information

Vectors and Projectile Motion on the TI-89

Vectors and Projectile Motion on the TI-89 1 Vectors and Projectile Motion on the TI-89 David K. Pierce Tabor Academy Marion, Massachusetts 2738 dpierce@taboracademy.org (58) 748-2 ext. 2243 This paper will investigate various properties of projectile

More information

Math 46 Final Exam Review Packet

Math 46 Final Exam Review Packet Math 46 Final Exam Review Packet Question 1. Perform the indicated operation. Simplify if possible. 7 x x 2 2x + 3 2 x Question 2. The sum of a number and its square is 72. Find the number. Question 3.

More information

NUMB3RS Activity: Fresh Air and Parabolas. Episode: Pandora s Box

NUMB3RS Activity: Fresh Air and Parabolas. Episode: Pandora s Box Teacher Page 1 NUMB3RS Activity: Fresh Air and Parabolas Topic: Quadratic functions, trajectories, vectors, parametric functions Grade Level: 10-1 Objective: Students will investigate linear and quadratic

More information

( ) ( ) ( ) ( ) Given that and its derivative are continuous when, find th values of and. ( ) ( )

( ) ( ) ( ) ( ) Given that and its derivative are continuous when, find th values of and. ( ) ( ) 1. The piecewise function is defined by where and are constants. Given that and its derivative are continuous when, find th values of and. When When of of Substitute into ; 2. Using the substitution, evaluate

More information

Modeling Data with Functions

Modeling Data with Functions Chapter 11 Modeling Data with Functions 11.1 Data Modeling Concepts 1 11.1.1 Conceptual Explanations: Modeling Data with Functions In school, you generally start with a function and work from there to

More information

www.casioeducation.com 1-800-582-2763 AlgebraII_FinalCVR1,4.indd 1 10/13/11 2:29 PM C A S I O w w w. C A S I O e d u C At I O n. C O m 1. POLYNOMIAL Investigation 6.5: Earth s Revolution Before the 1530s,

More information

Derivatives and Continuity

Derivatives and Continuity Derivatives and Continuity As with limits, derivatives do not exist unless the right and left-hand derivatives both exist and are equal. There are three main instances when this happens: One, if the curve

More information

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts?

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts? L3 1.3 Factored Form Polynomial Functions Lesson MHF4U Jensen In this section, you will investigate the relationship between the factored form of a polynomial function and the x-intercepts of the corresponding

More information

TI-80. Two-Point Form of a Line. Simple Interest Program. Graph Reflection Program. Quadratic Formula Program

TI-80. Two-Point Form of a Line. Simple Interest Program. Graph Reflection Program. Quadratic Formula Program TI-80 PROGRAM:SIMPINT :FIX 2 :DISP PRINCIPAL :INPUT P :DISP INTEREST RATE :DISP IN DECIMAL FORM :INPUT R :DISP NUMBER OF YEARS :INPUT T :PRT I :DISP THE INTEREST IS :DISP I :FLOAT write the quadratic equation

More information

Making Sense in Algebra 2

Making Sense in Algebra 2 Making Sense in Algebra 2 Henri Picciotto henri@matheducationpage.org www.matheducationpage.org Lessons from a course developed over many years, for somewhat heterogeneous classes, with an emphasis on

More information

Lesson 6 Practice Problems

Lesson 6 Practice Problems Name: Date: Lesson 6 Section 6.1: Writing Exponential Models 1. Complete the following table. Growth Rate as a % Growth Rate as a decimal Growth Factor 13% 0.13 1.13 21% 7% 0.20 0.05 1.25 1.075 2.03 2.

More information

Table of Contents. Unit 6: Modeling Geometry. Answer Key...AK-1. Introduction... v

Table of Contents. Unit 6: Modeling Geometry. Answer Key...AK-1. Introduction... v These materials ma not be reproduced for an purpose. The reproduction of an part for an entire school or school sstem is strictl prohibited. No part of this publication ma be transmitted, stored, or recorded

More information

Precalculus Summer Assignment 2015

Precalculus Summer Assignment 2015 Precalculus Summer Assignment 2015 The following packet contains topics and definitions that you will be required to know in order to succeed in CP Pre-calculus this year. You are advised to be familiar

More information

Answers to All Exercises. Appendix C ( ) ( ) Section C.1 (page C7) APPENDICES. Answers to All Exercises Ans1

Answers to All Exercises. Appendix C ( ) ( ) Section C.1 (page C7) APPENDICES. Answers to All Exercises Ans1 Answers to All Eercises Ans Answers to All Eercises Appendi C Section C. (page C). Cartesian. Distance Formula. Midpoint Formula. ( h) + ( k) = r, center, radius. c. f. a. d. e. b. A: (, ); B: (, ); C:

More information

Math 120 Winter Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities

Math 120 Winter Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities Math 120 Winter 2009 Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities 1 A polynomial function is any function of the form: y = c 0 + c 1 x + c 2 x 2 +... + c n x n where the

More information

A Hitchhiker s Guide to Precalculus

A Hitchhiker s Guide to Precalculus A Hitchhiker s Guide to Precalculus Trent Dean Glen Allen HS, Virginia Contents Trigonometry Unit Circle... Inverse Trig... 4 Trig Identities... 5 Trig Equations... 6 Graphs of Trigonometric Functions...

More information

Practice Test Questions Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test Questions Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which set of data is correct for this graph? 5 y 4 3 1 5 4 3 1 1 1 3 4 5 x 3 4

More information

How Do They Fit? y > 4. y + 2 < 8 y > -6. y - 8 > y > 7. y > > y < -6 y + 1 > -2. y < 5. y > -3 y < y > -6.

How Do They Fit? y > 4. y + 2 < 8 y > -6. y - 8 > y > 7. y > > y < -6 y + 1 > -2. y < 5. y > -3 y < y > -6. How Do They Fit? y < -4 y + 2 < 8 y > -6 y > 1 2-7y > 7 y - 8 > -12 y < -3 y > -4 y < -1 12y < -6 y + 1 > -2 y > -3 y < - 1 2 -y 3 > -3 5 y < 5 y 2 > -1 y -2 < -3-2y > -6 15y < 3 y < 3 y > 6 y 2 < 2 y

More information

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) =

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) = Bell Ringer 1. Make a table and sketch the graph of the piecewise function f(x) = Power and Radical Functions Learning Target: 1. I can graph and analyze power functions. 2. I can graph and analyze radical

More information

Evaluate and Graph Polynomial Functions

Evaluate and Graph Polynomial Functions Evaluate and Graph Polynomial Functions Section 2.2 How do you identify and evaluate polynomial functions? What is synthetic substitution? How do you graph polynomial functions? Polynomial Function f(x)

More information

Conceptual Explanations: Modeling Data with Functions

Conceptual Explanations: Modeling Data with Functions Conceptual Explanations: Modeling Data with Functions In school, you generally start with a function and work from there to numbers. Newton s Law tells us that F=ma. So if you push on a 3kg object with

More information

Graphing Utility Programs

Graphing Utility Programs Appendix H Graphing Utility Programs H1 Appendix H Graphing Utility Programs Parabola (Reflections and Shifts Program) Reflections and Shifts Program (Section 2.6) This program will graph the function

More information

Objectives. Materials

Objectives. Materials . Objectives Activity 13 To graphically represent and analyze climate data To use linear regressions to understand the relationship between temperatures as measured in the Fahrenheit and Celsius scale

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Chapter 3A -- Rectangular Coordinate System

Chapter 3A -- Rectangular Coordinate System Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 3A! Page61 Chapter 3A -- Rectangular Coordinate System A is any set of ordered pairs of real numbers. A relation can be finite: {(-3, 1), (-3,

More information

3 9 Curve Fitting with Polynomials

3 9 Curve Fitting with Polynomials 3 9 Curve Fitting with Polynomials Relax! You will do fine today! We will review for quiz!!! (which is worth 10 points, has 20 questions, group, graphing calculator allowed, and will not be on your first

More information

WebAssign hw1.1 (Homework)

WebAssign hw1.1 (Homework) WebAssign hw1.1 (Homework) Current Score : / 71 Due : Wednesday, May 31 2017 07:25 AM PDT Michael Lee Math261(Calculus I), section 1049, Spring 2017 Instructor: Michael Lee 1. /1 pointsscalc8 1.1.002.

More information

Unit 6 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 6 Quadratic Relations of the Form y = ax 2 + bx + c Unit 6 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

More information

Outline. 1 The Role of Functions. 2 Polynomial Functions. 3 Power Functions. 4 Rational Functions. 5 Exponential & Logarithmic Functions

Outline. 1 The Role of Functions. 2 Polynomial Functions. 3 Power Functions. 4 Rational Functions. 5 Exponential & Logarithmic Functions Outline MS11: IT Mathematics Functions Catalogue of Essential Functions John Carroll School of Mathematical Sciences Dublin City University 1 The Role of Functions 3 Power Functions 4 Rational Functions

More information

Binomials defined, 13 division by, FOIL method and, 22 multiplying binomial by trinomial,

Binomials defined, 13 division by, FOIL method and, 22 multiplying binomial by trinomial, 5639_Holtfrerich_Index 6/2/05 11:45 AM Page I-1 Index Absolute value defined, 46 functions and, 126 59 Absolute value equations, solutions, 46 49 Absolute value inequalities, solutions, 263 267 Acceleration,

More information

Practice Problems. 1. The age and weights of six cats are given in the following table:

Practice Problems. 1. The age and weights of six cats are given in the following table: 1. The age and weights of six cats are given in the following table: Age (in years) A Weight (in pounds) - W 3 2 5 4 17 15 7 10 12 10 1 1 a. Identify the input and output quantities and their associated

More information

Algebra 2 Segment 1 Lesson Summary Notes

Algebra 2 Segment 1 Lesson Summary Notes Algebra 2 Segment 1 Lesson Summary Notes For each lesson: Read through the LESSON SUMMARY which is located. Read and work through every page in the LESSON. Try each PRACTICE problem and write down the

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

Lawrence High School s AP Calculus AB 2018 Summer Assignment

Lawrence High School s AP Calculus AB 2018 Summer Assignment s AP Calculus AB 2018 Summer Assignment To incoming AP Calculus AB students, To be best prepared for your AP Calculus AB course, you will complete this summer review assignment, which you will submit on

More information

Section 2.5 Absolute Value Functions

Section 2.5 Absolute Value Functions 16 Chapter Section.5 Absolute Value Functions So far in this chapter we have been studying the behavior of linear functions. The Absolute Value Function is a piecewise-defined function made up of two linear

More information

Math 1314 Lesson 1: Prerequisites. Example 1: Simplify and write the answer without using negative exponents:

Math 1314 Lesson 1: Prerequisites. Example 1: Simplify and write the answer without using negative exponents: Math 1314 Lesson 1: Prerequisites 1. Exponents 1 m n n n m Recall: x = x = x n x Example 1: Simplify and write the answer without using negative exponents: a. x 5 b. ( x) 5 Example : Write as a radical:

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus PART II CHAPTER P Preparation for Calculus Section P. Graphs and Models..................... 8 Section P. Linear Models and Rates of Change............ 87 Section P. Functions and Their Graphs................

More information

Inverse Functions. N as a function of t. Table 1

Inverse Functions. N as a function of t. Table 1 Table 1 gives data from an experiment in which a bacteria culture started with 100 bacteria in a limited nutrient medium; the size of the bacteria population was recorded at hourly intervals. The number

More information

6-1 Slope. Objectives 1. find the slope of a line 2. use rate of change to solve problems

6-1 Slope. Objectives 1. find the slope of a line 2. use rate of change to solve problems 6-1 Slope Objectives 1. find the slope of a line 2. use rate of change to solve problems What is the meaning of this sign? 1. Icy Road Ahead 2. Steep Road Ahead 3. Curvy Road Ahead 4. Trucks Entering Highway

More information

Unit 10 Parametric and Polar Equations - Classwork

Unit 10 Parametric and Polar Equations - Classwork Unit 10 Parametric and Polar Equations - Classwork Until now, we have been representing graphs by single equations involving variables x and y. We will now study problems with which 3 variables are used

More information

Practice Calculus Test without Trig

Practice Calculus Test without Trig Practice Calculus Test without Trig The problems here are similar to those on the practice test Slight changes have been made 1 What is the domain of the function f (x) = 3x 1? Express the answer in interval

More information

Epsilon-Delta Window Challenge TEACHER NOTES MATH NSPIRED

Epsilon-Delta Window Challenge TEACHER NOTES MATH NSPIRED Math Objectives Students will interpret the formal definition (epsilon-delta) of limit in terms of graphing window dimensions. Students will use this interpretation to make judgments of whether a limit

More information

UNIT 6 MODELING GEOMETRY Lesson 1: Deriving Equations Instruction

UNIT 6 MODELING GEOMETRY Lesson 1: Deriving Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: appling the Pthagorean Theorem representing horizontal and vertical distances in a coordinate plane simplifing square roots writing

More information

Student Self-Assessment of Mathematics (SSAM) for Intermediate Algebra

Student Self-Assessment of Mathematics (SSAM) for Intermediate Algebra Student Self-Assessment of Mathematics (SSAM) for Intermediate Algebra Answer key 1. Find the value of 3x 4y if x = -2 and y = 5 To find the value, substitute the given values in for x and y 3x -4y Substitute

More information

MTH103 Section 065 Exam 2. x 2 + 6x + 7 = 2. x 2 + 6x + 5 = 0 (x + 1)(x + 5) = 0

MTH103 Section 065 Exam 2. x 2 + 6x + 7 = 2. x 2 + 6x + 5 = 0 (x + 1)(x + 5) = 0 Absolute Value 1. (10 points) Find all solutions to the following equation: x 2 + 6x + 7 = 2 Solution: You first split this into two equations: x 2 + 6x + 7 = 2 and x 2 + 6x + 7 = 2, and solve each separately.

More information

Module 1: Equations and Inequalities (30 days) Solving Equations: (10 Days) (10 Days)

Module 1: Equations and Inequalities (30 days) Solving Equations: (10 Days) (10 Days) Module 1: Equations and Inequalities (30 days) Word Problems Literal Equations (Scientific Applications) Justifying solutions Algebraic Proofs Represent constraints by equations and inequalities Graphing

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

Accel Alg E. L. E. Notes Solving Quadratic Equations. Warm-up

Accel Alg E. L. E. Notes Solving Quadratic Equations. Warm-up Accel Alg E. L. E. Notes Solving Quadratic Equations Warm-up Solve for x. Factor. 1. 12x 36 = 0 2. x 2 8x Factor. Factor. 3. 2x 2 + 5x 7 4. x 2 121 Solving Quadratic Equations Methods: (1. By Inspection)

More information

Module 4: Equations and Inequalities in One Variable

Module 4: Equations and Inequalities in One Variable Module 1: Relationships between quantities Precision- The level of detail of a measurement, determined by the unit of measure. Dimensional Analysis- A process that uses rates to convert measurements from

More information