S n+1 (1 + r) n+1 S ] (1 + r) n + n X T = X 0 + ( S) T,

Size: px
Start display at page:

Download "S n+1 (1 + r) n+1 S ] (1 + r) n + n X T = X 0 + ( S) T,"

Transcription

1

2 (S K) + (S K) + (S K) + (X 0 0 S 0, 0 S 0 ) X 0 0 (X 0 0 S 0 ) X 0 ( + r)(x 0 0 S 0 ) + 0 S (S K) +. S (H) us 0 S (T ) ds 0 X 0 0 u d X (S K) + ( X S 0, 0 S 0 ) 0 0 S 0 X 0 X 0 C 0 X 0 C 0 X 0 (C 0 X 0 ) C 0 X 0 C 0 ( X S 0, 0 S 0 ) X 0 (X 0 C 0 ) ( X S, 0 S ) ( 0 N ) n n P (ω ω ω N ) > 0 n ω ω ω N n X n+ ( + r) n+ X n ( + r) n + n X n X T X 0 + ( S) T, Xn (+r) S n n Sn (+r) n,,, N n S n+ ( + r) n+ S n ( + r) n H T X 0 0 X 0 S + ( + r)(x 0 0 S 0 ), X X 0

3 H T X X X (H) > 0 X (T ) < 0 X (T ) > 0 X (H) < 0. X (H) > ( + r)x 0 X (T ) < ( + r)x 0 X (T ) > ( + r)x 0 X (H) < ( + r)x 0. X 0 0 X ( ) S S 0 X 0 S 0 r + ( + r)x 0. S 0 X (H) ( + r)x 0 0 S 0 u ( + r) X (T ) ( + r)x 0 0 S 0 d ( + r). d < + r < u S 0 u ( + r) S 0 d ( + r) X (H) > ( + r)x 0 0 > 0 X (T ) < ( + r)x 0 X (T ) > ( + r)x 0 0 < 0 X (H) < ( + r)x 0. d < + r < u d < + r < u d < + r < u X 0 S + ( + r)(x 0 0 S 0 ) 0 S ( + r)(x 0 0 S 0 ) X 0 0 P (X X 0 ( + r)) P (X > X 0 ( + r)) > 0 S(T ) S0 d < + r < u S 0 < r < S(H) S0 S 0 X Γ 0 0 Γ Γ 0 X 0 S + Γ 0 (S 5) ( Γ 0 ). H T X X

4 X (u) Γ ( Γ 0 ) Γ 0 X (d) ( Γ 0 ) 3 0.5Γ 0 X (u) X (d) X X C 0 X 0 α β ( αs 0 βc 0, αs 0 + βc 0 ) X αs + βv ( + r)(αs 0 + βc 0 ) V (S K) + P (X > 0) > 0 P (X < 0) > 0 C 0 δ > 0 ( + r)(c 0 δs 0 ) + δs V. X X αs + βv ( + r)(αs 0 + βc 0 ) αs + β( + r)(c 0 δs 0 ) + δs ( + r)(αs 0 + βc 0 ) αs + β( + r)c 0 βδs 0 ( + r) + δβs ( + r)αs 0 ( + r)βc 0 (α + δβ)s S 0 ( + r)(α + βδ) S (α + βδ)s 0 ( + r). S 0 S /S 0 u d d < + r < u X (H) X (T ) V S K 0 V 0 V 0 +r d +r u d S (H) + u r u d S (T ) S ( S0 +r ) +r d u d u + u r u d d S 0 X n+ (ω ω ω n T ) V n+ (ω ω ω n T ).

5 X n+ (T ) n ds n + ( + r)(x n n S n ) n S n (d r) + ( + r)v n V n+(h) V n+ (T ) (d r) + ( + r) pv n+(h) + qv n+ (T ) u d + r pv n+ (T ) V n+ (H) + pv n+ (H) + qv n+ (T ) pv n+ (T ) + qv n+ (T ) V n+ (T ). V V (H).4 (H) V(HH) V(HT ) S (HH) S (HT ) V (HH) 3.0 V (HT ).40 (HT ) V 3(HT H) V 3 (HT T ) S 3 (HT H) S 3 (HT T ) V 3 (HT H) 0 V 3 (HT T ) 6 ω H X (H) ( + r)(x 0 0 S 0 ) + 0 S (H) ( + 0.5)( ) V (H). ω H (H) V (HH) V (HT ) S (HH) S (HT ) 6 4 ω ω HH X (HH) ( + r)x (H) (H)S (H) + (H)S (HH) ( + 0.5)( ) V (HH), ω ω HT X (HT ) ( + r)x (H) (H)S (H) + (H)S (HT ) ( + 0.5)( ) V (HT ). ω ω HT (HT ) V 3(HT H) V 3 (HT T ) S 3 (HT H) S 3 (HT T ) ω ω ω 3 HT H X 3 (HT H) ( + r)x (HT ) (HT )S (HT ) + (HT )S 3 (HT H) ( + 0.5).4 ( ) 4 + ( ) 8 0 V 3 (HT H),

6 ω ω ω 3 HT T X 3 (HT T ) ( + r)x (HT ) (HT )S (HT ) + (HT )S 3 (HT T ) ( + 0.5).4 ( ) 4 + ( ) 6 V 3 (HT T ). K 5 V 0.0 V ( + r)(x 0 0 S 0 ) + 0 S (S K) +. X X ( + r).0( + r) V 3 V ( ) ( + r) 3

7 S 0 4 u d r 4 p q n 0,,, 3 Y n n k0 S k n K 4 ( 4 Y 3 4 ) + v n (s, y) n S n s Y n y v 3 (s, y) ( 4 y 4) + v n v n v n+ v n (s, y) + r pv n+(us, y + us) + qv n+ (ds, y + ds) ( s v n+ (s, y + s) + v n+ 5, y + s ). v 0 (4, 4) S 0 4 Y 0 4 v 0 (4, 4).6 S (H) 8 Y (H) v (8, ).96 S (T ) Y (T ) 6 v (, 6) 0.08 S (HH) 6 Y (HH) 8 S (HT ) 4 Y (HT ) 6 S (T H) 4 Y (T H) 0 v (4, 0) 0. S 3 (T HT ) Y 3 (T HT ) v 3 (, ) 0 S (T T ) Y (T T ) 7 S 3 (HHH) 3 Y 3 (HHH) 60 v 3 (3, 60) v (6, 8) 6.4 S 3 (HHT ) 8 Y 3 (HHT ) 36 v 3 (8, 36) 5 S 3 (HT H) 8 Y 3 (HT H) 4 v 3 (8, 4) v (4, 6) S 3 (HT T ) Y 3 (HT T ) 8 v 3 (, 8) 0.5 S 3 (T HH) 8 Y 3 (T HH) 8 v 3 (8, 8) 0.5 S 3 (T T H) Y 3 (T T H) 9 v 3 (, 9) 0 v (, 7) 0 S 3 (T T T ) 0.5 Y 3 (T T T ) 7.5 v 3 (0.5, 7.5) 0

8 δ n (s, y) n S n s Y n y δ n (s, y) v n+(us, y + us) v n+ (ds, y + ds). (u d)s n u n (ω ω ω n ) d n (ω ω ω n ) r n (ω ω ω n ) n n ω ω ω n u 0 d 0 r 0 u 0 S 0 ω H S (ω ) d 0 S 0 ω T n n + u n (ω ω ω n )S n (ω ω ω n ) S n+ (ω ω ω n ω n+ ) d n (ω ω ω n )S n (ω ω ω n ) ω n+ H ω n+ T + r 0 n n + r n (ω ω ω n ) n + n ω ω ω n 0 < d n (ω ω ω n ) < + r n (ω ω ω n ) < u n (ω ω ω n ) 0 < d 0 < + r 0 < u 0 N N V N N r u d r n u n d n p n +rn dn u n d n q n p n V n p nv n+ (H) + q n V n+ (T ) + r n. n 0 n N V N n V n+(h) V n+ (T ) S n+ (H) S n+ (T ) V n+(h) V n+ (T ) (u n d n )S n S 0 80 S (H) 90 S (T ) 70 S (HH) 00 u n S n+(h) S n S n+0 S n + 0 S n d n S n+(t ) S n n p n d n q n u n d n S n 0 S n 0 S n p n q n H

9 H 5! 3 ( ) !! ( ) ( ) S n+ S (+r) n+ n+ (+r 0 ) (+r n ) P P(w n+ H ω,, ω n ) : p n + r n d n u n d n P(w n+ T ω,, ω n ) : p n q n. P Ω w : (w,, w N )} ( p n, q n ) N n Sn+ Ẽ n u n p n + d n q n ( + r n ). S n P r n ω n (V n ) N n0 X n+ n S n+ + ( + r)(x n C n n S n ), (X n ) N n C n n V n n X n X n V n. X n n V n X n V n X n V n X n.

10 X N C N X N N X N N S N + ( + r)(x N C N N S N ). N (ω ω N ) C N(ω ω N H) C N (ω ω N T ) S N (ω ω N H) S N (ω ω N T ) X N C N + + r px N (ω ω N H) + qx N (ω ω N T ) XN C N + Ẽn + r N C k Ẽn. ( + r) k (N ) kn X n n n N Xn+ C k X n C n + Ẽn + r Ẽn ( + r) k n. C 0 C C N 0 (Ω, F, F t } t0,,t, P) S S t } t 0,,T } R d k P P (Ω, F, P) P P ϱ : dp /dp L (Ω, F T, P) S t L (Ω, F t, P ) t 0,, T } P kn E P S t F t a.s. S t t,, T }. k B E t k,, T } P (S t B F t ) a.s. P (S t B S t, S t,, S t k ). f g X t X 0 + t 0 f(s, X s )dw s + t 0 g(s, X s )ds f g f(t, x) f(x) g(t, x) g(x) X A A c P(A c ) P(A)

11 P(A c ) + P(A) ω A P(ω) + c ω A P(ω) ω Ω P(ω) A A A N N P( N na n ) P(A n ). n A A A N N A A P(A A ) ω A A P(ω) ω A P(ω) + ω A P(ω) P(A ) + P(A ) A A P(A A ) P((A A ) A ) P(A A ) + P(A ) P (A ) + P(A ) S 3 S 3 p q ω n+ ω ω n P(ω n+ H ω ω ω n ) : p + r d u d, P(ωn+ T ω ω ω n ) : q u r u d. ω n P P(S 3 3) p 3 8, P(S3 8) 3 p q 3 8, P(S3 ) 3 p q 3 8, P(S3 0.5) q 3 8. ẼS ẼS ẼS 3 P ẼS 8 P(S 8) + P(S ) 8 p + q 5 ẼS 6 p + 4 p q + q 6.5 ẼS P r 0 ẼS S , r ẼS 6.5 ẼS 5 0.5, r ẼS ẼS S n Ẽ ( + r) n S 0 Ẽ S n ( + r) n S 0, p 3 q 3 Ẽ S n ( + r). Ẽ S n P(S 3 3) ( 3 )3 8 7 P(S 3 8) 3 ( 3 ) P(S 3 ) 9 9 P(S 3 0.5) 7 ES 6 ES 9 ES P r r r

12 E n S n+ S n E n S n+ /S n S n (pu+qd) M 0 M M N φ φ(m 0 ) φ(m ) φ(m N ) X j j X j j M 0 M M M 0 0 M n n X j, n. j M 0 M M E n M n+ M n + E n X n+ M n + EX n+ M n σ n 0 ( ) n S n e σm n e σ + e σ. S 0 S S M n e σm n e σ +e σ σ 0 Sn+ E n E n e σx n+ S n e σ + e σ e σ + e σ E e σx n+. M 0 M M I 0 0 n I n M j (M j+ M j ), n,,. j0 I n M n n. n I n j0 n M j (M j+ M j ) j0 n Mn (M j+ M j ) Mn j0 n M j M j+ + Mn j0 n Xj+ Mn n. j0 n Mj+ j0 M j

13 T MT M0 M t dm t + M, M T. 0 I T T 0 M tdm t n f(i) i n f g(i) E n f(i n+ ) g(i n ). g(i n ) n I n M n I 0 I I E n f(i n+ ) E n f(i n + M n (M n+ M n )) E n f(i n + M n X n+ ) f(i n + M n ) + f(i n M n ) g(i n ), g(x) f(x + x + n) + f(x x + n) I n + n M n M 0 M M N 0 N I 0 I I N I 0 0 n I n j (M j+ M j ), n,, N. j0 I 0 I I N E n I n+ I n E n n (M n+ M n ) n E n M n+ M n 0 X n n X n ω n H X n ω n T P(X ) P(X ) S X S n+ S n + b n (X,, X n )X n+ b n ( ), } n (S n ) n E n S n+ S n b n (X,, X n )E n X n+ 0. f E n f(s n+ ) f(s n + b n (X,, X n )) + f(s n b n (X,, X n )) E n f(s n+ S n b n (S n ) n

14 X n S n n b n (n + ) N M 0 M M N M 0 M M N P M N M N n 0 N M n M n M n E n M N E n M N M n n 0,,, N V N N N V N V N V 0 V V 0, + r,, V N ( + r) N, V N ( + r) N P X n V n X n X n+ n S n+ + ( + r)(x n n S n ) Vn (+r) n }0 n N P Xn (+r) n }0 n N V n V N Ẽn ( + r) N n, n 0,,, N. P V 0, V + r,, V N ( + r) N, V N ( + r) N V n V n n P(HH), P(HT ), P(T H), P(T T ), V V 0 Ẽ V. ( + r 0 )( + r )

15 S (HH) S (H) 8 r (H) 4 S 0 4 r 0 4 S (HT ) 8 S (T H) 8 S (T ) r (T ) S (T T ) u 0 S (H) S 0 u (H) S (HH) S (H) u (T ) S (T H) S (T ), d 0 S (H) S 0,.5, d (H) S (HT ) S (H), 4, d (T ) S (T T ) S (T ). p 0 + r 0 d 0 u 0 d 0, q 0 p 0 p (H) + r (H) d (H) u (H) d (H), q (H) p (H), p (T ) + r (T ) d (T ) u (T ) d (T ) 6, q (T ) p (T ) 5 6. P(HH) p 0 p (H) 4, P(HT ) p 0 q (H) 4, P(T H) q 0 p (T ), P(T T ) q 0 q (T ) 5. P P(ω n+ H ω,, ω n ) : p n P(ω n+ T ω,, ω n ) : q n V V 0 Ẽ V (+r 0 )(+r ) V (S 7) + V 0 V (H) V (T ) V (HH) 5 V (HT ) V (T H) V (T T ) 0 V (H) p (H)V (HH) + q (H)V (HT ).4 + r (H) V (T ) p (T )V (T H) + q (T )V (T T ) + r (T ) 9 V 0 p 0V (H) + q 0 V (T ) r 0

16 V 0 0 V 0 V (H) V (T ) S (H) S (T ) (H) (S 7) + (H) V (HH) V (HT ) S (HH) S (HT ) 5 8 u, ω n+ H Y n+ (ω ω n ω n+ ) d, ω n+ T Y n+ (n + ) Y n+ S n n + A n+ (ω ω n ω n+ ) (0, ) n + A n+ Y n+ S n n + S n+ ( A n+ )Y n+ S n. X 0 n n n n X n+ n S n+ + ( + r)(x n n S n ) + n A n+ Y n+ S n n Y n+ S n + ( + r)(x n n S n ). p + r d u d, q u r u d. Ẽ n X n+ ( + r) n+ Ẽn n Y n+ S n ( + r) n+ + ( + r)(x n n S n ) ( + r) n+ n S n ( + r) n+ ẼnY n+ + X n n S n ( + r) n n S n ( + r) n+ (u p + d q) + X n n S n ( + r) n ns n + X n n S n ( + r) n X n ( + r) n. X n+ X n n(s n+ S n) + r(x n ns n) + na n+ Y n+ S n,

17 n us n + ( + r)(x n n S n ) X n+ (H) n ds n + ( + r)(x n n S n ) X n+ (T ). n X n+(h) X n+ (T ), X n us n ds Ẽn n Xn+. + r N X N V N X n Ẽn X N (+r) N n V Ẽ N n (X (+r) N n n ) 0 n N V N n V n X n Ẽn V N (+r) N n A n+ a (0, ) n ω ω n+ < S n ( a) n (+r) n S n+ Ẽ n ( + r) n+ ( + r) n+ Ẽn( A n+ )Y n+ S n S n ( + r) n+ p A n+(ω ω n H)u + q A n+ (ω ω n T )d} S n pu + qd ( + r) n+ S n ( + r) n. A n+ a S n+ S n Ẽ n ( + r) n+ ( + r) n+ ( a)( pu + qd) S n ( a). ( + r) n Ẽn S n+ (+r) n+ ( a) n+ S n (+r) n ( a) n S n ( a) n (+r) n N C N (S N K) + N C n C N C n Ẽn ( + r) N n, n 0,,, N. P N (K S N ) + N P N P n Ẽn ( + r) N n, n 0,,, N.

18 N K N F N S N K F N F n Ẽn ( + r) N n, n 0,,, N. N K S N < K C N F N + P N F N + P N S N K + (K S N ) + S N K + K S N K > S N (S N K) + C N. S N K K S N C n P n F n C n F n + P n n C N C n Ẽn (+r) Ẽn + N n (+r) Ẽn F N n (+r) N n n + P n F N P N F 0 S 0 K (+r) N F N F 0 Ẽ (+r) N (+r) ẼS N N K S 0 K (+r) N F 0 N F N F 0 F 0 S 0 N (F 0 S 0 )( + r) N + S N K + S N F N K ( + r) N S 0 F 0 S 0 (+r)n S 0 (+r) N 0 C 0 F 0 + P 0 P 0 N S 0 S 0 ( + r) N N N K K S 0 ( + r) N K ( + r) N S 0 C 0 P 0 C n P n n S N K C n P n F n 0 F n Ẽn S (+r) N n n (+r)n S 0 (+r) N n F n n 0 r 0 S n S 0 ( + r) n

19 m N K > 0 m m N K N K m K (+r) N m m (C m, P m ) (SN K) + (K SN ) + C m Ẽm ( + r) N m P m Ẽm ( + r) N m. C m m P m m N K (C m, P m ) m 0 Ẽ (C m,p m ) (+r) m K C m S m + P (+r) N m m (C m, P m ) P m + ( ) + ( K P m Ẽ ( + r) m + Ẽ S m (+r) N m (K ( + r) m Ẽ SN ) + K ( + r) N + Ẽ S m ( + r) m S m (+r) N m ) + + K (+r) N m N K m. K (+r) N m N ( ) N V N f S n, N + f Y n n k0 S k S n, Y n } n 0,,, N n0 P(ω n+ i ω,, ω n ) +r d u d u 4 u d i H i T ω ω n ω n P P P g E n g(s n+, Y n+ ) ( Sn+ E n g S n, Y n + S ) n+ S n S n S n pg(us n, Y n + us n ) + qg(ds n, Y n + ds n ), (S n, Y n ) (S n, Y n ) 0 n N P V n n v n S n Y n V n v n (S n, Y n ), n 0,,, N. v N (s, y) v n (s, y) v n+

20 y v N (s, y) f( N+ ) v N(S N, Y N ) f Vn+ ( N ) n0 S n N+ V N v n+ V n Ẽn + r vn+ (S n+, Y n+ ) Ẽn + r + r pv n+(us n, Y n + us n ) + qv n+ (ds n, Y n + ds n ). v n (s, y) v n+ v n (s, y) pv n+(us, y + us) + qv n+ (ds, y + ds). + r N M 0 N N ( ) N V n f S n, N M nm+ f 0, 0 n M Y n n km+ S k, M + n N (S n, Y n ) n 0,,, N P n M (S n, Y n ) (S n, 0) ω n P (S n, Y n ) 0 n M P h Ẽnh(S n+ ) ph(us n ) + qh(ds n ) n 0,,, M g n M + Ẽ M g(s M+, Y M+ ) ẼMg(S M+, S M+ ) pg(us M, us M ) + qg(ds M, ds M ). Ẽ n g(s n+, Y n+ ) Ẽn (S n, Y n ) 0 n N P ( Sn+ g S n, Y n + S ) n+ S n S n S n pg(us n, Y n + us n ) + qg(ds n, Y n + ds n ). V n n v n S n Y n V n v n (S n, Y n ), n 0,,, N. n M Y n n v n S n v n (S n ), 0 n M V n v n (S n, Y n ), M + n N v N (s, y) v n v n+ n < M n > M v M (s) v M+ (, )

21 y v N (s, y) f( N M ) v N (S N, Y N ) f v n+ n > M ( N ) KM+ S k N M V N Ẽ n v n+ (S n+, Y n+ ) pv n+ (us n, Y n + us n ) + qv n+ (ds n, Y n + ds n ). v n (s, y) pv n+ (us, y + us) + qv n+ (ds, y + ds) n M Ẽ M v M+ (S M+, Y M+ ) pv M+ (us M, us M ) + ṽ n+ (ds M, ds M ). v M (s) pv M+ (us, us) + qv M+ (ds, ds) n < M Ẽ n v n+ (S n+ ) pv n+ (us n ) + qv n+ (ds n ). v n (s) pv n+ (us) + qv n+ (ds) P p + r d u d, q u r u d ( + r) n } N n0 P ζ n } N n0 P ( Z > 0) Ẽ Z Y EY Ẽ Z Y. Z Ẽ E Z E Ẽ Z(ω) : P(ω) P(ω) Z(ω) P P Z P P Z P Ω P(ω) 0 ω Ω Z Ω P(Z 0) EZ ω Ω P(ω) Z(ω)P(ω) A Ω P(A) ω A P(ω) P P(Ω)

22 P(Ω) P(ω) ω Ω ω Ω Z(ω)P(ω) EZ Y ẼY EZY ẼY ω Ω Y (ω) P(ω) ω Ω Y (ω)z(ω)p(ω) EY Z A P(A) 0 P(A) 0 P(A) ω A Z(ω)P(ω) P(A) 0 P(ω) 0 ω A P(A) 0 P(Z > 0) A P(A) 0 P(A) 0 P(A) ω A Z(ω)P(ω) 0 P(Z > 0) P(ω) 0 ω A P(A) ω A P(ω) 0 P(A) 0 P(A) 0 P P P(Z > 0) P P P(A) P(A) P(A) P(A c ) 0 P(A c ) 0 P(A) P(Z 0) P P ω 0 > P(ω 0 ) > 0 Z(ω) P(Z 0) EZ P(ω 0) P(ω 0) P(Ω \ ω 0 }) 0 ω ω0 P(ω 0 ) ω ω 0. ω ω 0 Z(ω)P(ω) 0. P(Ω \ ω 0 }) P(ω 0 ) > 0 P(ω 0 ) < P P p 3 q 3 S 3 M n E n S 3, n 0,,, 3. M n M n n 0,,, 3

23 M 3 (HHH) 3 M (HH) 4 M (H) 8 M 3 (HHT ) M 3 (HT H) M 3 (T HH) 8 M M (HT ) M (T H) 6 M (T ) 4.5 M 3 (HT T ) M 3 (T HT ) M 3 (T T H) M (T T ).5 M 3 (T T T ).50 M 3 S 3 M (HH) E S 3 (HH) ps 3 (HHH) + qs 3 (HHT ) M (HT ) E S 3 (HT ) ps 3 (HT H) + qs 3 (HT T ) M (T H) E S 3 (T H) ps 3 (T HH) + qs 3 (T HT ) M (T T ) E S 3 (T T ) ps 3 (T T H) + qs 3 (T T T ) M (H) E S 3 (H) p S 3 (HHH) + pqs 3 (HHT ) + qps 3 (HT H) + q S 3 (HT T ) ( ) ( ) (8 + 8) M (T ) E S 3 (T ) p S 3 (T HH) + pqs 3 (T HT ) + qps 3 (T T H) + q S 3 (T T T ) ( ) ( ) ( + ) ( ) 3 ( ) M 0 E 0 S ( ) + ( ) ( ) 3 3 ( + + )

24 (M n ) 3 n0 M E S 3 E M 3 M 3 S 3 E M (H) pm (HH) + qm (HT ) M (H) E M (T ) pm (T H) + qm (T T ) M (T ) E 0 M (T ) pm (H) + qm (T ) M 0. (M n ) 3 n0 Z n ζ 3 (HHH), ζ 3 (HHT ) ζ 3 (HT H) ζ 3 (T HH), ζ 3 (HT T ) ζ 3 (T HT ) ζ 3 (T T H), ζ 3 (T T T ) ζ 3 (HHH) 7 64 ( + 0.5) ζ 3 (HHT ) ζ 3 (HT H) ζ 3 (T HH) 7 3 ( + 0.5) ζ 3 (HT T ) ζ 3 (T HT ) ζ 3 (T T H) 7 6 ( + 0.5) ζ 3 (T T T ) 7 8 ( + 0.5) v 0 (4, 4) p 3 q 3 ( ) + V 0 E ζ 3 4 Y 3 4 ( ) + 4 Y 3(ω) 4 ζ(ω)p(ω) ω Ω ( ) + ( ) 3 ( ) + ( ) ( ( ) + ( ) ( ) ( ) + ( ) ( ) + ( ) ( ) ) + ( ) + 3

25 S 0 4 Y 0 4 S (H) 8 Y (H) S (T ) Y (T ) 6 S (HH) 6 Y (HH) 8 S (HT ) 4 Y (HT ) 6 S (T H) 4 Y (T H) 0 S (T T ) Y (T T ) 7 S 3 (HHH) 3 Y 3 (HHH) 60 S 3 (HHT ) 8 Y 3 (HHT ) 36 S 3 (HT H) 8 Y 3 (HT H) 4 S 3 (HT T ) Y 3 (HT T ) 8 S 3 (T HH) 8 Y 3 (T HH) 8 S 3 (T HT ) Y 3 (T HT ) S 3 (T T H) Y 3 (T T H) 9 S 3 (T T T ) 0.5 Y 3 (T T T ) 7.5 ζ (HT ) ζ (T H) ζ Z Z (+r) E (+r) ( + r) 3 ζ (HT ) ( + r) pz(ht H) + qz(ht T ) ζ (T H) ( + r) pz(t HH) + qz(t HT ) pz(ht H) + qz(ht T ) 0.7. ( + r) V (HT ) ζ (HT ) E ζ 3 V 3 (HT ), V (T H) ζ (T H) E ζ 3 V 3 (T H) V (HT ) V (T H) V (HT ) v (4, 6) V (T H) v (4, 0) v (s, y) V (HT ) V (T H) V (HT ) v (4, 6) V (T H) v (4, 0) 0.

26 V (HT ) V (T H), ζ (HT ) E ζ 3 V 3 (HT ) ζ (HT ) pζ 3(HT H)V 3 (HT H) + qζ 3 (HT T )V 3 (HT T ) ( ) ( ) ζ (T H) E ζ 3 V 3 (T H) ζ (T H) pζ 3(T HH)V 3 (T HH) + qζ 3 (T HT )V 3 (T HT ) ( ) ( ) P(HH) 4 9, P(HT ) 9, P(T H) 9, P(T T ) 9. Z(HH) Z(HT ) Z(T H) Z(T T ) P P P(HH) 4, P(HT ) 4, P(T H), P(T T ) 5. Z(HH) P(HH) P(HH) 9 6 Z(HT ) P(HT ) P(HT ) 9 8 Z(T H) P(T H) P(T H) 3 8 Z(T T ) P(T T ) P(T T ) 5 4. Z 0 Z Z Z Z Z (H) Z (T ) Z 0 Z 0 EZ P(HH) P(HT ) P(T H) P(T T ) ω ω P p : P(ω H) P(ω H) 3 q : P(ω T ) P(ω T ) 3 Z (H) E Z (H) Z (HH)p + Z (HT )q , Z (T ) E Z (T ) Z (T H)p + Z (T T )q , Z 0 EZ pz (H) + qz (T )

27 V (H) + r 0 Z (H) E Z ( + r 0 )( + r ) V (H) Z (H)( + r (H)) E Z V (H), V (T ) + r 0 Z (H) E Z ( + r 0 )( + r ) V (T ) Z (H)( + r (H)) E Z V (T ), Z V 0 E ( + r 0 )( + r ) V. V (H) V (T ) V 0 V (S 7) + V (H) Z (HH)V (HH)p + Z (HT )V (HT )q Z (H)( + r (H)) V 0 V (T ) Z (T H)V (T H)p + Z (T T )V (T T )q Z (T )( + r (T )) 9 6 ( 7) ( (8 7)+ ) 3.4, 3 8 (8 7) ( 7)+ 3 3 ( ) + 9, Z (HH)V (HH) ( + r 0 )( + r (H)) P(HH) + Z (HT )V (HT ) ( + r 0 )( + r (H)) P(HT ) + Z (T H)V (T H) P(T H) + 0 ( + r 0 )( + r (T )) 9 6 ( 7)+ 4 9 ( + 4 )( + 4 ) (8 7)+ 3 9 ( + 4 )( + 4 ) + 8 (8 7)+ 9 ( + 4 )( + ) N U(x) x X n X 0 ζ n n 0,,, N ζ n U (x) x I(x) x E Z X 0 λ X 0 (+r) N (+r) N λz X N (+r)n λz X 0 Z ( + r)n X N X0 ( + r) n X n Ẽn ( + r) N n Ẽn X 0 ( + r) n Ẽ n Z Z X 0 ( + r) n E n Z X 0, Z n Z ζ n N U(x) p xp p < p 0 N X N X 0( + r) N Z p, E Z p p Z P P

28 U (x) x p I(x) x p E X N λz ( + r) N λ E X 0 Z p p (+r) Np p p λ p Z p ( + r) N p p ( Xp Z p p X 0( + r) Np p E Z p p ( ) Z λz (+r) N (+r) N 0 ( + r) Np ) p. E Z p ( + r) N p p ( + r)n X 0 Z p. E Z p p X 0 λ (p ζ,, p m ζ m ) X N XN X N ( XN I λ ( + r) N Z ), λ X N EU(X N ) EU(X N). y > 0 x U(x) yx x I(y) U(x) yx U(I(y)) yi(y) x d dx (U(x) yx) U (x) y x I(y) U(x) yx d dx (U(x) yx) U (x) 0 U x I(y) U(x) yx U(I(y)) yi(y) x x X N λz y (+r) N ( λz EU(X N ) E X N ( + r) N E U I ( )) λz ( + r) N E (3.3.9) X N EU(X N ) λx 0 EU(X N ) λẽ ( + r) ( ) N EU(XN Z λz ) λe ( + r) N I ( + r) N y I(x) λz ( + r) N I EU(X N ) E (3.3.6) EU(X N) λx 0. ( ) λz ( + r) N, X N λz ( + r) N

29 EU(X N ) EU(X N ) X 0 N N N X N γ P(X N γ), X N X 0 X n X n 0, n,,, N. P(X N γ) X N Ẽ ( + r) N X 0, X n 0, n,,, N. X N 0 X n 0 n X n Ẽn X N X (+r) N n N 0 X n 0 n y > 0 U(x) 0, 0 x < γ, x γ U(x) yx U(I(y)) yi(y) x 0, I(y) γ, 0 < y γ 0, y > γ 0 x < γ 0 < y γ U(x) yx yx 0 U(I(y)) yi(y) U(γ) yγ yγ 0 U(x) yx U(I(y)) yi(y) 0 x < γ y > γ U(x) yx yx 0 U(I(y)) yi(y) U(0) y 0 0 U(x) yx U(I(y)) yi(y) x γ 0 < y γ U(x) yx yx U(I(y)) yi(y) U(γ) yγ yγ yx U(x) yx U(I(y)) yi(y) x γ y > γ U(x) yx yx < 0 U(I(y)) yi(y) U(0) y 0 0 U(x) yx U(I(y)) yi(y) λ ( ) Z λz E ( + r) N I ( + r) N X 0. X N ( ) λz XN I ( + r) N.

30 x X N y λz X (+r) N N Ẽ XN X (+r) N 0 λz EU(X N ) E ( + r) N X N EU(XN λz ) E ( + r) N X N. EU(X N ) λx 0 EU(X N ) λx 0 EU(X N ) EU(X N ) M N ω ω M ζ m ζ(ω m ) p m P(ω m ) ζ m ζ ζ ζ M. λ K ζ K < ζ K+ K ζ m p m X 0 γ. p m ξ m X 0 N m m p m ξ m I(λξ m ) N m p m ξ m γ λξm γ }. X 0 γ N m p mξ m λξm γ } λ X 0 γ > 0 m : λξ m γ } K m : λξ m γ } λξ K γ < λξ K+ ξ K < ξ K+ X 0 γ K m p mξ m K N ξ K+ λ > 0 K ξ K < ξ K+ K m ξ mp m X 0 γ λ > 0 ξ K < λγ < ξ K+ λ Z E ( + r) N I( λz ( + r) N ) N m p m ξ m λξm γ } γ K p m ξ m γ X 0. m X N X N (ω m ) γ, m K 0, m K +. X N(ω m ) I(λξ m ) γ λξm γ } γ, m K 0, m K +. n τ τ S n

31 τ C n C N n N C n τn} G n C N τn} G N V n (τ) N kn G k G τ Ẽ n τk} ( + r) k n Ẽn τ N} ( + r) τ n. τ V n τ Sn Ẽ n τ N} (+r) G τ n τ (V n ) 0 n N n V n G n ( n ) 0 n N (C n ) 0 n N C n 0 V n+ n S n+ + ( + r)(v n C n n S n ) G n+ P V n+ Ẽ n ( + r) n+ V n ( + r) n C n ( + r) n 0, Sn (+r) n }0 n N Vn (+r) }0 n N P n (V n ) 0 n N Vn (+r) }0 n N P n V n G n (V n ) 0 n N V n G n V n (+r) n }0 n N P τ n} F n : σ(ω,, ω n ), n 0,,,, N. F n ω : ω A,, ω n A n } τ n} ω ω ω n (V n ) N n0 V n G n V P n (+r) }n n (V n ) n C n 0 Vn (+r) }n P n (V n ) n V n (+r) n }n P r 4 p q V P 0 g P (s) (4 s) +

32 V3 P (HHH) (4 3) + 0 V3 P (HHT ) V3 P (HT H) V3 P (T HH) (4 8) + 0 V3 P (HT T ) V3 P (T HT ) V3 P (T T H) (4 ) + V3 P (T T T ) (4 0.5) } V V P ( ) (4 S ) + P, 3 Ẽ (4 S ) +, pv 3 P ( H) + qv P } 3 ( T ). + r + r V P (HH) V P (HT ) V P (T H) V P (T T ) 4 S (HH) +, 5 V P 3 (HHH) + V P 4 S (HT ) +, 5 V P 3 (HT H) + V P 4 S (T H) +, 5 V P 3 (T HH) + V P } 3 (HHT ) } 4 S (T T ) +, 5 V P 3 (T T H) + V P 3 (T T T ) (4 6) +, 5 } (0 + 0) (4 4) +, 5 } (0 + ) 0 3 (HT T ) 0.8 } 3 (T HT ) (4 4) +, 5 } (0 + ) 0.8 } (4 ) +, 5 } ( + 3.5) 3 } V V P ( ) (4 S ) + P, Ẽ (4 S ) +, pv P ( H) + qv P } ( T ) + r + r (H) V P V P (T ) 4 S (H) +, 5 V P (HH) + V P } (HT ) } 4 S (T ) +, 5 V P (T H) + V P (T T ) V0 P (4 S 0 ) +, } 5 V P (H) + V P (T ) (4 8) +, 5 } ( ) (4 ) +, 5 } ( ) 0.3. (4 4) +, 5 } (0.3 + ) V C 0 g C (s) (s 4) + V3 C (HHH) (3 4) + 8, V3 C (HHT ) V3 C (HT H) V3 C (T HH) (8 4) + 4, V3 C (HT T ) V3 C (T HT ) V3 C (T T H) ( 4) + 0, V3 C (T T T ) (0.5 4) + 0.

33 V C (HH) C (8 + 4).8, V (HT ) V C (T H) C (4 + 0).6, V (T T ) (0 + 0) V C (H) C (.8 +.6) 5.76, V (T ) (.6 + 0) V0 C ( ) V S 0 g S (s) g P (s) + g C (s) g S (s) 4 s V3 S (HHH) 4 3 8, V3 S (HHT ) V3 S (HT H) V3 S (T HH) 4 8 4, V3 S (HT T ) V3 S (T HT ) V3 S (T T H) 4, V3 S (T T T ) V S (HH) 4 6, 5 } (8 + 4).8, V S (HT ) V S (T H) 4 4, 5 } (4 + ) V S (T T ) 4, 5 } ( + 0.5) 3. V S (H) 4 8, 5 } (.8 +.4) 6.08, V S (T ) 4, 5 } (.4 + 3).6. V0 S 4 4, 5 } ( ) , V S 0 < V P 0 + V C 0 V S < V P 0 + V C (a, b ) + (a, b ) (a + a, b + b ),

34 > b > a b < a b < a b > a N VN S g S(S N ) g P (S N ) + g C (S N ) VN P + V N C Vn S g S (S n ), pv n+ S + qv n+ S } + r g P (S n ) + g C (S n ), pv n+ P + qv n+ P + pv n+ C + qv C } n+ + r + r n 0,,, N g P (S n ), pv n+ P + qv n+ P + r V P n + V C n, } + g C (S n ), pv C n+ + qv C n+ + r < g C (S n ) < pv C n+ + qv C n+ +r n 0,,, N < g P (S n ) > pv n+ P + qv n+ P. + r V0 S < V0 P + V0 C 5.36 (H) V (HH) V (HT ) S (HH) S (HT ), (T ) V (T H) V (T T ) S (T H) S (T T ), 0 V (H) V (T ) S (H) S (T ) τ n : V n G n } τ(hh), τ(ht ), τ(t H) τ(t T ). X (T ) ( + r)( S 0 ) S (T ) ( + 4 )( ) X (H) ( + r)( S 0 ) S (H) 0.4 X (HH) ( + r)(x (H) S (H)) + S (HH) 0 X (HT ) ( + r)(x (H) S (H)) + S (HT ) }

35 r 4 p q n ( n 0,,, 3 4 n + n+ j0 j) S n G 0 0 G (T ) G (T H) 3 G (T T ) 5 3 G 3(T HT ) G 3 (T T H).75 G 3 (T T T ).5 G V V (T ) V (T H) 3 V (T T ) 5 3 V 3(T HT ) V 3 (T T H).75 V 3 (T T T ).5 V ω H τ(ω) ω T ρ H T H T T Y (HH), Y (HT ), Y (T H) 3, Y (T T ) 4. ( ) ρ 4 Ẽ Y X n+ n S n+ + ( + r)(x n C n n S n ), n 0,,, N, ( n ) n n F n S 0 S 0 τ Ẽ τ } ( 4 5) τ Gτ

36 S 0 τ 0 τ τ(ht ) τ(hh) τ(t H) τ(t T ), } τ(ht ) τ(hh), } τ(t H) τ(t T ) τ(ht ), τ(hh), τ(t H), τ(t T ), } τ 0 τ(ht ), } τ(hh) τ(t H), τ(t T ), } τ(ht ), } τ(hh) τ(t H) τ(t T ) Ẽ ( 4 τ τ } 5) Gτ G0 Ẽ ( 4 τ ( τ } 5) Gτ Ẽ 4 τ τ } 5) Gτ τ (HT ) τ (HH) τ (T H) τ (T T ) ( ) τ (4 4 Ẽ τ } G τ ) ( ) 4 ( + 4) Ẽ τ } ( 4 5) τ Gτ τ τ(ht ) τ(hh) τ(t H) τ(t T ) n n 0,,, N G n n n N G n N V 0 Ẽ τ S 0,τ N ( + r) τ G τ. 0,,, N G n K S n K N N N K S 0 N K S N } } VN K V N K S N, ẼN K S N, + r + r S N K S N. V n K S n (0 n N) K S 0 τ τ N G n, 0} G n K N K N V0 EC V0 AP V0 AP K S 0 + V0 EC V AP 0

37 N K S N < 0 K N V0 AP K S 0 + V0 EC V AP 0 K ( + r) N S 0 + V EC 0 V AP 0. V0 EP K N V0 AP V0 EP V0 EC Ẽ SN K ( + r) N V0 EC K S 0 + ( + r) N. G n S n K K N N V N S N K V N S N K, ẼN V n S n S 0 K (+r) N } VN S N K, S N + r K (+r) N n N K } S N K + r + r. (0 n N) V n > G n 0 n N τ m m τ τ τ τ τ τ,,, τ τ + τ + τ Eα τ (Eα τ ) α (0, ) Eα τ Eα (τ τ)+τ Eα (τ τ) Eα τ Eα τ τ τ τ m Eα τ m (Eα τ ) m α (0, ) M n (m) M n+τm M τm (m,, ) (M (m) ) m M τ m+ τ m n : M n (m) } τ Eα τ m Eα (τ m τ m )+(τ m τ m )+ +τ Eα τ m.

38 (M (m) ) m E : f : N Z} f g f n g n n M (m) n : Ω E (τ m+ τ m ) m0 p q p < p < 0 < q < τ 0 τ f(σ) pe σ + qe σ f(σ) > σ > 0 σ > 0 f (σ) pe σ qe σ > p q > 0 f(σ) > f(0) σ > 0 σ > 0 E Sn+ n S n E n e σx n+ f(σ) ( ) n S n e σmn f(σ) pe σ f(σ) + qe σ f(σ) σ > 0 P(τ < ) ( ) τ e σ E τ < }. f(σ) ES n τ ES 0 ( ) n τ S n τ e σm n τ e σ f(σ) ( n σ > 0 0 < τ }S n τ e σ f(σ)) 0 n E τ < }S τ E S n τ n ES n τ n. ( ) E τ < }e σ τ ( ) f(σ) e σ τ E τ < } f(σ) σ 0 ( ) τ E τ< } P (τ < ) f(0) Eα τ α (0, ) α f(σ) pe σ +qe σ σ 0 α (0, ) σ α 4pqα < 4( p+q ) e σ ± 4pqα. pα

39 ( ) + 4pqα σ > 0 σ pα Eα τ pα + 4pqα 4pqα. qα Eτ α Eατ E α ατ Eτ α τ ( ) 4pqα q q qα ( 4pqα )α ( 4pqα ) ( 4pqα)α + ( 4pqα )( )α. Eτ α α Eατ q ( 4pq) ( 8pq) ( 4pq) p p q. 0 < p < < q < σ 0 f(σ) pe σ + qe σ f(σ 0 ) f(σ) > σ > σ 0 pe σ + qe σ + 4pq p p p q p. σ 0 q p f(σ 0 ) σ > σ 0 f(σ) > f(σ 0 ) σ > σ 0 f (σ) pe σ qe σ qe σ q p (σ e ) > 0 Pτ < } ( n S n e σmn f(σ)) ES 0 ES n τ E ( ) τ n e σm n τ. f(σ) σ > σ 0 f(σ) > ( ) n τ ( ) τ E n eσmn τ E τ < }e σ. f(σ) f(σ) σ σ 0 P(τ < ) e σ 0 p q <

40 Eα τ α (0, ) σ > σ 0 f(σ) > E E α τ τ< } e σ(α) τ< } ( f(σ) σ(α) e σ(α) ± 4pqα pα σ(α) > σ 0 σ(α) E α τ 4pqα τ < }. qα ) τ e σ α f(σ) ( ) + 4pqα pα E τ< }τ P(τ ) > 0 Eτ E ( τ τ < } E τ α τ ) E ( τ α τ ) α α α α Eατ 4pq ( 4pq) 4pq q 4pq q q + q p q q p. τ τ ( Eα τ ) α α (0, ) α ( ) α α α α α ( α ) j (j )! + j!(j )! j j ( α ) j (j )! j!(j )! ( α ) k (k)! (k + )!k!. P τ k} k,, Eα τ k P(τ k)α k ( α ) k k P(τ k)4 k P(τ k) (k)! 4 k (k+)!k! Pτ k} k,, k

41 P(τ ) 4 k P(τ k) P(τ k) P(τ k ) P(τ k) P(M k ) + P(M k 4) + P(τ k, M k 0) P(M k ) + P(M k 4) P(M k ) + P(M k 4) + P(M k 4) P(M k ) P(M k 0). P(τ k ) P(M k ) P(M k 0) P(τ k) P(M k ) + P(M k 0) P(M k ) P(M k 0) ( ) k ( ) k (k )! k!(k )! + (k )! (k)! (k )!(k )! (k + )!(k )! + (k)! k!k! (k)! 4 4 k (k + )!k! k(k ) (k + )k(k ) + 4 k(k ) (k + )k k (k + ) (k)! (k ) 4 k (k + )!k! k + (k + k) k 4k k (k)! 4 k (k + )!k!. M n M n k n M k. n m b m m n m b n PMn m, M n b} PM n m b} ( ) n n! ( n b + m )! ( n+b m ).! m n b n m b ( ) n P(Mn n! m, M n b) P(M n m b) ( ) ( m + n b! n+b m )!. p q p 0 < p < PM n m, M n b} p q x p + x q n x p x q m b. x p m + n b x q n+b m.

42 P(M n m, M n b) P(M n m b) ( m + n b n! ) (! n+b m )! pm+ n b q n+b m. n n S 0 4 j S 0 4 M n 0,,, n, } M 0,,, } V V Ẽ τ M τ< } (K S τ ) + ( + r) τ K n V (n) V (n) (K S τ ) Ẽ + τ< } τ M n ( + r) τ. (V (n) ) n 0 V (n) V n n V (n) n V (n) V, τ τ M τ (n) τ n, τ < τ (n) τ (n) M n n τ (n) τ (K S τ ) Ẽ + (K S τ< } ( + r) τ Ẽ τ (n)) + τ n (n) < } ( + r) V (n). τ (n) n V n V (n) V n V (n) s v(s) c(s) v(s) 4 5. v(s) + ( s ) v δ(s) v(s) v ( ) s s s C n n s S n C n c(s n ) n δ(s n ) c(s) s j j 0 j j v ( s )

43 v( j ) 4 j j 4 j j j 0 j j c( j ) v( j ) 4 5 v(j+ ) + v(j ) (4 j ) 5 (4 j+ + 4 j ) 4 5. c() v() 4 5 c( j ) v( j ) 5 v(4) + v() 5 ( + 4 ) 5. v( j+ ) + v( j ) 4 j ( 4 5 j+ + 4 ) j 0. δ(s) s j j 0 j j j 0 δ( j ) v(j+ ) v( j ) j+ j (4 j+ ) (4 j ) j+ j. j j δ() v(4) v() 4 (4 ) 4 3. δ( j ) v(j+ ) v( j 4 ) 4 j+ j j+ j j+ j 4 j. s j j 0 j j u d r 0 < d < + r < u p + r d u d, q u r u d. g(s) s K K > 0 ( v(s) ) s v(s n ) g(s n n ( ) n +r v(sn ) +r v(sn )

44 v(s n ) S n S n K g(s n ) (+r) v(s n n ) Sn (+r) n v(s) s n S 0 K (+r) n n K S 0 n ( + r) n S 0, S 0 n Ẽ Sn K (+r) S n 0 K (+r) n n S 0 K (+r) S n 0 n S 0 K (+r) n S 0 v(s) s g(s), pv(us)+ qv(ds) +r } s K, pu+ qv +r s} s K, s} s v(s) v(s) s τ Sτ K Ẽ ( + r) τ K τ< } S 0 n ( + r) n S 0, P(τ < ) 0 Ẽ K (+r) τ τ< } > 0 Ẽ Sτ K (+r) τ τ< } < Ẽ Sτ (+r) τ τ< } ( Sn (+r) )n 0 n Ẽ S τ ( + r) τ τ< } Ẽ n S τ n ( + r) τ n τ< } Ẽ n S τ n ( + r) τ n S 0 Ẽ Sτ K ( + r) τ τ< } < Ẽ S τ ( + r) τ τ< } S 0. ẼS 0 S 0. n Ẽ Sτ K (+r) τ τ< } < S 0 τ S 0 v(s) s s 4 5 v(s) + ( ) s v 5 v(s) + ( s ) 5 v.

45 v(s) 5 v(s) + 5 v ( s ). s p p s p p p p p p v (s) s v (s) v(s) s p s p 5 p s p + 5 p+ p p s p 5 + p 5 v (s) v (s) p p v(s) As + B s. s A B A s v(s) s (As + B s ) 0 A 0 s v(s) B s B s 4 s B B s > 0 f B (s) B s (4 s) B > 4 0 s > 0 B 4 f B (s) 0 f B (s) 0 B + s 4s 0 ( 4) 4B 4(4 B) B 4 B > 4 B 4 s B f B (s) 0 s B s B j j s B v B (S 0 ) v B (s) 4 s, s s B v B (s) B s, s s B B s B B 4 s 4s + B 0 ± 4 B 4 s B s v B(s) 4 s B s 4(4 B) 0 4 s B B s B. B 4 s B s < s B v B (s) v B (s) s > s B v B (s) B s B v B (s) s S B v B (s) s s B B B s s B 4 s B B s B B s B B 4

46 (Ω, F, F t } t0,,t, P) S S t } t 0,,T } R d d N P (Ω, F, P) P P ϱ : dp /dp L (Ω, F T, P) S t L (Ω, F t, P ) t 0,, T } P E P S t F t a.s. S t t 0,, T } M n ( + R 0 ) ( + R n ), n,,, N; M 0. Dm D n B n,m Ẽn D m B m,m B n,m Ẽn. n m n B n,m m m B n,m F n,m (m + ) n (m + ) F n,m ( + F n,m ). B n,m B n,m+ D n B n,m B n,m+ B n,m B n,m+ B n,m+. n m S n m Ẽ n D m (K S m ) KD n B n,m D n S n D n V n, S n B n,m

47 V n n V n 0 m n R m (m + ) m (m + ) m ( + R m ) (m + ) m n m (m + ) n (m + ) n Dm+ R m V n Ẽn D n V n B n,m B n,m+. Ẽn Dm D m+ B n,m B n,m+. Swap m K D n m +B 0,m n K m ( + R n ) X n+ ( + R n )(X n n B n,m ) + n B n+,m. V n+ B n+,m (H) B n+,m (T ) m (B n,m ) m n0 m B m,m V n B n,m Ẽ m n V m D n Ẽ n D m V m. (Z n,m ) m n0 Z m,m : d P m d P, Z n,m : ẼnZ m,m, n 0 Z m,m Dm B 0,m Z n,m ẼnD m B 0,m D nb n,m B 0,m, n 0,, m. t T > t S > T T S

48 m P m (B n,m ) m n0 m P m k n,, m k X k S k ẼkD m (S m K)D k S n B n,m B k,m. S n B n,m Ẽ k D k X k Ẽk D k S k ẼkD m (S m K) S n B k,m D k B n,m D k S k Ẽk D m (S m K) S n Ẽ k Ẽk D m B n,m D k S k Ẽk D m (S m K)D k S } n B k,m B n,m D k X k. P 0 n m N R m m + n D n Ẽ n D m+ R m D n Ẽ n D m+ R m B n,m B n,m+. Ẽ n D m+ R m Ẽ n D m ( + R m ) R m Ẽ n D m D m+ B n,m B n,m+. D n D n D n ( R 3) + V 3 (HH) 3, V 3(HT ) V 3 (T H) V 3 (T T ) 0. V (HH) + R (HH) V 3(HH) 3, V (HT ) V (T H) V (T T ) 0.

49 3 ω H ω H 3 3 V (H) V (T ) ω H ω T D V ẼD V D Ẽ V V D D Ẽ V +R Ẽ V V (H) V (HH)P (ω H ω H) + V (HT )P (ω T ω H) 6 + R (H) 7 V (T ) V (T H)P (ω H ω T ) + V (T T )P (ω T ω T ) 0. + R (T ) ( ) 4, X V X 0 0 X ( + R 0 )(X 0 0 B 0, ) + 0 B, V V (H) ( + R 0 )(X 0 0 B 0, ) + 0 B, (H) V (T ) ( + R 0 )(X 0 0 B 0, ) + 0 B, (T ). 0 V 4 (H) V (T ) B, (H) B, (T ) B 0, B,3 (H) B,3 (T )( 4 7 ) V V (H) V (T ) X X V V V ( + R )(X B,3 ) + B,3 (H) V (HH) V (HT ) B,3 (HH) B,3 (HT ) 3, (T ) V (T H) V (T T ) B,3 (T H) B,3 (T T ) 0. T H 3 V m 0 m N F n,m B n,m B n,m+ B n,m+, n 0,,, m. F n,m n 0,,, m (m + ) P m+

50 F n,m B n,m B n,m+ B n,m+ (B n,m+ ) n P m+ (B n,m+ ) n n m Ẽ m+ n F n,m Ẽn B ( Bn,m Ẽn n,m+ (B n,m B n,m+ )Z n,m+ Z ) Bn,m+ D n B n,m+ B n,m+ D n D n B n,m+ D n Ẽ n B n,m B n,m+ D n n,m+ Ẽ n Dn B n,m+ D ẼnD m Dn ẼnD m+ n Ẽn D m D m+ B n,m+ D n B n,m B n,m+ B n,m+ F n,m. F 0, F, (H) F, (T ) Ẽ 3 F, F 0,. F 0, B 0, B 0, F, (H) B,(H) B,3 (H) F, (T ) B,(T ) B,3 (T ) Ẽ 3 F, P 3 (H)F, (H) + P 3 (T )F, (T ) F 0,. S m m n 0,,, m n,m n,m ẼnS m S n B n,m n n + S n+ S nb n+,m B n,m n + n + D n+ Ẽ n+ D m (S m n,m ) S n+ n,m B n+,m S n+ S nb n+,m B n,m. n n + S n+ SnBn+,m B n,m S n

51 r n ( + r) m n n + n+,m n,m n + ( ( + r) m n S n+ S ) nb n+,m ( + r) m n (S n+ B n,m S n (+r) m n (+r) m n ( + r) m S n+ ( + r) n+ ( + S r)m n ( + r) n ( + r) m S m Ẽ n+ ( + r) m ( + r) m S m Ẽ n ( + r) m n+,m n,m. ) n n n r n (k) R n (ω,, ω n ) r n ( H(ω,, ω n )). p q n k n V n (k) H(ω,,ω n )k} ψ 0 (0) n,, ψ n (k) Ẽ D nv n (k), k 0,,, n, ψ n (k) ψ n (0) ψ n+ (0) ( + r n (0)) ψ n (k ) ψ n+ (k) ( + r n (k )) + ψ n (k), k,, n, ( + r n (k)) ψ n (n) ψ n+ (n + ) ( + r n (n)). ψ n+ (0) Ẽ D n+v n+ (0) Ẽ D n + r n (0) H(ω ω n+ )0} Ẽ D n + r n (0) H(ω ω n)0} ωn+t } D n H(ω ω ( + r n (0))Ẽ n)0} ψ n (0) ( + r n (0)).

52 k,,, n ψ n+ (k) Ẽ D n + r n ( H(ω ω n )) H(ω ω n+ )k} Ẽ D n + r n (k) H(ω ω n )k} ωn+ T } + Ẽ D n + r n (k ) H(ω ω n )k } ωn+ H} ẼD n V n (k) + ẼD n V n (k ) + r n (k) + r n (k ) ψ n (k) ( + r n (k)) + ψ n (k ) ( + r n (k )). ψ n+ (n + ) ẼD n+v n+ (n + ) Ẽ D n + r n (n) ψ n (n) H(ω ω n )n} ωn+ H} ( + r n (n)). ω n+ (ω,, ω n ) P P(ω n+ H ω,, ω n ) p P(ω n+ T ω,, ω n ) q u n d n P(ω n+ H ω,, ω n ) p n P(ω n+ T ω,, ω n ) q n p n +r n d n u n d n q n u n r n u n d n X F n σ(ω,, ω n ) ẼXf(ω n+) ẼXẼf(ω n+) F n ẼX( p nf(h) + q n f(t ))

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Homework 5 Solutions

Homework 5 Solutions Stat 310B/Math 230B Theory of Probabiity Homework 5 Soutions Andrea Montanari Due on 2/19/2014 Exercise [5.3.20] 1. We caim that n 2 [ E[h F n ] = 2 n i=1 A i,n h(u)du ] I Ai,n (t). (1) Indeed, integrabiity

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

Housing Market Monitor

Housing Market Monitor M O O D Y È S A N A L Y T I C S H o u s i n g M a r k e t M o n i t o r I N C O R P O R A T I N G D A T A A S O F N O V E M B E R İ Ī Ĭ Ĭ E x e c u t i v e S u m m a r y E x e c u t i v e S u m m a r y

More information

Cataraqui Source Protection Area Stream Gauge Locations

Cataraqui Source Protection Area Stream Gauge Locations Cqu u P m Gu s Ts Ez K Ts u s sp E s ms P Ps s m m C Y u u I s Ts x C C u R 4 N p Ds Qu H Em us ms p G Cqu C, s Ks F I s s Gqu u Gqu s N D U ( I T Gqu C s C, 5 Rs p, Rs 15, 7 N m s m Gus - Ps P f P 1,

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

SPACE TYPES & REQUIREMENTS

SPACE TYPES & REQUIREMENTS SPACE TYPES & REQUIREENTS 2 Fby 2012 Gys Sh Typ: K E H 1 2 3 5 6 7 8 9 10 11 12 Ajy D (Hh Sh) F A Dsps Th fs f phys hs vv sps f h hhy fsy f vs. Phys s hf w fss wss hh vy hy-bs s f hhy fsy hs. Gy sps sh

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story... Dv G W C T Gp, A T Af Hk T 39 Sp. M Mx Hk p j p v, f M P v...(!) Af Hk T 39 Sp, B,,, UNMISSABLE! T - f 4 p v 150 f-p f x v. Bf, k 4 p v 150. H k f f x? D,,,, v? W k, pf p f p? W f f f? W k k p? T p xp

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction 許展銓 1 2 3 R 4 R 4 R n n 4 R 4 ξ : E π M 2n J : E E R J J(v) = v v E ξ ξ ξ R ξ : E π M M ξ : Ē π M ξ ξ R = ξ R i : E Ē i(cv) = ci(v) c C v E ξ : E π M n M c(ξ) = c i (ξ) H 2n (M, Z) i 0 c 0 (ξ) = 1 c i

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

Solutions to the Exercises in Stochastic Analysis

Solutions to the Exercises in Stochastic Analysis Solutions to the Exercises in Stochastic Analysis Lecturer: Xue-Mei Li 1 Problem Sheet 1 In these solution I avoid using conditional expectations. But do try to give alternative proofs once we learnt conditional

More information

Relativistic hydrodynamics for heavy-ion physics

Relativistic hydrodynamics for heavy-ion physics heavy-ion physics Universität Heidelberg June 27, 2014 1 / 26 Collision time line 2 / 26 3 / 26 4 / 26 Space-time diagram proper time: τ = t 2 z 2 space-time rapidity η s : t = τ cosh(η s ) z = τ sinh(η

More information

1 Generating functions

1 Generating functions 1 Generating functions Even quite straightforward counting problems can lead to laborious and lengthy calculations. These are greatly simplified by using generating functions. 2 Definition 1.1. Given a

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

s f o r s o l v i n g t h e n o n l i n

s f o r s o l v i n g t h e n o n l i n M M R M q q D O : q 7 8 q q q M q x- q M M M 9 R R D O : 78 / x q D MO : M 7 9 8 / D q P F x z M q M q D T P - z P G S F q q q q q q q D q q PZ w - z q - P q q q w q q q w q q w z q - w P w q w w - w w

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

Martingale Problems. Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi

Martingale Problems. Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi s Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi Lectures on Probability and Stochastic Processes III Indian Statistical Institute, Kolkata 20 24 November

More information

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1 Problem Sheet 1 1. Let Ω = {1, 2, 3}. Let F = {, {1}, {2, 3}, {1, 2, 3}}, F = {, {2}, {1, 3}, {1, 2, 3}}. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X :

More information

0# E % D 0 D - C AB

0# E % D 0 D - C AB 5-70,- 393 %& 44 03& / / %0& / / 405 4 90//7-90/8/3 ) /7 0% 0 - @AB 5? 07 5 >0< 98 % =< < ; 98 07 &? % B % - G %0A 0@ % F0 % 08 403 08 M3 @ K0 J? F0 4< - G @ I 0 QR 4 @ 8 >5 5 % 08 OF0 80P 0O 0N 0@ 80SP

More information

Measure theory and stochastic processes TA Session Problems No. 3

Measure theory and stochastic processes TA Session Problems No. 3 Measure theory and stochastic processes T Session Problems No 3 gnieszka Borowska 700 Note: this is only a draft of the solutions discussed on Wednesday and might contain some typos or more or less imprecise

More information

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Séminaire de Statistiques de l'irma Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Romain Biard LMB, Université de Franche-Comté en collaboration avec

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007 Stochastic processes review 3. Data Analysis Techniques in Oceanography OCP668 April, 27 Stochastic processes review Denition Fixed ζ = ζ : Function X (t) = X (t, ζ). Fixed t = t: Random Variable X (ζ)

More information

Lecture 2: Random Variables and Expectation

Lecture 2: Random Variables and Expectation Econ 514: Probability and Statistics Lecture 2: Random Variables and Expectation Definition of function: Given sets X and Y, a function f with domain X and image Y is a rule that assigns to every x X one

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

Doléans measures. Appendix C. C.1 Introduction

Doléans measures. Appendix C. C.1 Introduction Appendix C Doléans measures C.1 Introduction Once again all random processes will live on a fixed probability space (Ω, F, P equipped with a filtration {F t : 0 t 1}. We should probably assume the filtration

More information

II. Introduction to probability, 2

II. Introduction to probability, 2 GEOS 33000/EVOL 33000 5 January 2006 updated January 10, 2006 Page 1 II. Introduction to probability, 2 1 Random Variables 1.1 Definition: A random variable is a function defined on a sample space. In

More information

M e t ir c S p a c es

M e t ir c S p a c es A G M A A q D q O I q 4 78 q q G q 3 q v- q A G q M A G M 3 5 4 A D O I A 4 78 / 3 v D OI A G M 3 4 78 / 3 54 D D v M q D M 3 v A G M 3 v M 3 5 A 4 M W q x - - - v Z M * A D q q q v W q q q q D q q W q

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix. Quadratic forms 1. Symmetric matrices An n n matrix (a ij ) n ij=1 with entries on R is called symmetric if A T, that is, if a ij = a ji for all 1 i, j n. We denote by S n (R) the set of all n n symmetric

More information

Progress, tbe Universal LaW of f'laiare; Tbodgbt. tbe 3olVer)t of fier Problems. C H IC A G O. J U N E

Progress, tbe Universal LaW of f'laiare; Tbodgbt. tbe 3olVer)t of fier Problems. C H IC A G O. J U N E 4 '; ) 6 89 80 pp p p p p ( p ) - p - p - p p p j p p p p - p- q ( p - p p' p ( p ) ) p p p p- p ; R : pp x ; p p ; p p - : p pp p -------- «( 7 p p! ^(/ -) p x- p- p p p p 2p p xp p : / xp - p q p x p

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 7: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on the same probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω,

More information

Exercise 4. An optional time which is not a stopping time

Exercise 4. An optional time which is not a stopping time M5MF6, EXERCICE SET 1 We shall here consider a gien filtered probability space Ω, F, P, spporting a standard rownian motion W t t, with natral filtration F t t. Exercise 1 Proe Proposition 1.1.3, Theorem

More information

Optimal investment strategies for an index-linked insurance payment process with stochastic intensity

Optimal investment strategies for an index-linked insurance payment process with stochastic intensity for an index-linked insurance payment process with stochastic intensity Warsaw School of Economics Division of Probabilistic Methods Probability space ( Ω, F, P ) Filtration F = (F(t)) 0 t T satisfies

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

SOME PROPERTIES OF ENTROPY OF ORDER a AND TYPE P

SOME PROPERTIES OF ENTROPY OF ORDER a AND TYPE P SOME PROPERTIES OF ETROPY OF ORDER a AD TYPE P BY J.. KAPUR, F.A.Sc. (Indian Institute of Technology, Kanpur) Received March 10, 1967 ABSTRACT In a recent paper, 3 we defined entropy of order a and type

More information

Midterm Examination. STA 205: Probability and Measure Theory. Thursday, 2010 Oct 21, 11:40-12:55 pm

Midterm Examination. STA 205: Probability and Measure Theory. Thursday, 2010 Oct 21, 11:40-12:55 pm Midterm Examination STA 205: Probability and Measure Theory Thursday, 2010 Oct 21, 11:40-12:55 pm This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x Assignment ID: 1 Name Date Period Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz 3) uv p u pv 4) w a w x k w a k w x 5) au xv av xu 6) xbz x c xbc x z 7) a w axk a k axw 8) mn xm m xn

More information

Applications of Ito s Formula

Applications of Ito s Formula CHAPTER 4 Applications of Ito s Formula In this chapter, we discuss several basic theorems in stochastic analysis. Their proofs are good examples of applications of Itô s formula. 1. Lévy s martingale

More information

Probability. Computer Science Tripos, Part IA. R.J. Gibbens. Computer Laboratory University of Cambridge. Easter Term 2008/9

Probability. Computer Science Tripos, Part IA. R.J. Gibbens. Computer Laboratory University of Cambridge. Easter Term 2008/9 Probability Computer Science Tripos, Part IA R.J. Gibbens Computer Laboratory University of Cambridge Easter Term 2008/9 Last revision: 2009-05-06/r-36 1 Outline Elementary probability theory (2 lectures)

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 205: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on a probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω, does

More information

CS206 Review Sheet 3 October 24, 2018

CS206 Review Sheet 3 October 24, 2018 CS206 Review Sheet 3 October 24, 2018 After ourintense focusoncounting, wecontinue withthestudyofsomemoreofthebasic notions from Probability (though counting will remain in our thoughts). An important

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

Weak convergence and large deviation theory

Weak convergence and large deviation theory First Prev Next Go To Go Back Full Screen Close Quit 1 Weak convergence and large deviation theory Large deviation principle Convergence in distribution The Bryc-Varadhan theorem Tightness and Prohorov

More information

MAE 200B Homework #3 Solutions University of California, Irvine Winter 2005

MAE 200B Homework #3 Solutions University of California, Irvine Winter 2005 Problem 1 (Haberman 5.3.2): Consider this equation: MAE 200B Homework #3 Solutions University of California, Irvine Winter 2005 a) ρ 2 u t = T 2 u u 2 0 + αu + β x2 t The term αu describes a force that

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

Differential Equations Class Notes

Differential Equations Class Notes Differential Equations Class Notes Dan Wysocki Spring 213 Contents 1 Introduction 2 2 Classification of Differential Equations 6 2.1 Linear vs. Non-Linear.................................. 7 2.2 Seperable

More information

Notes 15 : UI Martingales

Notes 15 : UI Martingales Notes 15 : UI Martingales Math 733 - Fall 2013 Lecturer: Sebastien Roch References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7]. 1 Uniform Integrability We give a characterization of L 1 convergence.

More information

GENERAL EXACT TETRAHEDRON ARGUMENT FOR THE FUNDAMENTAL LAWS OF CONTINUUM MECHANICS

GENERAL EXACT TETRAHEDRON ARGUMENT FOR THE FUNDAMENTAL LAWS OF CONTINUUM MECHANICS GENERAL EXACT TETRAHEDRON ARGUENT FOR THE FUNDAENTAL LAWS OF CONTINUU ECHANICS EHSAN AZADI Abstract. In this article, we give a general exact mathematical framework that all the fundamental relations and

More information

Solutions of exercise sheet 2

Solutions of exercise sheet 2 D-MATH Algebra I HS 14 Prof. Emmanuel Kowalski Solutions of exercise sheet 2 1. Let k be a field with char(k) 2. 1. Let a, b k be such that a is a square in k(β), where β is an element algebraic over k

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

P(X 0 = j 0,... X nk = j k )

P(X 0 = j 0,... X nk = j k ) Introduction to Probability Example Sheet 3 - Michaelmas 2006 Michael Tehranchi Problem. Let (X n ) n 0 be a homogeneous Markov chain on S with transition matrix P. Given a k N, let Z n = X kn. Prove that

More information

Inference for Stochastic Processes

Inference for Stochastic Processes Inference for Stochastic Processes Robert L. Wolpert Revised: June 19, 005 Introduction A stochastic process is a family {X t } of real-valued random variables, all defined on the same probability space

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Branching Processes II: Convergence of critical branching to Feller s CSB

Branching Processes II: Convergence of critical branching to Feller s CSB Chapter 4 Branching Processes II: Convergence of critical branching to Feller s CSB Figure 4.1: Feller 4.1 Birth and Death Processes 4.1.1 Linear birth and death processes Branching processes can be studied

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

CHEM 4641 Fall questions worth a total of 32 points. Show your work, except on multiple-choice questions. 1 V α=

CHEM 4641 Fall questions worth a total of 32 points. Show your work, except on multiple-choice questions. 1 V α= Physical Chemistry I Final Exam Name: KEY CHEM 4641 Fall 017 15 questions worth a total of 3 points. Show your work, except on multiple-choice questions. 1 V 1 V α= κt = V T P V P T Gas constant R = 8.314

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK

ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK 1. Practice exam problems Problem A. Find α C such that Q(i, 3 2) = Q(α). Solution to A. Either one can use the proof of the primitive element

More information

ISyE 6761 (Fall 2016) Stochastic Processes I

ISyE 6761 (Fall 2016) Stochastic Processes I Fall 216 TABLE OF CONTENTS ISyE 6761 (Fall 216) Stochastic Processes I Prof. H. Ayhan Georgia Institute of Technology L A TEXer: W. KONG http://wwong.github.io Last Revision: May 25, 217 Table of Contents

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism Harold s AP Physics Cheat Sheet 23 February 206 Kinematics Position (m) (rad) Translation Horizontal: x = x 0 + v x0 t + 2 at2 Vertical: y = y 0 + v y0 t 2 gt2 x = x 0 + vt s = rθ x = v / Rotational Motion

More information

M/G/1 queues and Busy Cycle Analysis

M/G/1 queues and Busy Cycle Analysis queues and Busy Cycle Analysis John C.S. Lui Department of Computer Science & Engineering The Chinese University of Hong Kong www.cse.cuhk.edu.hk/ cslui John C.S. Lui (CUHK) Computer Systems Performance

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

Notes 1 : Measure-theoretic foundations I

Notes 1 : Measure-theoretic foundations I Notes 1 : Measure-theoretic foundations I Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Section 1.0-1.8, 2.1-2.3, 3.1-3.11], [Fel68, Sections 7.2, 8.1, 9.6], [Dur10,

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

Math 180C, Spring Supplement on the Renewal Equation

Math 180C, Spring Supplement on the Renewal Equation Math 18C Spring 218 Supplement on the Renewal Equation. These remarks supplement our text and set down some of the material discussed in my lectures. Unexplained notation is as in the text or in lecture.

More information

PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS. First Order Equations. p(x)dx)) = q(x) exp(

PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS. First Order Equations. p(x)dx)) = q(x) exp( PUTNAM PROBLEMS DIFFERENTIAL EQUATIONS First Order Equations 1. Linear y + p(x)y = q(x) Muliply through by the integrating factor exp( p(x)) to obtain (y exp( p(x))) = q(x) exp( p(x)). 2. Separation of

More information

2 xg v Z u R u B pg x g Z v M 10 u Mu p uu Kg ugg k u g B M p gz N M u u v v p u R! k PEKER S : vg pk H g E u g p Muu O R B u H H v Yu u Bu x u B v RO

2 xg v Z u R u B pg x g Z v M 10 u Mu p uu Kg ugg k u g B M p gz N M u u v v p u R! k PEKER S : vg pk H g E u g p Muu O R B u H H v Yu u Bu x u B v RO HE 1056 M EENG O HE BRODE UB 1056 g B u 7:30 p u p 17 2012 R 432 R Wg Z g Uv : G g B S : K v Su g 33; 29 4 g u R : P : E R B J B Y B B B B B u B u E B J Hu u M M P R g J Rg Rg S u S pk k R g: u D u G D

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G.

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G. 1. Galois Theory 1.1. A homomorphism of fields F F is simply a homomorphism of rings. Such a homomorphism is always injective, because its kernel is a proper ideal (it doesnt contain 1), which must therefore

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Information Theory and Hypothesis Testing

Information Theory and Hypothesis Testing Summer School on Game Theory and Telecommunications Campione, 7-12 September, 2014 Information Theory and Hypothesis Testing Mauro Barni University of Siena September 8 Review of some basic results linking

More information

SINC PACK, and Separation of Variables

SINC PACK, and Separation of Variables SINC PACK, and Separation of Variables Frank Stenger Abstract This talk consists of a proof of part of Stenger s SINC-PACK computer package (an approx. 400-page tutorial + about 250 Matlab programs) that

More information

COLORING A d 3 DIMENSIONAL LATTICE WITH TWO INDEPENDENT RANDOM WALKS. Lee Dicker A THESIS. Mathematics. Philosophy

COLORING A d 3 DIMENSIONAL LATTICE WITH TWO INDEPENDENT RANDOM WALKS. Lee Dicker A THESIS. Mathematics. Philosophy COLORING A d 3 DIMENSIONAL LATTICE WITH TWO INDEPENDENT RANDOM WALKS Lee Dicker A THESIS in Mathematics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Lecture 5: Expectation

Lecture 5: Expectation Lecture 5: Expectation 1. Expectations for random variables 1.1 Expectations for simple random variables 1.2 Expectations for bounded random variables 1.3 Expectations for general random variables 1.4

More information