EE141. Administrative Stuff


 Chad Fox
 2 years ago
 Views:
Transcription
1 Spring 2004 Digital Integrated ircuits Lecture 15 Logical Effort Pass Transistor Logic 1 dministrative Stuff First (short) project to be launched next Th. Overall span: 1 week Hardware lab this week Hw 5 due on Th New Hw 6 2 1
2 Schedule Last lecture: complex logic Today: Logical effort Pass Transistor Logic 3 FanIn onsiderations D 3 L Distributed R model (Elmore delay) D 2 1 t phl = 0.69 R eqn ( L ) Propagation delay deteriorates rapidly as a function of fanin quadratically in the worst case. 4 2
3 t p as a Function of FanIn (NND) t p (psec) t phl t plh quadratic 250 linear fanin t p Gates with a fanin greater than 4 should be avoided. 5 t p as a Function of FanOut t p (psec) t p NOR2 t p NND2 t p INV eff. fanout ll gates have the same drive current. Slope is a function of driving strength 6 3
4 t p as a Function of FanIn and FanOut Fanin: quadratic due to increasing resistance and capacitance Fanout: each additional fanout gate adds two gate capacitances to L t p = a 1 FI + a 2 FI 2 + a 3 FO 7 Fast omplex Gates: Design Technique 1 Transistor sizing as long as fanout capacitance dominates Progressive sizing In N MN L Distributed R line In 3 M3 3 M1 > M2 > M3 > > MN (the FET closest to the output is the smallest) In 2 In 1 M2 M1 2 1 an reduce delay by more than 20%; e careful: input loading, junction caps, decreasing gains as technology shrinks 8 4
5 Fast omplex Gates: Design Technique 2 Transistor ordering critical path critical path In 3 1 In 2 1 In M3 0 1 charged L In 1 M3 charged L M2 2 charged In 2 1 M2 2 discharged In M1 charged 3 1 M1 discharged 1 1 delay determined by time to discharge L, 1 and 2 delay determined by time to discharge L 9 Fast omplex Gates: Design Technique 3 lternative logic structures F = DEFGH 10 5
6 Fast omplex Gates: Design Technique 4 Isolating fanin from fanout using buffer insertion L L 11 Fast omplex Gates: Design Technique 5 Reducing the voltage swing t phl = 0.69 (3/4 ( L )/ I DSTn ) = 0.69 (3/4 ( L V swing )/ I DSTn ) linear reduction in delay also reduces power consumption ut the following gate is much slower! Or requires use of sense amplifiers on the receiving end to restore the signal level (memory design) 12 6
7 Sizing Logic Paths for Speed Frequently, input capacitance of a logic path is constrained Logic has to drive some capacitance Example: LU load in an Intel s microprocessor is 0.5pF How do we size the LU datapath to achieve maximum speed? We have already solved this for the inverter chain can we generalize it for any type of logic? 13 uffer Example In Out 1 2 N Delay = N ( pi + gi hi ) i= 1 L (in units of τ inv ) For given N: i+1 / i = i / i1 To find N: i+1 / i ~ 4 How to generalize this to any logic path? 14 7
8 Delay in a Logic Gate Gate delay: d = h + p effort delay intrinsic delay Effort delay: h = g f logical effort effective fanout = out / in Logical effort is a function of topology, independent of sizing Effective fanout (electrical effort) is a function of load/gate size 15 Logical Effort Delay = k τ 0 p + gf γ p parasitic delay  gate parameter f(w) g logical effort gate parameter f(w) f electrical effort (effective fanout) Normalize everything to an inverter: g inv =1, p inv = 1 Everything is measured in unit delays τ
9 uffer Example In Out 1 2 N L Delay = N i i pi + i= 1 γ g f p i, g i are constant (and equal to 1) Variables are f i Minimum delay is when f i s are equal (each stage bears the same effort) (in units of τ 0 ) 17 Logical Effort Inverter has the smallest logical effort and intrinsic delay of all static MOS gates Logical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current Logical effort increases with the gate complexity 18 9
10 alculating Logical Effort Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current g = 1 g = 4/3 g = 5/3 19 Logical Effort of Gates Normalized delay (d) g= p= d= t pnnd g= p= d= tpinv F(Fanin) Fanout (h) 20 10
11 Logical Effort of Gates Normalized delay (d) g=4/3 p=2 d=(4/3)f+2 t pnnd tpinv g=1 p=1 d=f+1 F(Fanin) Fanout (f) 21 Logical Effort 22 11
12 dd ranching Effort ranching effort: on path + off path b = on path 23 Multistage Networks Delay = Stage effort: h i = g i f i Path electrical effort: F = out / in Path logical effort: G = g 1 g 2 g N ranching effort: = b 1 b 2 b N Path effort: H = GF N i i pi + i= 1 γ Path delay D = Σd i = Σp i + Σf i g i /γ g f 24 12
13 Optimum Effort per Stage When each stage bears the same effort: hˆ N = H h ˆ = N H Effective fanout of each stage: f = hˆ i g i Minimum path delay g fi NH Dˆ = + pi = γ γ 1/ N i + P 25 Example: Optimize Path f F = 2 G = 20/9 H = 40/9 h =1.45 x =10f1 = 10h/g1=14.5 y = 14.5(1.45*3/5)=12.6 z = 12.6(1.45*3/4)=13.7 From David Harris ssume that size factors relate to gate with some input cap as inverter 26 13
14 Multilevel level logic: What is best? g = 10/3 g =1 G = 10/3 g = 2 g =5/3 G = 10/3 g =10/3 g=5/3 g=4/3 g=1 G = 80/27 27 Summary Logical Effort Electrical Effort ranching Effort Effort Effort Delay Number of Stages Parasitic Delay Delay Stage g f = out / in n/a h = fg h 1 p d = h + p Path G = g i F = out / in = bi H = FG D H = hi N D P= D H + Pp = i 28 14
15 Method of Logical Effort ompute the path effort: H = GF Find the best number of stages N ~ log 4 H ompute the stage effort h = H 1/N Sketch the path with this number of stages Work either from either end, find sizes: in = out *g/h Reference: Sutherland, Sproull, Harris, Logical Effort, MorganKaufmann Ratioed Logic 30 15
16 Ratioed Logic Resistive Load R L F Depletion Load V T < 0 F PMOS Load V SS F In 1 In 2 In 3 PDN In 1 In 2 In 3 PDN In 1 In 2 In 3 PDN V SS V SS V SS (a) resistive load (b) depletion load NMOS (c) pseudonmos Goal: to reduce the number of devices over complementary MOS 31 Ratioed Logic Resistive Load R L N transistors + Load V OH = F V OL = R PN R PN + R L In 1 In 2 In 3 PDN ssymetrical response Static power consumption V SS t pl = 0.69 R L L 32 16
17 ctive Loads Depletion Load V T < 0 PMOS Load F V SS F In 1 In 2 In 3 PDN In 1 In 2 In 3 PDN V SS V SS depletion load NMOS pseudonmos 33 PseudoNMOS With long channel devices D F L V OH = (similar to complementary MOS) V2 k V V OL k n ( DD Tn )V OL = p ( V V 2 2 DD Tp ) 2 V OL = ( V DD V T ) 1 1 k p (assuming that V k T = V Tn = V Tp ) n SMLLER RE & LOD UT STTI POWER DISSIPTION!!! 34 17
18 PseudoNMOS VT W/L p = 4 V ou t [V] W/L p = W/L p = 0.5 W/L p = 0.25 W/L p = V in [V] 35 Improved Loads Enable M1 M2 M1 >> M2 F D L daptive Load 36 18
19 Improved Loads (2) M1 M2 Out Out PDN1 PDN2 V SS V SS Differential ascode Voltage Switch Logic (DVSL) 37 DVSL Example Out Out XORNXOR gate 38 19
20 DVSL Transient Response 2.5 V oltage [V] ,, Time [ns] 39 PassTransistor Logic 40 20
21 PassTransistor Logic Inputs Switch Network Out Out N transistors No static consumption 41 Example: ND Gate F =
22 NMOSOnly Only Logic In x 0.5µm/0.25µm 1.5µm/ 0.25µm Out 0.5µm/ 0.25µm Voltage [V] Out x In Time [ns] 43 NMOSonly Switch = 2.5V = 2.5 V = 2.5 V = 2.5 V M n M 2 L M 1 V does not pull up to 2.5V, but 2.5V V TN Threshold voltage loss causes static power consumption NMOS has higher threshold than PMOS (body effect) 44 22
23 NMOS Only Logic: Level Restoring Transistor Level Restorer M n M r X M 2 Out M 1 dvantage: Full Swing Restorer adds capacitance, takes away pull down current at X Ratio problem 45 Restorer Sizing Voltage [V] W/L r =1.75/0.25 W/L r =1.50/0.25 W/L r =1.0/0.25 W/L r =1.25/0.25 Upper limit on restorer size Passtransistor pulldown can have several transistors in stack Time [ps] 46 23
24 Solution 2: Single Transistor Pass Gate with V T =0 0V 2.5V 0V Out 2.5V WTH OUT FOR LEKGE URRENTS 47 omplementary Pass Transistor Logic PassTransistor Network F (a) Inverse PassTransistor Network F F= F=+ F= ΒÝ (b) F= F=+ F= ΒÝ ND/NND OR/NOR EXOR/NEXOR 48 24
25 Solution 3: Transmission Gate = 2.5 V = 2.5 V L = 0 V 49 Resistance of Transmission Gate 30 R n 2. 5 V Rn Resistance, ohms R p R n R p 2.5 V 0 V R p V ou t V ou t, V 50 25
26 PassTransistor ased Multiplexer S S S M 2 S F M 1 S GND In 1 S S In 2 51 Transmission Gate XOR M2 M1 F M3/M
27 Delay in Transmission Gate Networks In V 1 V i1 V i V i+1 V n1 V n (a) In R eq R V eq R eq R 1 V i V eq Vi+1 n1 Vn m (b) Req Req R eq Req Req Req In (c) 53 Delay Optimization 54 27
28 Transmission Gate Full dder P P i i P S Sum Generation P P P o arry Generation i i i Setup P Similar delays for sum and carry 55 Next Lecture Project launch Dynamic logic 56 28
29 Next Lecture MOS Logic Properties 57 29
Properties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationDigital EE141 Integrated Circuits 2nd Combinational Circuits
Digital Integrated Circuits Designing i Combinational Logic Circuits 1 Combinational vs. Sequential Logic 2 Static CMOS Circuit t every point in time (except during the switching transients) each gate
More informationDigital Integrated Circuits A Design Perspective
Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Views / bstractions / Hierarchies ehavioral Structural
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationAnnouncements. EE141Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin
Vo l ta ge ri s e [ V] EESpring 7 Digital Integrated ircuits Lecture SRM Project Launch nnouncements No new labs next week and week after Use labs to work on project Homework #6 due Fr. pm Project updated
More informationPassTransistor Logic
all 26 Digital tegrated ircuits nnouncements No new homework this week roject phase one due on Monday Midterm 2 next Thursday Review session on Tuesday Lecture 8 Logic Dynamic Logic EE4 EE4 2 lass Material
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits  2 guntzel@inf.ufsc.br
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time
More informationStatic CMOS Circuits
Static MOS ircuits l onventional (ratioless) static MOS» overed so far l Ratioed logic (depletion load, pseudo nmos) l ass transistor logic ombinational vs. Sequential Logic In Logic ircuit In Logic
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationB.Supmonchai August 1st, q Indepth discussion of CMOS logic families. q Optimizing gate metrics. q High Performance circuitdesign techniques
ugust st, 4 Goals of This hapter hapter 6 Static MOS ircuits oonchuay Supmonchai Integrated esign pplication Research (IR) Laboratory ugust, 4; Revised  June 8, 5 Indepth discussion of MOS logic families
More informationBased on slides/material by. Topic 34. Combinational Logic. Outline. The CMOS Inverter: A First Glance
ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationInterconnect (2) Buffering Techniques. Logical Effort
Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The checkoff is due today (by 9:30PM) Students
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationStatic CMOS Circuits. Example 1
Static CMOS Circuits Conventional (ratioless) static CMOS Covered so far Ratioed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,
More informationCPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit
More informationCMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411
More informationLogical Effort EE141
Logical Effort 1 Question #1 How to best combine logic and drive for a big capacitive load? C L C L 2 Question #2 All of these are decoders Which one is best? 3 Method to answer both of these questions
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationCMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits
Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by
More informationEE141Fall 2012 Digital Integrated Circuits. Announcements. Homework #3 due today. Homework #4 due next Thursday EECS141 EE141
EE4Fall 0 Digital Integrated Circuits Lecture 7 Gate Delay and Logical Effort nnouncements Homework #3 due today Homework #4 due next Thursday Class Material Last lecture Inverter delay optimization Today
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationLecture 8: Logic Effort and Combinational Circuit Design
Lecture 8: Logic Effort and Combinational Circuit Design Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q Logical Effort q Delay in a Logic Gate
More informationDigital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman
Digital Microelectronic ircuits (36113021 ) Presented by: Mr. Adam Teman Lecture 8: atioed Logic 1 Motivation In the previous lecture, we learned about Standard MOS Digital Logic design. MOS is unquestionably
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationLecture 8: Combinational Circuit Design
Lecture 8: Combinational Circuit Design Mark McDermott Electrical and Computer Engineering The University of Texas at ustin 9/5/8 Verilog to Gates module mux(input s, d0, d, output y); assign y = s? d
More informationVery Large Scale Integration (VLSI)
Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. MadianVLSI Contents Delay estimation Simple RC model PenfieldRubenstein Model Logical effort Delay
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationVLSI Design, Fall Logical Effort. Jacob Abraham
6. Logical Effort 6. Logical Effort Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 207 September 20, 207 ECE Department, University of
More informationLogical Effort. Sizing Transistors for Speed. Estimating Delays
Logical Effort Sizing Transistors for Speed Estimating Delays Would be nice to have a back of the envelope method for sizing gates for speed Logical Effort Book by Sutherland, Sproull, Harris Chapter 1
More informationCMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering
CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March
More informationCHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS
CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power
More informationLogic Gate Sizing. The method of logical effort. João Canas Ferreira. March University of Porto Faculty of Engineering
Logic Gate Sizing The method of logical effort João Canas Ferreira University of Porto Faculty of Engineering March 016 Topics 1 Modeling CMOS Gates Chain of logic gates João Canas Ferreira (FEUP) Logic
More informationCOMP 103. Lecture 16. Dynamic Logic
COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03
More informationEE241  Spring 2000 Advanced Digital Integrated Circuits. Announcements
EE241  Spring 2000 Advanced Digital Integrated Circuits Lecture 3 Circuit Optimization for Speed Announcements Tu 2/8/00 class will be pretaped on Friday, 2/4, 45:30 203 McLaughlin Class notes are available
More informationEE M216A.:. Fall Lecture 5. Logical Effort. Prof. Dejan Marković
EE M26A.:. Fall 200 Lecture 5 Logical Effort Prof. Dejan Marković ee26a@gmail.com Logical Effort Recap Normalized delay d = g h + p g is the logical effort of the gate g = C IN /C INV Inverter is sized
More informationSpiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp
27.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 27.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationCPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline
CPE/EE 47, CPE 57 VLI Design I L8: Circuit Families Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe5705f
More informationEE115C Digital Electronic Circuits Homework #5
EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More informationCPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI esign I L07: MO Logic Gates, Pass Transistor Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationHomework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout
0/6/06 Homework # Lecture 8, 9: Sizing and Layout of omplex MOS Gates Reading: hapter 4, sections 4.34.5 October 3 & 5, 06 hapter, section.5.5 Prof. R. Iris ahar Weste & Harris vailable on course webpage
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationLogical Effort: Designing for Speed on the Back of an Envelope David Harris Harvey Mudd College Claremont, CA
Logical Effort: Designing for Speed on the Back of an Envelope David Harris David_Harris@hmc.edu Harvey Mudd College Claremont, CA Outline o Introduction o Delay in a Logic Gate o Multistage Logic Networks
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More informationInterconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003
Interconnect (2) Buffering Techniques.Transmission Lines Lecture 12 18322 Fall 2003 A few announcements Partners Lab Due Times Midterm 1 is nearly here Date: 10/14/02, time: 3:004:20PM, place: in class
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationWhere are we? Data Path Design
Where are we? Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath Data Path Design
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationDigital Integrated Circuits 2nd Inverter
Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationWhere are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan
Where are we? Data Path Design Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationLecture 6: Circuit design part 1
Lecture 6: Circuit design part 6. Combinational circuit design 6. Sequential circuit design 6.3 Circuit simulation 6.4. Hardware description language Combinational Circuit Design. Combinational circuit
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More informationEEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #3: CMOS Inverters MOS Scaling Rajeevan Amirtharajah University of California, Davis Jeff Parhurst Intel Corporation Outline Review: Inverter Transfer Characteristics Lecture 3: Noise Margins,
More informationLecture 4: CMOS review & Dynamic Logic
Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full railtorail swing high noise margins Logic levels not dependent
More informationECE429 Introduction to VLSI Design
ECE429 Introduction to VLSI Design Lecture 5: LOGICAL EFFORT Erdal Oruklu Illinois Institute of Technology Some of these slides have been adapted from the slides provided by David Harris, Harvey Mudd College
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka )
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More informationEE 447 VLSI Design. Lecture 5: Logical Effort
EE 447 VLSI Design Lecture 5: Logical Effort Outline Introduction Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary EE 4475: VLSI Logical Design Effort
More informationDigital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo
Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic
More informationVLSI Design I; A. Milenkovic 1
PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka ) www. ece.uah.edu/~milenka/cpe573f
More informationLecture 8: Combinational Circuits
Introduction to CMOS VLSI Design Lecture 8: Combinational Circuits David Harris Harvey Mudd College Spring 00 Outline ubble Pushing Compound Gates Logical Effort Example Input Ordering symmetric Gates
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationVLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: omplementary MO Logic Gates epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationLecture 8: Combinational Circuits
Introduction to CMOS VLSI Design Lecture 8: Combinational Circuits David Harris Harvey Mudd College Spring 004 Outline ubble Pushing Compound Gates Logical Effort Example Input Ordering symmetric Gates
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationEE M216A.:. Fall Lecture 4. Speed Optimization. Prof. Dejan Marković Speed Optimization via Gate Sizing
EE M216A.:. Fall 2010 Lecture 4 Speed Optimization Prof. Dejan Marković ee216a@gmail.com Speed Optimization via Gate Sizing Gate sizing basics P:N ratio Complex gates Velocity saturation ti Tapering Developing
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationVLSI Design I; A. Milenkovic 1
Review Voltage wing of PT Driving an Inverter PE/EE 47, PE 57 VLI Design I L9: MO & Wire apacitances Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic
More informationCPE/EE 427, CPE 527 VLSI Design I L13: Wires, Design for Speed. Course Administration
CPE/EE 427, CPE 527 VLSI Design I L3: Wires, Design for Speed Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe52705f
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationEE115C Digital Electronic Circuits Homework #6
Problem 1 Sizing of adder blocks Electrical Engineering Department Spring 2010 EE115C Digital Electronic Circuits Homework #6 Solution Figure 1: Mirror adder. Study the mirror adder cell (textbook, pages
More informationCOMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE
COMP 103 Lecture 10 Inverter Dynamics: The Quest for Performance Section 5.4.2, 5.4.3 [All lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationUsing MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B
Using MOS Models C.K. Ken Yang UCLA yangck@ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 5.4 W&H 4.2 Background In the past two lectures we have reviewed the iv and CV curves for MOS devices, both
More informationLecture 6: Logical Effort
Lecture 6: Logical Effort Outline Logical Effort Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary Introduction Chip designers face a bewildering array
More informationVLSI Design I; A. Milenkovic 1
Why Power Matters PE/EE 47, PE 57 VLSI Design I L5: Power and Designing for Low Power Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay
More informationDigital Microelectronic Circuits ( )
Digital Microelectronic ircuits (36113021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,
More information