GALPROP: principles, internal structure, recent results, and perspective

Size: px
Start display at page:

Download "GALPROP: principles, internal structure, recent results, and perspective"

Transcription

1 GALPROP: principles, internal structure, recent results, and perspective Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum,, Germany Topics to cover: GALPROP: principles, inputs/outputs, calculations Recent results (GeV( excess & pbars,, extragalactic background) Dark Matter Near future developments

2 Transport Equation r ψ (, t p, t ) = r q (, p ) sources (SNR, nuclear reactions ) diffusion + r [ D r r ψ V ψ ] xx convection diffusive reacceleration + p p 2 D pp p ψ p 2 E-loss p dp dt ψ 1 3 r p r V ψ convection fragmentation ψ τ f ψ τ d radioactive decay ψ(r,p,t) density per total momentum Igor V. Moskalenko/NASA-GSFC 2 GLAST meeting/slac 2004/09/27-30

3 CR Propagation: Milky Way Galaxy Optical image: Cheng et al. 1992, Brinkman et al Radio contours: Condon et al AJ 115, kpc~3x10 18 cm NGC pc Halo /ccm 40 kpc Gas, sources 1-100/ccm Sun 4-12 kpc R Band image of NGC GHz continuum (NVSS), 1,2, 64 mjy/ beam Intergalactic space Igor V. Moskalenko/NASA-GSFC 3 GLAST meeting/slac 2004/09/27-30

4 CR Interactions in the Interstellar Medium Halo disk Sources: SNRs, Shocks, Superbubbles Particle acceleration Photon emission P He CNO escape X,γ e + - diffusion energy losses reacceleration convection etc. π + - _ P p ISM gas e + - B solar modulation synchrotron ISRF gas π 0 LiBeB He CNO IC bremss ACE Chandra GLAST BESS AMS Igor V. Moskalenko/NASA-GSFC 4 GLAST meeting/slac 2004/09/27-30

5 Grids GALPROP Input: galdef-files GALPROP is parameter-driven (user can specify everything!) 2D/3D options; symmetry options (full 3D, 1/8 -quadrants) Spatial, energy/momentum, latitude & longitude grids Ranges: energy, R, x, y, z, latitude & longitude Time steps Propagation parameters D xx, V A, V C & injection spectra (p,e) X-factors (including R-dependence) Sources Parameterized distributions Known SNRs Random SNRs (with given/random spectra), time dependent eq. Other Source isotopic abundances, secondary particles (pbar, e ±, γ, synchro), anisotropic IC, energy losses, nuclear production cross sections Igor V. Moskalenko/NASA-GSFC 5 GLAST meeting/slac 2004/09/27-30

6 Grids Z R,x,y -1 Typical grid steps (can be arbitrary!) z = 0.1 kpc, z = 0.01 kpc (gas averaging) R = 1 kpc E = x1.2 (log-grid) Igor V. Moskalenko/NASA-GSFC 6 GLAST meeting/slac 2004/09/27-30

7 Gas Distribution Molecular hydrogen H 2 is traced using J=1-0 transition of 12 CO, concentrated mostly in the plane (z~70 pc, R<10 kpc) Atomic hydrogen H I has a wider distribution (z~1 kpc, R~30 kpc) Sun Ionized hydrogen H II small proportion, but exists even in halo (z~1 kpc) Igor V. Moskalenko/NASA-GSFC 7 GLAST meeting/slac 2004/09/27-30

8 Energy density Interstellar Radiation Field Stellar Dust CMB Energy density Sun Igor V. Moskalenko/NASA-GSFC 8 GLAST meeting/slac 2004/09/27-30

9 Nuclear Reaction Network+Cross Sections Secondary, radioactive ~1 Myr & K-capture isotopes Co57 55 Fe Mn 54 Cr 51 V 49 p,ec,β + Al 26 Ar 37 Cl 36 Ca 41 β -, n Be 7 Be 10 Plus some dozens of more complicated reactions. But many cross sections are not well known Igor V. Moskalenko/NASA-GSFC 9 GLAST meeting/slac 2004/09/27-30

10 Nuclear component in CR: What we can learn? Stable secondaries: Li, Be, B, Sc, Ti, V Radio (t 1/2 ~1 Myr): 10 Be, 26 Al, 36 Cl, 54 Mn K-capture: 37 Ar, 49 V, 51 Cr, 55 Fe, 57 Co Short t 1/2 radio 14 C & heavy Z>30 Heavy Z>30: Cu, Zn, Ga, Ge, Rb Propagation parameters: Diffusion coeff., halo size, Alfvén speed, convection velosity Energy markers: Reacceleration, solar modulation Local medium: Local Bubble Material & acceleration sites, nucleosynthesis (rvs. s-processes) Nucleosynthesis: supernovae, early universe, Big Bang Diffuse γ-rays Galactic, extragalactic: blazars, relic neutralino Dark Matter (p,đ,e +,γ) - Solar modulation Igor V. Moskalenko/NASA-GSFC 10 GLAST meeting/slac 2004/09/27-30

11 Fixing Propagation Parameters: Standard Way B/C Interstellar Using secondary/primary nuclei ratio: Diffusion coefficient and its index Propagation mode and its parameters (e.g., reacceleration V A, convection V z ) Be 10 /Be 9 E k, MeV/nucleon Radioactive isotopes: Galactic halo size Z h Z h increase E k, MeV/nucleon Igor V. Moskalenko/NASA-GSFC 11 GLAST meeting/slac 2004/09/27-30

12 Peak in the Secondary/Primary Ratio Leaky-box model: fitting path-length distribution -> free function B/C Diffusion models: Diffusive reacceleration Convection Damping of interstellar turbulence Etc. Measuring many isotopes in CR simultaneously may help to distinguish Igor V. Moskalenko/NASA-GSFC 12 GLAST meeting/slac 2004/09/27-30

13 Heliosphere Flux 20 GeV/n Igor V. Moskalenko/NASA-GSFC 13 GLAST meeting/slac 2004/09/27-30

14 Electron Fluctuations/SNR stochastic events GeV electrons 100 TeV electrons GALPROP/Credit S.Swordy E(dE/dt) -1,yr 10 7 yr 10 6 yr Energy losses Bremsstrahlung Ionization IC, synchrotron Coulomb 1 GeV 1 TeV Ekin, GeV Electron energy loss timescale: 1 TeV: ~ yr 100 TeV: ~3 000 yr Igor V. Moskalenko/NASA-GSFC 14 GLAST meeting/slac 2004/09/27-30

15 CR Variations in Space & Time More frequent SN in the spiral arms Historical variations of CR intensity over yr (Be 10 in South Polar ice) Electron/positron energy losses Konstantinov et al Different collecting areas A vs. p Igor V. Moskalenko/NASA-GSFC 15 GLAST meeting/slac 2004/09/27-30

16 GALPROP Output/FITS files Provides literally everything: All nuclei and particle spectra in every grid point (x,y,r,z,e) -FITS files Separately for π 0 -decay, IC, bremsstrahlung: Emissivities in every grid point (x,y,r,z,e,process) Skymaps with a given resolution (l,b,e,process) CONSUMERS: AMS, Pamela dark matter searches ACE, TIGER interpretation of isotopic abundances HEAT electrons, positrons GLAST(?) spectrum of the diffuse emission & background model Igor V. Moskalenko/NASA-GSFC 16 GLAST meeting/slac 2004/09/27-30

17 algorithm numerical solution of cosmic-ray transport primary 2D or 3D source grid functions (p, He, C... Ni) source time-independent abundances, or spectra time-dependent primary propagation -starting from maxa=64 source functions (Be, B..., e +,e -, pbars) using primaries and gas distributions secondary propagation tertiary source functions tertiary propagation γ-rays (IC, bremsstrahlung, π o -decay) radio: synchrotron Igor V. Moskalenko/NASA-GSFC 17 GLAST meeting/slac 2004/09/27-30

18 GALPROP Calculations Constraints Bin size (x,y,z) depends on the computer speed, RAM; final run can be done on a very fine grid! No other constraints! any required process/formalism can be implemented; vectorization!! Calculations (γ -ray related) Vectorization options Heliospheric modulation: routinely force-field, can use Potgieter model 1. For a given propagation parameters: propagate p, e, nuclei, secondaries (currently in 2D) 2. The propagated distributions are stored 3. With propagated spectra: calculate the emissivities (π 0 -decay, IC, bremss) in every grid point 4. Integrate the emissivities over the line of sight: GALPROP has a full 3D grid, but currently only 2D gas maps (H2, H I, H II) Using actual annular maps (column density) at the final step High latitudes above b=40 -using integrated H I distribution Igor V. Moskalenko/NASA-GSFC 18 GLAST meeting/slac 2004/09/27-30

19 Near Future Developments Full 3D Galactic structure: 3D gas maps (from S.Digel, S.Hunter and/or smbd else) 3D interstellar radiation & magnetic fields (A.Strong & T.Porter) Cross sections: Blattnig et al. formalism for π 0 -production Diffractive dissociation with scaling violation (T.Kamae) Isotopic cross sections (with S.Mashnik, LANL; try to motivate BNL, JENDL-Japan, other Nuc. Data Centers) Energy range: Extend toward sub-mev range to compare with INTEGRAL diffuse emission (continuum; 511 kev line) Modeling the local structure: Local SNRs with known positions and ages Local Bubble may be done at the final calculation step Heliospheric modulation: Implementing a complimentary drift model by M.Potgieter Visualization tool (started) using the classes of CERN ROOT package: images, profiles, and spectra from GALPROP to be directly compared with data Improving the GALPROP module structure (for DM studies) & developing a dedicated Web-site to allow for a communication with users Igor V. Moskalenko/NASA-GSFC 19 GLAST meeting/slac 2004/09/27-30

20 Recent results Igor V. Moskalenko/NASA-GSFC 20 GLAST meeting/slac 2004/09/27-30

21 Wherever you look, the GeV γ - ray excess is there! Igor V. Moskalenko/NASA-GSFC 21 GLAST meeting/slac 2004/09/ a-f

22 Reacceleration Model: Secondary Pbars B/C ratio Antiproton flux E k, GeV/nucleon E k, GeV Igor V. Moskalenko/NASA-GSFC 22 GLAST meeting/slac 2004/09/27-30

23 Positron Excess? HEAT (Coutu et al. 1999) e + /e GALPROP Leaky-Box E, GeV Are all the excesses connected somehow? A signature of a new physics (DM)? Caveats: Systematic errors? A local source of primary positrons? Large E-losses E -> > local spectrum Igor V. Moskalenko/NASA-GSFC 23 GLAST meeting/slac 2004/09/27-30

24 Matter, Dark Matter, Dark Energy Visible atoms Dark Energy Dark Matter Ω ρ/ρ crit =1.02 +/ 0.02 Ω tot Ω Matter =4.4% +/ 0.4% Ω DM =23% +/ 4% Ω Vacuum =73% +/ 4% SUSY DM candidate has also other reasons to exist -particle physics Supersymmetry is a mathematically beautiful theory, and would give rise to a very predictive scenario, if it is not broken in an unknown way which unfortunately introduces a large number of unknown parameters Lars Bergström (2000) Igor V. Moskalenko/NASA-GSFC 24 GLAST meeting/slac 2004/09/27-30

25 Example Global Fit: diffuse γ s, pbars, positrons GALPROP/W. de Boer et al. hep-ph/ ph/ Supersymmetry: MSSM Lightest neutralino χ 0 m χ GeV S=½ Majorana particles χ 0 χ 0 > p, pbar, e +, e, γ γ pbars Look at the combined (pbar,e +,γ) data Possibility of a successful global fit can not be excluded -non-trivial! If successful, it may provide a strong evidence for the SUSY DM e + Igor V. Moskalenko/NASA-GSFC 25 GLAST meeting/slac 2004/09/27-30

26 GeV excess: Optimized model Uses all sky and antiprotons & gammas to fix the nucleon and electron spectra Uses antiprotons to fix the intensity of CR HE Uses gammas to adjust the nucleon spectrum at LE the intensity of the CR electrons (uses also synchrotron index) Uses EGRET data up to 100 GeV antiprotons electrons protons x4 x1.8 Igor V. Moskalenko/NASA-GSFC 26 Nuclear Data-2004/09/28, Santa Fe

27 Diffuse Gammas from Secondary Positrons/Electrons Heliosphere e + ~0.1e - e + /e sec.e - =10% Interstellar electrons Important below 200 MeV gammas e + =e - positrons Igor V. Moskalenko/NASA-GSFC 27 GLAST meeting/slac 2004/09/27-30

28 Anisotropic Inverse Compton Scattering Electrons in the halo see anisotropic radiation Observer sees mostly head-on collisions e - Energy density R=4 kpc small boost & less collisions γ head-on: large boost & more collisions e - Z, kpc γ γ high latitudes! sun Igor V. Moskalenko/NASA-GSFC 28 GLAST meeting/slac 2004/09/27-30

29 Diffuse Gammas at Different Sky Regions Hunter et al. region: l=300-60, b <10 Outer Galaxy: l=90-270, b <10 Intermediate latitudes: l=0-360,10 < b <20 Intermediate latitudes: l=0-360,20 < b <60 Igor V. Moskalenko/NASA-GSFC 29 GLAST meeting/slac 2004/09/27-30

30 Longitude Profiles b < MeV GeV 2-4 GeV 4-10 GeV Igor V. Moskalenko/NASA-GSFC 30 GLAST meeting/slac 2004/09/27-30

31 Latitude Profiles: Inner Galaxy MeV GeV 2-4 GeV 4-10 GeV GeV Igor V. Moskalenko/NASA-GSFC 31 GLAST meeting/slac 2004/09/27-30

32 Latitude Profiles: Outer Galaxy MeV GeV 2-4 GeV 4-10 GeV Igor V. Moskalenko/NASA-GSFC 32 GLAST meeting/slac 2004/09/27-30

33 Extragalactic Gamma-Ray Background Predicted vs. observed E 2 xf Sreekumar et al Elsaesser & Mannheim, astro-ph/ Strong et al E, MeV Blazars Cosmological neutralinos Igor V. Moskalenko/NASA-GSFC 33 GLAST meeting/slac 2004/09/27-30

34 Distribution of CR Sources & Gradient in the CO/H 2 CR distribution from diffuse gammas (Strong & Mattox 1996) SNR distribution (Case & Bhattacharya 1998) Pulsar distribution (Lorimer 2004) sun X CO =N(H 2 )/W CO : Histo This work, Strong et al Sodroski et al. 95, x Strong & Mattox 96 ~Z -1 Boselli et al. 02 ~Z Israel 97, 00, [O/H]=0.04,0.07 dex/kpc Igor V. Moskalenko/NASA-GSFC 34 GLAST meeting/slac 2004/09/27-30

35 Again Diffuse Galactic Gamma Rays Very good agreement! More IC in the GC better agreement! The pulsar distribution vs. R falls too fast OR larger H 2 /CO gradient Igor V. Moskalenko/NASA-GSFC 35 GLAST meeting/slac 2004/09/27-30

36 Conclusions I Accurate measurements of diffuse gamma rays, secondary antiprotons, and other CR species simultaneously may provide a new vital information for Astrophysics in broad sense, Particle Physics, and Cosmology. Gamma rays: GLAST is scheduled to launch in 2007 diffuse gamma rays is one of its priority goals Hunter et al. region: l=300-60, b <10 Dark Matter B/C Z h increase Be 10 /Be 9 CR species: New measurements at LE & HE simultaneously are highly desirable (Pamela, S-TIGER, AMS ), sec. positrons! Igor V. Moskalenko/NASA-GSFC 36 GLAST meeting/slac 2004/09/27-30

37 Conclusions II Antiprotons: Pamela (2005), AMS (2008) and a new BESS-polar instrument to fly a longduration balloon mission (in 2004, 2006 ), we thus will have more accurate and restrictive antiproton data HE electrons: Several missions are planned to target specifically HE electrons We must be ready! GALPROP is a propagation model to play now Igor V. Moskalenko/NASA-GSFC 37 GLAST meeting/slac 2004/09/27-30

38 Thank you! Igor V. Moskalenko/NASA-GSFC 38 GLAST meeting/slac 2004/09/27-30

a cosmic- ray propagation and gamma-ray code

a cosmic- ray propagation and gamma-ray code GALPROP: a cosmic- ray propagation and gamma-ray code A. Strong, MPE Garching Tools for SUSY, Annecy, June 28 2006 The basis: cosmic-ray production & propagation in the Galaxy intergalactic space HALO

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010 Interstellar gamma rays New insights from Fermi Andy Strong on behalf of Fermi-LAT collaboration COSPAR Scientific Assembly, Bremen, July 2010 Session E110: ' The next generation of ground-based Cerenkov

More information

Cosmic rays in the local interstellar medium

Cosmic rays in the local interstellar medium Cosmic rays in the local interstellar medium Igor V. Moskalenko Igor V. Moskalenko/NASA-GSFC 1 LMC (Magellanic Cloud Emission Nuclear Data-2004/09/28, Line Survey: Smith, Points) Santa Fe R - H G - [S

More information

Troy A. Porter Stanford University

Troy A. Porter Stanford University High-Energy Gamma-Rays from the Milky Way: 3D Spatial Models for the CR and Radiation Field Densities Troy A. Porter Stanford University What is GALPROP? Tool for modelling and interpreting cosmic-ray

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search Nicolò Masi Bologna University and INFN - 31 May 2016 Topics 1. Towards a unified picture of CRs production and propagation: Astrophysical uncertainties with GALPROP Local Interstellar Spectra: AMS-02

More information

arxiv: v1 [astro-ph] 17 Nov 2008

arxiv: v1 [astro-ph] 17 Nov 2008 Dark Matter Annihilation in the light of EGRET, HEAT, WMAP, INTEGRAL and ROSAT arxiv:0811.v1 [astro-ph 1 Nov 008 Institut für Experimentelle Kernphysik, Universiät Karlsruhe E-mail: gebauer@ekp.uni-karlsruhe.de

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

The Egret Excess, an Example of Combining Tools

The Egret Excess, an Example of Combining Tools The Egret Excess, an Example of Combining Tools Institut für Experimentelle Kernphysik, Universität Karlsruhe TOOLS 2006-26th - 28th June 2006 - Annecy Outline Spectral Fit to EGRET data Problems: Rotation

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Dark gas contribution to diffuse gamma-ray emission

Dark gas contribution to diffuse gamma-ray emission Dark gas contribution to diffuse gamma-ray emission Masaki Mori ICRR CANGAROO group internal seminar, November 7, 2005 Adrian Cho S. Hunter, GLAST meeting, Oct.2004 The Galactic Diffuse Gamma-ray Emission...

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies SLAC-PUB-8660 October 2000 astro-ph/0003407 What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies Seth Digelaxb, Igor V. Moskalenko xc, and Jonathan F. Ormes, P. Sreekumard. and P. Roger

More information

Diffuse γ-ray emission: lessons and perspectives

Diffuse γ-ray emission: lessons and perspectives Diffuse γ-ray emission: lessons and perspectives Igor V. Moskalenko, and Andrew W. Strong Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 New address: Hansen Experimental

More information

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath Cosmic Ray Transport (in the Galaxy) Luke Drury Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath 1 A few disclaimers and preliminary remarks! Not my main field of research

More information

Questions 1pc = 3 ly = km

Questions 1pc = 3 ly = km Cosmic Rays Historical hints Primary Cosmic Rays: - Cosmic Ray Energy Spectrum - Composition - Origin and Propagation - The knee region and the ankle Secondary CRs: -shower development - interactions Detection:

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University High-Energy GammaRays toward the Galactic Centre Troy A. Porter Stanford University Fermi LAT 5-Year Sky Map > 1 GeV Galactic Plane Galactic Centre Point Sources Diffuse γ-ray emission produced by cosmic

More information

Strict constrains on cosmic ray propagation and abundances. Aaron Vincent IPPP Durham

Strict constrains on cosmic ray propagation and abundances. Aaron Vincent IPPP Durham Strict constrains on cosmic ray propagation and abundances Aaron Vincent IPPP Durham MultiDark - IFT Madrid - Nov. 23 25 U. Reykjavík Gulli Johannesson Stanford/SLAC Igor Moskalenko Troy Porter Elena Orlando

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Sep. 13, JPS meeting

Sep. 13, JPS meeting Recent Results on Cosmic-Rays by Fermi-LAT Sep. 13, 2010 @ JPS meeting Tsunefumi Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration 1 Outline Introduction Direct measurement of CRs CRs in

More information

Seeing the moon shadow in CRs

Seeing the moon shadow in CRs Seeing the moon shadow in CRs and using the Earth field as a spectrometer Tibet III Amenomori et al. arxiv:0810.3757 see also ARGO-YBJ results Bartoli et. al, arxiv:1107.4887 Milargo: 100% coverage r owe

More information

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen New results from the AMS experiment on the International Space Station Henning Gast RWTH Aachen 1 Questions to AMS-02: Are there galaxies made of anti-matter in the Universe? What is the nature of Dark

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

DIFFUSE GALACTIC CONTINUUM GAMMA RAYS: A MODEL COMPATIBLE WITH EGRET DATA AND COSMIC-RAY MEASUREMENTS

DIFFUSE GALACTIC CONTINUUM GAMMA RAYS: A MODEL COMPATIBLE WITH EGRET DATA AND COSMIC-RAY MEASUREMENTS The Astrophysical Journal, 613:962 976, 2004 October 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DIFFUSE GALACTIC CONTINUUM GAMMA RAYS: A MODEL COMPATIBLE WITH

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone SciNeGHE 2009 Assisi, October 7th Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone Luigi Tibaldo luigi.tibaldo@pd.infn.it INFN Sezione di Padova Dip. di Fisica G. Galilei,

More information

Lecture 14 Cosmic Rays

Lecture 14 Cosmic Rays Lecture 14 Cosmic Rays 1. Introduction and history 2. Locally observed properties 3. Interactions 4. Demodulation and ionization rate 5. Midplane interstellar pressure General Reference MS Longair, High

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation? Astrophysical issues +/ in the cosmic ray e spectra: Have we seen dark matter annihilation? Julien Lavalle Department of Theoretical Physics University of Torino and INFN Collab: Torino: R. Lineros, F.

More information

A New Look at the Galactic Diffuse GeV Excess

A New Look at the Galactic Diffuse GeV Excess A New Look at the Galactic Diffuse GeV Excess Brian Baughman Santa Cruz Institute for Particle Physics 1 Overview Diffuse gamma-ray emission The Galactic diffuse gamma-ray GeV excess Discussion of the

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017 C [ ] -4 Evidence of Stochastic Acceleration of Secondary 2.2 1.0 2.0 1.8 1.6 1.4 1.2 C k p p Φ /Φ ratio fit Antiprotons by Supernova Remnants! 0.8 0.6 0.4 0.2 0.0-6 - 1 k [ GV ] -1 AMS-02 PAMELA Fermi

More information

Ingredients to this analysis

Ingredients to this analysis The dark connection between Canis Major, Monoceros Stream, gas flaring, the rotation curve and the EGRET excess From EGRET excess of diffuse Galactic gamma rays Determination of WIMP mass Determination

More information

EBL Studies with the Fermi Gamma-ray Space Telescope

EBL Studies with the Fermi Gamma-ray Space Telescope EBL Studies with the Fermi Gamma-ray Space Telescope Luis C. Reyes KICP The Extragalactic Background Light (EBL) What is it? Accumulation of all energy releases in the form of electromagnetic radiation.

More information

The positron and antiproton fluxes in Cosmic Rays

The positron and antiproton fluxes in Cosmic Rays The positron and antiproton fluxes in Cosmic Rays Paolo Lipari INFN Roma Sapienza Seminario Roma 28th february 2017 Preprint: astro-ph/1608.02018 Author: Paolo Lipari Interpretation of the cosmic ray positron

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

ORIGIN AND PROPAGATION OF COSMIC RAYS

ORIGIN AND PROPAGATION OF COSMIC RAYS Frascati Physics Series Vol. XLV (2007) pp.39-47 Science with the New Generation of High Energy Experiments Frascati, 18-20 June, 2007 ORIGIN AND PROPAGATION OF COSMIC RAYS (SOME HIGHLIGHTS) Igor V. Moskalenko

More information

What is known about Dark Matter?

What is known about Dark Matter? What is known about Dark Matter? 95% of the energy of the Universe is non-baryonic 23% in the form of Cold Dark Matter From CMB + SN1a + surveys Dark Matter enhanced in Galaxies and Clusters of Galaxies

More information

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn Radio Continuum: Cosmic Rays & Magnetic Fields Rainer Beck MPIfR Bonn Synchrotron emission Beam angle: Ψ/2=1/γ=E o /E Radio continuum tools to study GeV Cosmic ray electrons (CRE) Synchrotron spectrum:

More information

Gamma ray and antiparticles (e + and p) as tools to study the propagation of cosmic rays in the Galaxy

Gamma ray and antiparticles (e + and p) as tools to study the propagation of cosmic rays in the Galaxy Gamma ray and antiparticles (e + and p) as tools to study the propagation of cosmic rays in the Galaxy INFN Sez. La Sapienza, Rome, Italy E-mail: paolo.lipari@roma1.infn.it The spectra of cosmic rays observed

More information

observation of Galactic sources

observation of Galactic sources AGILE observation of Galactic sources Andrea Giuliani Istituto Astrofisica Spaziale e Fisica Cosmica, Milano ( INAF ) on behalf of the AGILE Team Summary of the Presentation The AGILE Mission The diffuse

More information

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Cosmic Ray Physics with the Alpha Magnetic Spectrometer Cosmic Ray Physics with the Alpha Magnetic Spectrometer Università di Roma La Sapienza, INFN on behalf of AMS Collaboration Outline Introduction AMS02 Spectrometer Cosmic Rays: origin & propagations: Dominant

More information

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives Cosmic Rays in Galaxy Clusters: Simulations and Perspectives 1 in collaboration with Volker Springel 2, Torsten Enßlin 2 1 Canadian Institute for Theoretical Astrophysics, Canada 2 Max-Planck Institute

More information

Evidence for a discrete source contribution to low-energy continuum Galactic γ-rays

Evidence for a discrete source contribution to low-energy continuum Galactic γ-rays Proc. 5th Compton Symposium (Portsmouth NH, September 1999) Evidence for a discrete source contribution to low-energy continuum Galactic γ-rays Andrew W. Strong and Igor V. Moskalenko arxiv:astro-ph/9912100

More information

Search for exotic process with space experiments

Search for exotic process with space experiments Search for exotic process with space experiments Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Rencontres de Moriond, Very High Energy Phenomena in the Universe Les Arc, 20-27

More information

Confinement of CR in Dark Matter relic clumps

Confinement of CR in Dark Matter relic clumps Confinement of CR in Dark Matter relic clumps University Karlsruhe and SINP Moscow State University W.de Boer University Karlsruhe 1 Dark Matter in Universe and the Galaxy Strong evidences for DM existence:

More information

Galactic cosmic rays propagation

Galactic cosmic rays propagation Galactic cosmic rays propagation Side view of the Galaxy The Solar system is 8.5 kpc away from the galactic center. One pc is 3.10 18 cm, so we are at a distance of 2.55 10 17 km and the light from it

More information

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano,

More information

New Calculation of Cosmic-Ray Antiproton and Positron Flux

New Calculation of Cosmic-Ray Antiproton and Positron Flux New Calculation of Cosmic-Ray Antiproton and Positron Flux By Tadao Mitsui Department of Physics, School of Science, University of Tokyo 1996 iii Abstract Cosmic-ray antiproton ( p) and positron (e +

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

Fundamental Physics with GeV Gamma Rays

Fundamental Physics with GeV Gamma Rays Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics, Santa Cruz] Fundamental Physics with GeV Gamma Rays Based on: Kamionkowski & SP, 0810.3233 (subm.

More information

Galactic diffuse gamma-rays

Galactic diffuse gamma-rays Galactic diffuse gamma-rays Masaki Mori Department of Physics, College of Science & Engineering, Ritsumeikan University 1 July 31, 2009, Dept. Astronomy, Kyoto University GeV gamma-ray sky by EGRET Compton

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Testing a DM explanation of the positron excess with the Inverse Compton scattering Testing a DM explanation of the positron excess with the Inverse Compton scattering Gabrijela Zaharijaš Oskar Klein Center, Stockholm University Work with A. Sellerholm, L. Bergstrom, J. Edsjo on behalf

More information

Galactic Diffuse Gamma-Ray Emission

Galactic Diffuse Gamma-Ray Emission Galactic Diffuse Gamma-Ray Emission The Bright Gamma-Ray Sky 7 th AGILE Workshop 29 Sep - 1 Oct, 2009 Stanley D. Hunter NASA/GSFC stanley.d.hunter@nasa.gov Galactic Diffuse Emission The beginning: OSO

More information

Spectral analysis of the 511 kev Line

Spectral analysis of the 511 kev Line Spectral analysis of the 511 kev Line Gillard William (C.E.S.R) From P. Jean et al. A&A, in press ( astro-ph/0509298 ) I. Introduction II. Annihilation spectrum 1. Independent model 2. Astrophysical model

More information

Satellite Experiments for Gamma-Ray Astrophysics

Satellite Experiments for Gamma-Ray Astrophysics Satellite Experiments for Gamma-Ray Astrophysics Science Topics for Gamma-Ray Satellites The INTEGRAL Mission & First Results MPE Garching (D) Gamma-Ray Astrophysics from Space No Ground-Based Astronomy

More information

e+ + e-(atic, FERMI, HESS, PAMELA) e-, p drown in cosmic rays?

e+ + e-(atic, FERMI, HESS, PAMELA) e-, p drown in cosmic rays? Indirect Dark Matter Signatures for Dark Matter Annihilation Annihilation products from dark matter annihilation: Gamma rays (FERMI -> arxiv:1002.1576v1) Positrons (PAMELA, arxiv:1001.3522) Antiprotons

More information

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Authors: Kingman Cheung, Po-Yan Tseng, Tzu-Chiang Yuan Physics Department, NTHU Physics Division, NCTS Institute

More information

Cosmic rays and the diffuse gamma-ray emission

Cosmic rays and the diffuse gamma-ray emission Cosmic rays and the diffuse gamma-ray emission Dipartimento di Fisica, Torino University and INFN Sezione di Torino via P. Giuria 1, 10125 Torino, Italy E-mail: donato@to.infn.it The diffuse γ-ray emission

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter:

More information

Do Gamma Rays reveal our Galaxy s DM?

Do Gamma Rays reveal our Galaxy s DM? Do Gamma Rays reveal our Galaxy s DM? We don t know it, because we don t see it! WdB, C. Sander, V. Zhukov, A. Gladyshev, D. Kazakov, EGRET excess of diffuse Galactic Gamma Rays as Tracer of DM, astro-ph/0508617,

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, A02103, doi: /2008ja013689, 2009

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, A02103, doi: /2008ja013689, 2009 Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013689, 2009 Galactic propagation of cosmic ray nuclei in a model with an increasing diffusion coefficient at low

More information

Subir Sarkar

Subir Sarkar Trinity 2016 Oxford ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles

More information

Shell supernova remnants as cosmic accelerators: II

Shell supernova remnants as cosmic accelerators: II Shell supernova remnants as cosmic accelerators: II Stephen Reynolds, North Carolina State University I. Observational tools II. Radio inferences III. X ray synchrotron emission IV. MeV GeV observations

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes K S Cheng University of Hong Kong China Outline Introduction Swift J1644+57 Positron Annihilation

More information

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) w/ Todd Thompson & Eli Waxman Thompson, Quataert, & Waxman 2007, ApJ, 654, 219 Thompson,

More information

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Fiorenza Donato @ Physics Dept., Un. Torino The gamma-ray sky - Minneapolis, October 10, 2013 Plan of my talk What

More information

Dark Matter Decay and Cosmic Rays

Dark Matter Decay and Cosmic Rays Dark Matter Decay and Cosmic Rays Christoph Weniger Deutsches Elektronen Synchrotron DESY in collaboration with A. Ibarra, A. Ringwald and D. Tran see arxiv:0903.3625 (accepted by JCAP) and arxiv:0906.1571

More information

Production of Secondary Cosmic Rays in Supernova Remnants

Production of Secondary Cosmic Rays in Supernova Remnants Production of Secondary Cosmic Rays in Supernova Remnants E. G. Berezhko, Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677891 Yakutsk, Russia E-mail: ksenofon@ikfia.sbras.ru

More information

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier 1 EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY Léa Jouvin, A. Lemière and R. Terrier 2 Excess of VHE cosmic rays (CRs) γ-ray count map Matter traced by CS 150 pc After subtracting the

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Indirect Dark Matter constraints with radio observations

Indirect Dark Matter constraints with radio observations Indirect Dark Matter constraints with radio observations In collaboration with E.Borriello and G.Miele, University of Naples Federico II Alessandro Cuoco, Institute for Physics and Astronomy University

More information

Primary Cosmic Rays : what are we learning from AMS

Primary Cosmic Rays : what are we learning from AMS Primary Cosmic Rays : what are we learning from AMS Roberto Battiston University and INFN-TIFPA of Trento HERD Workshop IHEP-Beijing December 2-3 2013 1 Agile Fermi PAMELA AMS Direct study of the HESS

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Low-Energy Cosmic Rays

Low-Energy Cosmic Rays Low-Energy Cosmic Rays Cosmic rays, broadly defined, are charged particles from outside the solar system. These can be electrons, protons, or ions; the latter two dominate the number observed. They are

More information

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center! > News < Anti-matter, dark matter measurement By measuring the cosmic rays (Mainly electron, positron, proton, anti-proton and light nuclei) AMS-02 will be launched onboard the Shuttle Endeavour On May

More information

Galactic Cosmic Ray Propagation in the AMS 02 Era

Galactic Cosmic Ray Propagation in the AMS 02 Era Galactic Cosmic Ray Propagation in the AMS 02 Era I Science case 1. Galactic Cosmic Rays 2. AMS 02 II Collaboration LAPP/LAPTh/LPSC 1. Teams and context 2. Support asked for the project III Conclusions

More information

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics Gamma-ray emission at the base of the Fermi bubbles Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics On behalf of the Fermi-LAT collaboration TeVPA 2018, Berlin Fermi bubbles surprise

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Cosmic Rays - R. A. Mewaldt - California Institute of Technology

Cosmic Rays - R. A. Mewaldt - California Institute of Technology Cosmic Rays - R. A. Mewaldt - California Institute of Technology Cosmic rays are high energy charged particles, originating in outer space, that travel at nearly the speed of light and strike the Earth

More information

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe From CMB + SN1a + Dmitri Kazakov, Alex Gladyshev structure

More information

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 SEARCHES FOR ANTIMATTER DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 OUTLINE Early History Baryon Asymmetry of the Universe? Current Limits on Antimatter Nuclei from Distant Galaxies

More information

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Greg Madejski Stanford Linear Accelerator Center and Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Outline:

More information

MODELS FOR GALACTIC COSMIC-RAY PROPAGATION

MODELS FOR GALACTIC COSMIC-RAY PROPAGATION MODELS FOR GALACTIC COSMIC-RAY PROPAGATION A.W. Strong 1 and I.V. Moskalenko 2 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany 2 NASA/Goddard Space Flight Center,

More information

Cosmic Rays & Galactic Winds

Cosmic Rays & Galactic Winds Cosmic Rays & Galactic Winds Lecutre given at the Summer School: Magnetic Fields: From Star-forming Regions to Galaxy Clusters and Beyond Dieter Breitschwerdt Lecture Overview Introduction Cosmic Rays

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Astrophysical issues in indirect DM detection

Astrophysical issues in indirect DM detection Astrophysical issues in indirect DM detection Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM), France Université Montpellier II CNRS-IN2P3 (UMR 5299) Service de Physique Théorique Université

More information