Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015

Size: px
Start display at page:

Download "Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015"

Transcription

1 /4/ Learnng Objecves Self Organzaon Map Learnng whou Exaples. Inroducon. MAXNET 3. Cluserng 4. Feaure Map. Self-organzng Feaure Map 6. Concluson 38 Inroducon. Learnng whou exaples. Daa are npu o he syse one by one 3. Mappng he daa no one or ore denson space 4. Copeve learnng Hang Dsance(/). Defne HD(Hang Dsance) beween wo bnary codes A and B of he sae lengh as he nuber of place n whch a, and b j dffer.. Ex: A: [ - ] B: [ - - ] => HD(A, B) = Hang Dsance(/) Hang Dsance(3/) 6

2 /4/ Hang Dsance(4/) 3. Or, HD can be defned as he lowes nuber of edges ha us be raversed beween he wo relevan codes. 4. If A and B are bpolar bnary coponens, hen he scalar produc of A, B : Hang Dsance(/) A B n HD ( A, B ) HD( A, B) bs are agreed n HD( A, B) bs are dfferen 7 8 MAXNET(/3). For a wo layer classfer of bnary bpolar vecors, and p classes, p oupu neurons, he sronges response of a neuron ndcaes has he nu HD value and he caegory hs neuron represens. MAXNET(/3) 9 MAXNET(3/3). The MAXNET operaes o suppress values a oupu nsead of oupu values of Hang newor. 3. For he Hang ne n nex fgure, we have npu vecor X p classes => p neurons for oupu oupu vecor Y = [y, y p ] MAXNET(4/3)

3 /4/ 3 MAXNET(/3) 4. for any oupu neuron,, =, p, we have = [w, w, w n ] and =,, p o be he weghs beween npu X and each oupu neuron.. Also, assung ha for each class, one has he prooype vecor S () as he sandard o be ached. 4 MAXNET(6/3) 6. For classfyng p classes, one can say he h oupu s f and only f X= S () => happens only () = S () oupu for he classfer are X S (), X S (), X S (), X S (p) So when X= S (), he h oupu s n and oher oupus are saller han n. MAXNET(7/3) 7. X S () = (n - HD(X, S () ) ) - HD(X, S () ) ½ X S () = n/ HD(X, S () ) So he wegh arx: H =½S H S S ( S () () p) S S S () () ( p) S S S () n () n ( p) n 6 MAXNET(8/3) 8. By gvng a fxed bas n/ o he npu hen ne = ½X S () + n/ for =,, p or ne = n - HD(X, S () ) MAXNET(9/3) 9. To scale he npu ~n o ~ down, one can apply ransfer funcon as f(ne ) = ne for =,,..p MAXNET(/3) 7 8 3

4 /4/ MAXNET(/3). So for he node wh he he hghes oupu eans ha he node has salles HD beween npu and prooype vecors S () S ().e. f(ne ) = for oher nodes f(ne ) < MAXNET(/3). MAXNET s eployed as a second layer only for he cases where an enhanceen of he nal donan response of h node s requred..e., he purpose of MAXNET s o le ax{ y, y p } equal o and le ohers equal o. 9 MAXNET(3/3) MAXNET(4/3). To acheve hs, one can le y f y ( y j ) j where =, p ; j=, p ; j y s bounded by y for =, p oupu of Hang Ne. and y can only be or. 3 MAXNET(/3) 3. So ε s bounded by <ε</p and M ε: laeral neracon coeffcen ( p p) And 4 MAXNET(6/3) ne M y 4

5 /4/ MAXNET(7/3) 4. So he ransfer funcon MAXNET(8/3) f ( ne) ne ne ne 6 MAXNET(9/3) Ex: To have a Hang Ne for classfyng C, I, T hen S () = [ - - ] S () = [ ] S (3) = [ ] MAXNET(/3) 7 8 So H MAXNET(/3) ne X n H For X MAXNET(/3) ne 7 3 And 7 f ne 9 Y

6 /4/ 6 3 MAXNET(3/3) Inpu o MAXNET and selec =. < /3(=/p) So M 3 MAXNET(4/3) And M ne f Y Y ne 33 MAXNET(/3) = ne f Y o ne 34 MAXNET(7/3) = Y ne MAXNET(8/3) = Y ne MAXNET(9/3) =3 Y ne

7 /4/ MAXNET(3/3) Suary: Hang newor only ells whch class wll osly le, no o resore dsored paern. Cluserng Unsupervsed Learnng(/). Inroducon a. o caegorze or cluser daa b. groupng slar objecs and separang of dsslar ones. Assung paern se {X, X, X N } s subed o deerne he decson funcon requred o denfy possble clusers, => by slary rules Cluserng Unsupervsed Learnng(/) Cluserng Unsupervsed Learnng(3/) Eucldean Dsance : X X cosψ ( X X ) ( X X ) X X X X 39 4 Cluserng Unsupervsed Learnng(4/) 3. nner-tae-all learnng Assung npu vecors are o be classfed no one of specfc nuber of p caegores accordng o he clusers deeced n he ranng se {X, X, X N }. Cluserng Unsupervsed Learnng(/) 4 4 7

8 /4/ Cluserng Unsupervsed Learnng(6/) Kohonen Newor Y=f( X) for vecor sze = n p and 43 w w for,,p n Cluserng Unsupervsed Learnng(7/) pror o he learnng, noralzaon of all wegh vecors s requred So 44 Cluserng Unsupervsed Learnng(8/) The eanng of ranng s o fnd all such ha X n X,, p fro.e., he h neuron wh vecor s he closes approxaon of he curren X. Fro Cluserng Unsupervsed Learnng(9/) X X and n X,, p n X,, p X X X ax,, p X 4 46 So Cluserng Unsupervsed Learnng(/) X ax X,, p The h neuron s he wnnng neuron and has he larges value of ne, =, p. Cluserng Unsupervsed Learnng(/) Thus should be adjused such ha X - s reduced. Then, X - can be reduced by he drecon of graden. X - = -(X - ) Or, ncrease n (X - ) drecon

9 /4/ Cluserng Unsupervsed Learnng(/) For any X s jus a sngle sep, we wan only fracon of (X - ), hus for neuron : = α(x - ).< α <.7 for oher neurons: = Cluserng Unsupervsed Learnng(3/) In general: ( X ) where : wnnng neuron α : learnng consan for 49 Cluserng Unsupervsed Learnng(/) 4. Geoercal nerpreaon npu vecor X (noralzed) and wegh s wnner => X X for,,p ax 旐 Cluserng Unsupervsed Learnng(6/) So X And Cluserng Unsupervsed Learnng(7/) 3 ' s creaed. X X Cluserng Unsupervsed Learnng(8/) Thus he wegh adjusen s anly he roaon of he wegh vecor oward npu vecor whou a sgnfcan lengh change. And s no a noral, so n he new ranng sage, us be noralzed agan. s a vecor pon o he gravy of each cluser on a uny sphere. 4 X X X X X X X 9

10 /4/ Cluserng Unsupervsed Learnng(9/). In he case of soe paerns are nown class, hen X X α > for correc node α < oherwse Ths wll accelerae he learnng process sgnfcanly. Cluserng Unsupervsed Learnng(/) 6. Anoher odfcaon s o adjus he wegh for boh wnner and losers. leay copeve learnng 7. Recall Y= f( X) X 8. Inalzaon of weghs Randoly choose wegh fro U(,) or convex cobnaon for,, p n 6 Feaure Map(/6). Transfor fro hgh densonal paern space o low-denson feaure space.. Feaure exracon: wo caegory: naural srucure X no naural srucure -- depend on paern s slar o huan percepon or no Feaure Map(/6) X X X X X X X 7 8 Feaure Map(3/6) 3. anoher poran aspec s o represen he feaure as naural as possble. 4. Self organzng neural array ha can ap feaures X fro paern space. Feaure Map(4/6). Use one densonal array or Two densonal array 6. Exaple: X: npu vecor X X X X X X X : neuron w j :wegh fro npu x j o neuron y : oupu of neuron 9 6

11 /4/ Feaure Map(/6) X X X X X X X 7. So defne y f ( S( X, )) where S( X, ) eans Feaure Map(6/6) he slary beween X 8. Thus, (b) s he resul of (a) X and 6 6 Self-organzng Feaure Map(/6). One densonal appng se of paern X, =,,. use a lnear array > > 3 >.. f X y ax y( X ),,, 63 y ax y( X ),,, Self-organzng Feaure Map(/6). Thus, hs learnng s o fnd he bes achng neuron cells whch can acvae her spaal neghbors o reac o he sae X npu. 3. Or o fnd c such ha 64 X c n X Self-organzng Feaure Map(3/6) 4. In case of wo wnners, choose lower.. If c s he wnnng neuron hen defne N c as he neghborhood around c and X N c s always changng as learnng gong. 6. Then x w ) f s n he neghborho od w j 6 ( j j Nc oherwse Self-organzng Feaure Map(4/6) 7. : T where : curren ranng eraon T: oal # of ranng seps o be done. X 8. sars fro and s decreased unl reaches value of 66

12 /4/ Self-organzng Feaure Map(/6) 9. If recangular neghborhood s used hen c-d < x < c+d c-d < y < c+d and as learnng connues X d d T d s decreased fro d o 67 Self-organzng Feaure Mapexaple. Exaple: a. Inpu paerns are chosen randoly fro U[,]. b. The daa eployed n he experen coprsed pons dsrbued unforly over he bpolar square [,] [, ] c. The pons hus descrbe a geoercally X square opology. d. Thus, nal weghs can be ploed as n nex fgure. d. - connecon lne connecs wo adjacen neuron n copeve layer. 68 Self-organzng Feaure Mapexaple Self-organzng Feaure Map-- Exaple X X X X X X X X X X X X X X 69 7 Self-organzng Feaure Map Exaple Self-organzng Feaure Map Exaple X X X X X X X X X X X X X X 7 7

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Chapter 4. Neural Networks Based on Competition

Chapter 4. Neural Networks Based on Competition Chaper 4. Neural Neworks Based on Compeon Compeon s mporan for NN Compeon beween neurons has been observed n bologcal nerve sysems Compeon s mporan n solvng many problems To classfy an npu paern _1 no

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Fitting a transformation: Feature based alignment May 1 st, 2018

Fitting a transformation: Feature based alignment May 1 st, 2018 5//8 Fng a ransforaon: Feaure based algnen Ma s, 8 Yong Jae Lee UC Davs Las e: Deforable conours a.k.a. acve conours, snakes Gven: nal conour (odel) near desred objec Goal: evolve he conour o f eac objec

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure ldes for INRODUCION O Machne Learnng EHEM ALPAYDIN he MI Press, 004 alpaydn@boun.edu.r hp://.cpe.boun.edu.r/~ehe/l CHAPER 6: Densonaly Reducon Why Reduce Densonaly?. Reduces e copley: Less copuaon.

More information

Sklar: Sections (4.4.2 is not covered).

Sklar: Sections (4.4.2 is not covered). COSC 44: Dgal Councaons Insrucor: Dr. Ar Asf Deparen of Copuer Scence and Engneerng York Unversy Handou # 6: Bandpass Modulaon opcs:. Phasor Represenaon. Dgal Modulaon Schees: PSK FSK ASK APK ASK/FSK)

More information

Lecture 2 L n i e n a e r a M od o e d l e s

Lecture 2 L n i e n a e r a M od o e d l e s Lecure Lnear Models Las lecure You have learned abou ha s machne learnng Supervsed learnng Unsupervsed learnng Renforcemen learnng You have seen an eample learnng problem and he general process ha one

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

CHAPTER II AC POWER CALCULATIONS

CHAPTER II AC POWER CALCULATIONS CHAE AC OWE CACUAON Conens nroducon nsananeous and Aerage ower Effece or M alue Apparen ower Coplex ower Conseraon of AC ower ower Facor and ower Facor Correcon Maxu Aerage ower ransfer Applcaons 3 nroducon

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Nonlinear Classifiers II

Nonlinear Classifiers II Nonlnear Classfers II Nonlnear Classfers: Introducton Classfers Supervsed Classfers Lnear Classfers Perceptron Least Squares Methods Lnear Support Vector Machne Nonlnear Classfers Part I: Mult Layer Neural

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Sdes for INTRODUCTION TO MACHINE LEARNING 3RD EDITION aaydn@boun.edu.r h://www.ce.boun.edu.r/~ehe/23e CHAPTER 7: CLUSTERING Searaerc Densy Esaon 3 Paraerc: Assue

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2) Company LOGO THERMODYNAMICS The Frs Law and Oher Basc Conceps (par ) Deparmen of Chemcal Engneerng, Semarang Sae Unversy Dhon Harano S.T., M.T., M.Sc. Have you ever cooked? Equlbrum Equlbrum (con.) Equlbrum

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Anomaly eecon Lecure Noes for Chaper 9 Inroducon o aa Mnng, 2 nd Edon by Tan, Senbach, Karpane, Kumar 2/14/18 Inroducon o aa Mnng, 2nd Edon 1 Anomaly/Ouler eecon Wha are anomales/oulers? The se of daa

More information

A Modified Genetic Algorithm Comparable to Quantum GA

A Modified Genetic Algorithm Comparable to Quantum GA A Modfed Genec Algorh Coparable o Quanu GA Tahereh Kahookar Toos Ferdows Unversy of Mashhad _k_oos@wal.u.ac.r Habb Rajab Mashhad Ferdows Unversy of Mashhad h_rajab@ferdows.u.ac.r Absrac: Recenly, researchers

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

Homework 8: Rigid Body Dynamics Due Friday April 21, 2017

Homework 8: Rigid Body Dynamics Due Friday April 21, 2017 EN40: Dynacs and Vbraons Hoework 8: gd Body Dynacs Due Frday Aprl 1, 017 School of Engneerng Brown Unversy 1. The earh s roaon rae has been esaed o decrease so as o ncrease he lengh of a day a a rae of

More information

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are Chaper 6 DCIO AD IMAIO: Fndaenal sses n dgal concaons are. Deecon and. saon Deecon heory: I deals wh he desgn and evalaon of decson ang processor ha observes he receved sgnal and gesses whch parclar sybol

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

How about the more general linear scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )? lmcd Lnear ransformaon of a vecor he deas presened here are que general hey go beyond he radonal mar-vecor ype seen n lnear algebra Furhermore, hey do no deal wh bass and are equally vald for any se of

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

CHAPTER 7: CLUSTERING

CHAPTER 7: CLUSTERING CHAPTER 7: CLUSTERING Semparamerc Densy Esmaon 3 Paramerc: Assume a snge mode for p ( C ) (Chapers 4 and 5) Semparamerc: p ( C ) s a mure of denses Mupe possbe epanaons/prooypes: Dfferen handwrng syes,

More information

Content. A Strange World. Clustering. Introduction. Unsupervised Learning Networks. What is Unsupervised Learning? Unsupervised Learning Networks

Content. A Strange World. Clustering. Introduction. Unsupervised Learning Networks. What is Unsupervised Learning? Unsupervised Learning Networks Usupervsed Learg Newors Cluserg Coe Iroduco Ipora Usupervsed Learg NNs Hag Newors Kohoe s Self-Orgazg Feaure Maps Grossberg s AR Newors Couerpropagao Newors Adapve BAN Neocogro Cocluso Usupervsed Learg

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6) Econ7 Appled Economercs Topc 5: Specfcaon: Choosng Independen Varables (Sudenmund, Chaper 6 Specfcaon errors ha we wll deal wh: wrong ndependen varable; wrong funconal form. Ths lecure deals wh wrong ndependen

More information

Panel Data Regression Models

Panel Data Regression Models Panel Daa Regresson Models Wha s Panel Daa? () Mulple dmensoned Dmensons, e.g., cross-secon and me node-o-node (c) Pongsa Pornchawseskul, Faculy of Economcs, Chulalongkorn Unversy (c) Pongsa Pornchawseskul,

More information

An Integrated and Interactive Video Retrieval Framework with Hierarchical Learning Models and Semantic Clustering Strategy

An Integrated and Interactive Video Retrieval Framework with Hierarchical Learning Models and Semantic Clustering Strategy An Inegraed and Ineracve Vdeo Rereval Framewor wh Herarchcal Learnng Models and Semanc Cluserng Sraegy Na Zhao, Shu-Chng Chen, Me-Lng Shyu 2, Suar H. Rubn 3 Dsrbued Mulmeda Informaon Sysem Laboraory School

More information

3D Human Pose Estimation from a Monocular Image Using Model Fitting in Eigenspaces

3D Human Pose Estimation from a Monocular Image Using Model Fitting in Eigenspaces J. Sofware Engneerng & Applcaons, 00, 3, 060-066 do:0.436/jsea.00.35 Publshed Onlne Noveber 00 (hp://www.scrp.org/journal/jsea) 3D Huan Pose Esaon fro a Monocular Iage Usng Model Fng n Egenspaces Gel Bo,

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

Long Term Power Load Combination Forecasting Based on Chaos-Fractal Theory in Beijing

Long Term Power Load Combination Forecasting Based on Chaos-Fractal Theory in Beijing JAGUO ZHOU e al: LOG TERM POWER LOAD COMBIATIO FORECASTIG BASED O CHAOS Long Ter Power Load Cobnaon Forecasng Based on Chaos-Fracal Theory n Bejng Janguo Zhou,We Lu,*,Qang Song School of Econocs and Manageen

More information

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study) Inernaonal Mahemacal Forum, Vol. 8, 3, no., 7 - HIKARI Ld, www.m-hkar.com hp://dx.do.org/.988/mf.3.3488 New M-Esmaor Objecve Funcon n Smulaneous Equaons Model (A Comparave Sudy) Ahmed H. Youssef Professor

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 1/2008, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 1/2008, pp THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMNIN CDEMY, Seres, OF THE ROMNIN CDEMY Volue 9, Nuber /008, pp. 000 000 ON CIMMINO'S REFLECTION LGORITHM Consann POP Ovdus Unversy of Consana, Roana, E-al: cpopa@unv-ovdus.ro

More information

Today s topic: IMPULSE AND MOMENTUM CONSERVATION

Today s topic: IMPULSE AND MOMENTUM CONSERVATION Today s opc: MPULSE ND MOMENTUM CONSERVTON Reew of Las Week s Lecure Elasc Poenal Energy: x: dsplaceen fro equlbru x = : equlbru poson Work-Energy Theore: W o W W W g noncons W non el W noncons K K K (

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

A Cell Decomposition Approach to Online Evasive Path Planning and the Video Game Ms. Pac-Man

A Cell Decomposition Approach to Online Evasive Path Planning and the Video Game Ms. Pac-Man Cell Decomoson roach o Onlne Evasve Pah Plannng and he Vdeo ame Ms. Pac-Man reg Foderaro Vram Raju Slva Ferrar Laboraory for Inellgen Sysems and Conrols LISC Dearmen of Mechancal Engneerng and Maerals

More information

Changeovers. Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Changeovers. Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA wo ew Connuous-e odels for he Schedulng of ulsage Bach Plans wh Sequence Dependen Changeovers Pedro. Casro * gnaco E. Grossann and Auguso Q. ovas Deparaeno de odelação e Sulação de Processos E 649-038

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering CS 536: Machne Learnng Nonparamerc Densy Esmaon Unsupervsed Learnng - Cluserng Fall 2005 Ahmed Elgammal Dep of Compuer Scence Rugers Unversy CS 536 Densy Esmaon - Cluserng - 1 Oulnes Densy esmaon Nonparamerc

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

Connectionist Classifier System Based on Accuracy in Autonomous Agent Control

Connectionist Classifier System Based on Accuracy in Autonomous Agent Control Connecionis Classifier Syse Based on Accuracy in Auonoous Agen Conrol A S Vasilyev Decision Suppor Syses Group Riga Technical Universiy /4 Meza sree Riga LV-48 Lavia E-ail: serven@apollolv Absrac In his

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

Testing a new idea to solve the P = NP problem with mathematical induction

Testing a new idea to solve the P = NP problem with mathematical induction Tesng a new dea o solve he P = NP problem wh mahemacal nducon Bacground P and NP are wo classes (ses) of languages n Compuer Scence An open problem s wheher P = NP Ths paper ess a new dea o compare he

More information

Influence of Probability of Variation Operator on the Performance of Quantum-Inspired Evolutionary Algorithm for 0/1 Knapsack Problem

Influence of Probability of Variation Operator on the Performance of Quantum-Inspired Evolutionary Algorithm for 0/1 Knapsack Problem The Open Arfcal Inellgence Journal,, 4, 37-48 37 Open Access Influence of Probably of Varaon Operaor on he Perforance of Quanu-Inspred Eoluonary Algorh for / Knapsack Proble Mozael H.A. Khan* Deparen of

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

Multi-Objective Control and Clustering Synchronization in Chaotic Connected Complex Networks*

Multi-Objective Control and Clustering Synchronization in Chaotic Connected Complex Networks* Mul-Objecve Conrol and Cluserng Synchronzaon n Chaoc Conneced Complex eworks* JI-QIG FAG, Xn-Bao Lu :Deparmen of uclear Technology Applcaon Insue of Aomc Energy 043, Chna Fjq96@6.com : Deparmen of Auomaon,

More information

Computational and Statistical Learning theory Assignment 4

Computational and Statistical Learning theory Assignment 4 Coputatonal and Statstcal Learnng theory Assgnent 4 Due: March 2nd Eal solutons to : karthk at ttc dot edu Notatons/Defntons Recall the defnton of saple based Radeacher coplexty : [ ] R S F) := E ɛ {±}

More information

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition EHEM ALPAYDI he MI Press, 04 Lecure Sldes for IRODUCIO O Machne Learnng 3rd Edon alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/ml3e Sldes from exboo resource page. Slghly eded and wh addonal examples

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

Constrained-Storage Variable-Branch Neural Tree for. Classification

Constrained-Storage Variable-Branch Neural Tree for. Classification Consraned-Sorage Varable-Branch Neural Tree for Classfcaon Shueng-Ben Yang Deparmen of Dgal Conen of Applcaon and Managemen Wenzao Ursulne Unversy of Languages 900 Mnsu s oad Kaohsng 807, Tawan. Tel :

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure Sdes for INTRODUCTION TO Machne Learnng ETHEM ALPAYDIN The MIT Press, 2004 aaydn@boun.edu.r h://www.cme.boun.edu.r/~ehem/2m CHAPTER 7: Cuserng Semaramerc Densy Esmaon Paramerc: Assume a snge mode

More information

General Weighted Majority, Online Learning as Online Optimization

General Weighted Majority, Online Learning as Online Optimization Sascal Technques n Robocs (16-831, F10) Lecure#10 (Thursday Sepember 23) General Weghed Majory, Onlne Learnng as Onlne Opmzaon Lecurer: Drew Bagnell Scrbe: Nahanel Barshay 1 1 Generalzed Weghed majory

More information

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of.

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of. Inroducion o Nuerical Analysis oion In his lesson you will be aen hrough a pair of echniques ha will be used o solve he equaions of and v dx d a F d for siuaions in which F is well nown, and he iniial

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

CS 268: Packet Scheduling

CS 268: Packet Scheduling Pace Schedulng Decde when and wha pace o send on oupu ln - Usually mplemened a oupu nerface CS 68: Pace Schedulng flow Ion Soca March 9, 004 Classfer flow flow n Buffer managemen Scheduler soca@cs.bereley.edu

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Main questions Motivation: Recognition

Main questions Motivation: Recognition /6/9 hp://www.ouue.co/wach?vl de77e4py4q Algnen and Iage Warpng Tuesda, Oc 6 Announceens Mder s ne Tues, /3 In class Can rng one 8.5 shee of noes Handou: prevous ears ders Toda Algnen & warpng d ransforaons

More information

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment EEL 6266 Power Sysem Operaon and Conrol Chaper 5 Un Commmen Dynamc programmng chef advanage over enumeraon schemes s he reducon n he dmensonaly of he problem n a src prory order scheme, here are only N

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information