Syllogistic Logic and its Extensions

Size: px
Start display at page:

Download "Syllogistic Logic and its Extensions"

Transcription

1 1/31 Syllogistic Logic and its Extensions Larry Moss, Indiana University NASSLLI 2014

2 2/31 Logic and Language: Traditional Syllogisms All men are mortal. Socrates is a man. Socrates is mortal. Some men are mortal. Socrates is a man. Socrates is mortal. All frogs are reptiles. All reptiles are animals. All frogs are animals.

3 3/31 More examples All frogs are reptiles. All frogs are animals. All reptiles are animals. All sagatricians are maltnomans. All sagatricians are aikims. All maltnomans are aikims. There is an exact definition of validity for arguments. The form is as important, even more important, than the particular words.

4 4/31 More examples All X are Y. All Y are Z. All W are X. All W are Z. So valid arguments can have more than two premises.

5 5/31 Syntax and Semantics Probably the key point of logic is that there is a distinction between syntax and semantics. The idea is that syntax is the raw symbols. The semantics is where we get the meaning. So in our examples, we need some context or model to give a meaning. In our examples, the syntax will start with some variables p, q, n, n 1,.... Then our sentences are expressions of the form All p are q.

6 Semantics To say whether All sagatricians (s) are maltnomans (m). is true or not needs a context. This is given by a few things: First, a set U called the universe. Second, for the words sagatrician and maltnoman, we need sets [[sagatrician]] U and [[maltnomanan]] U. Given all of this, we say that All s are m is true in the context if [[s]] [[m]]. Otherwise, All s are m is false in the context. What should we say about Some s are m and No s are m? 6/31

7 7/31 Semantics, again Syntax: All p are q, Some p are q, No p are q Semantics: A model M is a set M, and for each variable p we have an interpretation [[p]] M. M = All p are q iff [[p]] [[q]] The symbols M = ϕ is read as M satisfies ϕ. A statement like M = All p are q could also be read as All p are q is true in M

8 8/31 One fine point on the definition is that if [[X]] is the empty set, then our sentence All X are Y is true! So in this room now, All people in the room over 7 feet tall are standing is (on this definition) true. A Quirk This strange point will lead us to various issues over the next few lectures. For now, it might be best to say that it s true because there are no exceptions. But we again admit that the semantics of All that we are giving is not what most people would agree to in cases where [[X]] =.

9 Validity of Arguments At this point, we know how to give the semantics of single sentences. We say that a sentence ϕ follows from sentences A 1,..., A n if every model that makes all of the As true also makes ϕ true. We write this as A 1,..., A n = ϕ and we also say that the A s semantically imply ϕ. To argue that A 1,..., A n = ϕ we need some reasoning. Usually, we do this in English and in an informal way, just as one would do ordinary reasoning. But to argue that A 1,..., A n = ϕ we can produce a counterexample. In all of this work, the main thing is that we have a rigorous definition. 9/31

10 10/31 A small note on notation We use letters like Γ (Greek letter Gamma) for sets of sentences. And then we would write Γ = ϕ to mean that every model of all the sentences in Γ is also a model of ϕ. However, if Γ is a set that we have listed out, say Γ = {A 1, A 2,..., A 104 }. then usually we would write Γ = ϕ as rather than as A 1, A 2,..., A 104 = ϕ {A 1, A 2,..., A 104 } = ϕ. That is, we drop the set braces on the left of the = symbol. We do this to make things a little more readable.

11 11/31 Validity: the idea premises {}}{ A 1, A 2,..., A n = conclusion {}}{ S The intuition is that A 1, A 2,..., A n = S means that any circumstance in which the premises A 1, A 2,..., A n are all true is also a circumstance in which the conclusion S is true

12 12/31 Some points Note the difference between syntax and semantics. = is intended to mean follows by general-purpose reasoning. We can check whether our definitions match with our intuitions. In the case of our very simple fragment, this mostly is right. The main exception is that people usually wouldn t say All X are Y in a context where they know that there are no X.

13 13/31

14 14/31 Formal proofs: a preliminary point A formal proof is like a caricature of the reasoning that a person would go through in showing that some premises lead to a conclusion. It is very common in introductory logic classes to present one or another kind of formal proof systems. (There are probably hundreds of them.) Working with a formal proof system is usually a tedious and boring experience.

15 15/31 Let Γ be a set of sentences {A 1,..., A n }. A proof tree over Γ is a tree following properties: Proof Trees 1 The leaves are either labeled with sentences from Γ, or with sentences of the form All X are X. 2 The interior leaves match one of the rules of our system (see the next slide). The trees are drawn with the root at the bottom and the leaves at the top. If there is a proof tree over Γ whose root is labeled ϕ, we write Γ ϕ. We say that ϕ is provable from Γ in our system.

16 16/31 The rules for building trees All p are p All p are n All n are q All p are q

17 17/31 Example Let Γ be the set {All A are B, All Q are A, All B are D, All C are D, All A are Q} Let ϕ be All Q are D. Here is a proof tree showing that Γ S: All A are B All B are D All Q are A All A are D All Q are D All of the leaves belong to Γ. Note also that some elements of Γ are not used as leaves. This is permitted according to our definition. The proof tree above shows that Γ S.

18 What are we doing here? The idea is that proof trees are our model of basic reasoning using the words all, some, no. A proof tree is like a caricature of a real proof. It can be examined (and even constructed) by a person or computer who has no understanding of anything but the rules! There are several hopes about this work: The whole thing will scale up to include many more words. (This would call on linguistic semantics to provide the correct notion of context.) The formal relation should have something to do with = (logic) The proof system should have something to do with actual human reasoning (psychology) A computer should be able to work with without understanding anything. 18/31

19 19/31 Soundness A computer could check whether a purported tree actually satisfies our definition, even if it didn t understand All. So one important question is: what is the relation between Γ A and Γ = A? Soundness If Γ S, then Γ = S. This means that proof trees do not lead us astray: if Γ ϕ, then in any context where the sentences of Γ all hold, ϕ too must hold. Our proof system will not lead us to believe that bogus syllogisms are in fact valid.

20 20/31 Soundness Here is the basic idea of why the Soundness Lemma holds. The two most basic facts about are: 1 X X for all sets X. 2 For all sets X, Y, and Z: if X Y and Y Z, then X Z. (Probably the third basic fact would be that X for all X.)

21 Let s go back to our example proof tree. Soundness Sketch, Continued All A are B All B are D All Q are A All A are D All Q are D Take any model, say M. Assume that in M, [[A]] [[B]], etc. We have to show that in this same model M, [[Q]] [[D]]. The idea is to use our proof tree and read it as talking about subsets of this one model M: [[A]] [[B]] [[B]] [[D]] [[Q]] [[A]] [[A]] [[D]] [[Q]] [[D]] And then going downward mirrors intuitively valid reasoning in the model. Since the model M was arbitrary (had no special features), the conclusion Γ = S holds. 21/31

22 22/31 Review: Γ ϕ and Γ = ϕ Γ = ϕ means that every model of all sentences in Γ is again a model of ϕ. Γ ϕ means that there is a formal proof in our system using the sentences in Γ as assumptions and ϕ as the conclusion. It s important to see that these two concepts Γ = ϕ and Γ ϕ are different. It will turn out that Γ = ϕ if and only if Γ ϕ but this should not be obvious!

23 Completeness At this point, we know that our system is sound: If Γ S, then Γ = S. Perhaps more important is the converse of this: Completeness If Γ = S, then Γ S. Before we turn to the proof, it is important to see what this says. Soundness says that the proof system will not lead us astray. Completeness tells us that if Γ semantically implies A, then we can find one of our (semantics-free!) proof trees showing Γ A. 23/31

24 24/31 A proof tree in this system Γ = We see that Γ All B are G. Do you think that Γ All D are E? All A are B, All A are C, All B are C, All C are B, All C are D, All B are E, All D are G, All F are G, All G are F

25 25/31 Preorders Definition A preorder is a pair (P, ), where P is a set and is a relation on it with the following properties: reflexive p p transitive If p q and q r, then p r. We need not have the following property: anti-symmetric if p q and q p, then p = q. An anti-symmetric preorder is a partially ordered set (poset).

26 26/31 A picture of a preorder Γ = All A are B, All A are C, All B are C, All C are B, All C are D, All B are E, All D are G, All F are G, All G are F F, G D B, C E The set P here is {A,..., G}. The order go up (counting a node s mate, if any). A

27 27/31 Downsets in preorders In a preorder, p = {x : x p}. F, G F = G = {A,..., G} D E D = {A, B, C, D}, E = {A, B, C, E} B, C B = {A, B, C} = C A A = {A} is monotone: if p q, then p q.

28 28/31 Proof of completeness Suppose that Γ = All X are Y. At this point, we re going to make up a special model. Let M be the set of variables. Define A B to mean that Γ All A are B. Check that this is reflexive and transitive, using the logic. We get to interpret the nouns any way we like. We use the downsets: By transitivity, M = Γ. [[A]] = A = {B : B A}

29 28/31 Proof of completeness Suppose that Γ = All X are Y. At this point, we re going to make up a special model. Let M be the set of variables. Define A B to mean that Γ All A are B. Check that this is reflexive and transitive, using the logic. We get to interpret the nouns any way we like. We use the downsets: [[A]] = A = {B : B A} By transitivity, M = Γ. In more detail, suppose Γ contains All C are D. Then if W C, then also W D.

30 Proof of completeness Suppose that Γ = All X are Y. At this point, we re going to make up a special model. Let M be the set of variables. Define A B to mean that Γ All A are B. Check that this is reflexive and transitive, using the logic. We get to interpret the nouns any way we like. We use the downsets: [[A]] = A = {B : B A} By transitivity, M = Γ. So [[X ]] [[Y ]]. But by reflexivity X [[X ]]. And so X [[X ]]; this means that X Y. 28/31

31 29/31 Proof of Completeness I am going to show one piece of the completeness proof. Suppose that Γ = All X are Y We need to show that Γ All X are Y.

32 30/31 Proof of Completeness Suppose that Γ = All X are Y We need to show that Γ All X are Y. Define a model M by: M = all variables [[U]] = {V : Γ All V are U}

33 31/31

Extensions to the Logic of All x are y: Verbs, Relative Clauses, and Only

Extensions to the Logic of All x are y: Verbs, Relative Clauses, and Only 1/53 Extensions to the Logic of All x are y: Verbs, Relative Clauses, and Only Larry Moss Indiana University Nordic Logic School August 7-11, 2017 2/53 An example that we ll see a few times Consider the

More information

ESSLLI 2007 COURSE READER. ESSLLI is the Annual Summer School of FoLLI, The Association for Logic, Language and Information

ESSLLI 2007 COURSE READER. ESSLLI is the Annual Summer School of FoLLI, The Association for Logic, Language and Information ESSLLI 2007 19th European Summer School in Logic, Language and Information August 6-17, 2007 http://www.cs.tcd.ie/esslli2007 Trinity College Dublin Ireland COURSE READER ESSLLI is the Annual Summer School

More information

cis32-ai lecture # 18 mon-3-apr-2006

cis32-ai lecture # 18 mon-3-apr-2006 cis32-ai lecture # 18 mon-3-apr-2006 today s topics: propositional logic cis32-spring2006-sklar-lec18 1 Introduction Weak (search-based) problem-solving does not scale to real problems. To succeed, problem

More information

Natural Logic Welcome to the Course!

Natural Logic Welcome to the Course! 1/31 Natural Logic Welcome to the Course! Larry Moss Indiana University Nordic Logic School August 7-11, 2017 2/31 This course presents logical systems tuned to natural language The raison d être of logic

More information

Relational Reasoning in Natural Language

Relational Reasoning in Natural Language 1/67 Relational Reasoning in Natural Language Larry Moss ESSLLI 10 Course on Logics for Natural Language Inference August, 2010 Adding transitive verbs the work on R, R, and other systems is joint with

More information

INTRODUCTION TO LOGIC 1 Sets, Relations, and Arguments. Why logic? Arguments

INTRODUCTION TO LOGIC 1 Sets, Relations, and Arguments. Why logic? Arguments The Logic Manual INTRODUCTION TO LOGIC 1 Sets, Relations, and Arguments Volker Halbach Pure logic is the ruin of the spirit. Antoine de Saint-Exupéry The Logic Manual web page for the book: http://logicmanual.philosophy.ox.ac.uk/

More information

Contexts for Quantification

Contexts for Quantification Contexts for Quantification Valeria de Paiva Stanford April, 2011 Valeria de Paiva (Stanford) C4Q April, 2011 1 / 28 Natural logic: what we want Many thanks to Larry, Ulrik for slides! Program Show that

More information

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1 Propositional Logic: Syntax and Natural Deduction 1 The Plot That Will Unfold I want to provide some key historical and intellectual context to the model theoretic approach to natural language semantics,

More information

Introduction to Metalogic

Introduction to Metalogic Philosophy 135 Spring 2008 Tony Martin Introduction to Metalogic 1 The semantics of sentential logic. The language L of sentential logic. Symbols of L: Remarks: (i) sentence letters p 0, p 1, p 2,... (ii)

More information

Workshop on Inference from Text: Natural Logic

Workshop on Inference from Text: Natural Logic Workshop on Inference from Text: Natural Logic Larry Moss, Indiana University NASSLLI, June 21 22, 2010 Can we reason in language? Two views If we were to devise a logic of ordinary language for direct

More information

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims Introduction INTRODUCTION TO LOGIC 2 Syntax and Semantics of Propositional Logic Volker Halbach In what follows I look at some formal languages that are much simpler than English and define validity of

More information

Logic for Computer Science - Week 2 The Syntax of Propositional Logic

Logic for Computer Science - Week 2 The Syntax of Propositional Logic Logic for Computer Science - Week 2 The Syntax of Propositional Logic Ștefan Ciobâcă November 30, 2017 1 An Introduction to Logical Formulae In the previous lecture, we have seen what makes an argument

More information

Propositional Logic. Jason Filippou UMCP. ason Filippou UMCP) Propositional Logic / 38

Propositional Logic. Jason Filippou UMCP. ason Filippou UMCP) Propositional Logic / 38 Propositional Logic Jason Filippou CMSC250 @ UMCP 05-31-2016 ason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 1 / 38 Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference

More information

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker for computer scientists WiSe 2009/10 Rooms Monday 12:00-14:00 MZH 1400 Thursday 14:00-16:00 MZH 5210 Exercises (bring your Laptops with you!) Wednesday 8:00-10:00 Sportturm C 5130

More information

Logics for Natural Language Inference (expanded version of lecture notes from a course at ESSLLI 2010) Lawrence S. Moss November 2010

Logics for Natural Language Inference (expanded version of lecture notes from a course at ESSLLI 2010) Lawrence S. Moss November 2010 Logics for Natural Language Inference (expanded version of lecture notes from a course at ESSLLI 2010) Lawrence S. Moss November 2010 Copyright c 2010 by Lawrence S. Moss. Contents Chapter 1. Introduction

More information

Logic: The Big Picture

Logic: The Big Picture Logic: The Big Picture A typical logic is described in terms of syntax: what are the legitimate formulas semantics: under what circumstances is a formula true proof theory/ axiomatization: rules for proving

More information

Natural Logic. Larry Moss, Indiana University EASLLC, /41

Natural Logic. Larry Moss, Indiana University EASLLC, /41 1/41 Natural Logic Larry Moss, Indiana University EASLLC, 2014 2/41 This course deals with the relation of logic and natural language What does semantics look like when we make inference the primary object

More information

Adding Some. Larry Moss. Nordic Logic School August 7-11, Indiana University 1/37

Adding Some. Larry Moss. Nordic Logic School August 7-11, Indiana University 1/37 1/37 Adding Some Larry Moss Indiana University Nordic Logic School August 7-11, 2017 2/37 What this chapter is about We started with the very small logic A of All x are y. And most recently we added verbs

More information

127: Lecture notes HT17. Week 8. (1) If Oswald didn t shoot Kennedy, someone else did. (2) If Oswald hadn t shot Kennedy, someone else would have.

127: Lecture notes HT17. Week 8. (1) If Oswald didn t shoot Kennedy, someone else did. (2) If Oswald hadn t shot Kennedy, someone else would have. I. Counterfactuals I.I. Indicative vs Counterfactual (LfP 8.1) The difference between indicative and counterfactual conditionals comes out in pairs like the following: (1) If Oswald didn t shoot Kennedy,

More information

Mathematical Logic. Introduction to Reasoning and Automated Reasoning. Hilbert-style Propositional Reasoning. Chiara Ghidini. FBK-IRST, Trento, Italy

Mathematical Logic. Introduction to Reasoning and Automated Reasoning. Hilbert-style Propositional Reasoning. Chiara Ghidini. FBK-IRST, Trento, Italy Introduction to Reasoning and Automated Reasoning. Hilbert-style Propositional Reasoning. FBK-IRST, Trento, Italy Deciding logical consequence Problem Is there an algorithm to determine whether a formula

More information

What is logic, the topic of this course? There are at least two answers to that question.

What is logic, the topic of this course? There are at least two answers to that question. Applied Logic Lecture 1 CS 486 Spring 2005 Tuesday, January 25, 2005 What is Logic? What is logic, the topic of this course? There are at least two answers to that question. General logic: critical examination

More information

Introduction to Metalogic 1

Introduction to Metalogic 1 Philosophy 135 Spring 2012 Tony Martin Introduction to Metalogic 1 1 The semantics of sentential logic. The language L of sentential logic. Symbols of L: (i) sentence letters p 0, p 1, p 2,... (ii) connectives,

More information

Logic. Quantifiers. (real numbers understood). x [x is rotten in Denmark]. x<x+x 2 +1

Logic. Quantifiers. (real numbers understood). x [x is rotten in Denmark]. x<x+x 2 +1 Logic One reason for studying logic is that we need a better notation than ordinary English for expressing relationships among various assertions or hypothetical states of affairs. A solid grounding in

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Symbolic Logic 3. For an inference to be deductively valid it is impossible for the conclusion to be false if the premises are true.

Symbolic Logic 3. For an inference to be deductively valid it is impossible for the conclusion to be false if the premises are true. Symbolic Logic 3 Testing deductive validity with truth tables For an inference to be deductively valid it is impossible for the conclusion to be false if the premises are true. So, given that truth tables

More information

Quantification in the predicate calculus

Quantification in the predicate calculus Quantification in the predicate calculus PHIL 43916 eptember 5, 2012 1. The problem posed by quantified sentences... 1 2. yntax of PC... 2 3. Bound and free iables... 3 4. Models and assignments... 4 5.

More information

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION KRIPKE S THEORY OF TRUTH RICHARD G HECK, JR 1. INTRODUCTION The purpose of this note is to give a simple, easily accessible proof of the existence of the minimal fixed point, and of various maximal fixed

More information

Generalized Quantifiers Logical and Linguistic Aspects

Generalized Quantifiers Logical and Linguistic Aspects Generalized Quantifiers Logical and Linguistic Aspects Lecture 1: Formal Semantics and Generalized Quantifiers Dag Westerståhl University of Gothenburg SELLC 2010 Institute for Logic and Cognition, Sun

More information

Proof. Theorems. Theorems. Example. Example. Example. Part 4. The Big Bang Theory

Proof. Theorems. Theorems. Example. Example. Example. Part 4. The Big Bang Theory Proof Theorems Part 4 The Big Bang Theory Theorems A theorem is a statement we intend to prove using existing known facts (called axioms or lemmas) Used extensively in all mathematical proofs which should

More information

FORMAL PROOFS DONU ARAPURA

FORMAL PROOFS DONU ARAPURA FORMAL PROOFS DONU ARAPURA This is a supplement for M385 on formal proofs in propositional logic. Rather than following the presentation of Rubin, I want to use a slightly different set of rules which

More information

First Order Logic: Syntax and Semantics

First Order Logic: Syntax and Semantics CS1081 First Order Logic: Syntax and Semantics COMP30412 Sean Bechhofer sean.bechhofer@manchester.ac.uk Problems Propositional logic isn t very expressive As an example, consider p = Scotland won on Saturday

More information

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski WiSe 2013/14 Till Mossakowski Logic 1/ 29 The language of PL1 Till Mossakowski Logic 2/ 29 The language of PL1: individual constants

More information

Categorial Grammar. Larry Moss NASSLLI. Indiana University

Categorial Grammar. Larry Moss NASSLLI. Indiana University 1/37 Categorial Grammar Larry Moss Indiana University NASSLLI 2/37 Categorial Grammar (CG) CG is the tradition in grammar that is closest to the work that we ll do in this course. Reason: In CG, syntax

More information

Math 144 Summer 2012 (UCR) Pro-Notes June 24, / 15

Math 144 Summer 2012 (UCR) Pro-Notes June 24, / 15 Before we start, I want to point out that these notes are not checked for typos. There are prbally many typeos in them and if you find any, please let me know as it s extremely difficult to find them all

More information

First-Degree Entailment

First-Degree Entailment March 5, 2013 Relevance Logics Relevance logics are non-classical logics that try to avoid the paradoxes of material and strict implication: p (q p) p (p q) (p q) (q r) (p p) q p (q q) p (q q) Counterintuitive?

More information

Phil Introductory Formal Logic

Phil Introductory Formal Logic Phil 134 - Introductory Formal Logic Lecture 7: Deduction At last, it is time to learn about proof formal proof as a model of reasoning demonstrating validity metatheory natural deduction systems what

More information

Formal Epistemology: Lecture Notes. Horacio Arló-Costa Carnegie Mellon University

Formal Epistemology: Lecture Notes. Horacio Arló-Costa Carnegie Mellon University Formal Epistemology: Lecture Notes Horacio Arló-Costa Carnegie Mellon University hcosta@andrew.cmu.edu Logical preliminaries Let L 0 be a language containing a complete set of Boolean connectives, including

More information

THE LOGIC OF COMPOUND STATEMENTS

THE LOGIC OF COMPOUND STATEMENTS CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS Copyright Cengage Learning. All rights reserved. SECTION 2.1 Logical Form and Logical Equivalence Copyright Cengage Learning. All rights reserved. Logical Form

More information

Lecture 4: Proposition, Connectives and Truth Tables

Lecture 4: Proposition, Connectives and Truth Tables Discrete Mathematics (II) Spring 2017 Lecture 4: Proposition, Connectives and Truth Tables Lecturer: Yi Li 1 Overview In last lecture, we give a brief introduction to mathematical logic and then redefine

More information

Mathematical Preliminaries. Sipser pages 1-28

Mathematical Preliminaries. Sipser pages 1-28 Mathematical Preliminaries Sipser pages 1-28 Mathematical Preliminaries This course is about the fundamental capabilities and limitations of computers. It has 3 parts 1. Automata Models of computation

More information

Propositional and Predicate Logic - IV

Propositional and Predicate Logic - IV Propositional and Predicate Logic - IV Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - IV ZS 2015/2016 1 / 19 Tableau method (from the previous lecture)

More information

LIN1032 Formal Foundations for Linguistics

LIN1032 Formal Foundations for Linguistics LIN1032 Formal Foundations for Lecture 1 Albert Gatt Practical stuff Course tutors: Albert Gatt (first half) albert.gatt@um.edu.mt Ray Fabri (second half) ray.fabri@um.edu.mt Course website: TBA Practical

More information

Propositional Logic: Syntax

Propositional Logic: Syntax Logic Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and programs) epistemic

More information

Lecture 13: Soundness, Completeness and Compactness

Lecture 13: Soundness, Completeness and Compactness Discrete Mathematics (II) Spring 2017 Lecture 13: Soundness, Completeness and Compactness Lecturer: Yi Li 1 Overview In this lecture, we will prvoe the soundness and completeness of tableau proof system,

More information

Propositional Logic Arguments (5A) Young W. Lim 11/8/16

Propositional Logic Arguments (5A) Young W. Lim 11/8/16 Propositional Logic (5A) Young W. Lim Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Logic Background (1A) Young W. Lim 12/14/15

Logic Background (1A) Young W. Lim 12/14/15 Young W. Lim 12/14/15 Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Arguments and Proofs. 1. A set of sentences (the premises) 2. A sentence (the conclusion)

Arguments and Proofs. 1. A set of sentences (the premises) 2. A sentence (the conclusion) Arguments and Proofs For the next section of this course, we will study PROOFS. A proof can be thought of as the formal representation of a process of reasoning. Proofs are comparable to arguments, since

More information

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3.

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3. CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS SECTION 3.1 Predicates and Quantified Statements I Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Predicates

More information

PHIL12A Section answers, 14 February 2011

PHIL12A Section answers, 14 February 2011 PHIL12A Section answers, 14 February 2011 Julian Jonker 1 How much do you know? 1. You should understand why a truth table is constructed the way it is: why are the truth values listed in the order they

More information

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula:

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula: Logic: The Big Picture Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and

More information

Mathematics 114L Spring 2018 D.A. Martin. Mathematical Logic

Mathematics 114L Spring 2018 D.A. Martin. Mathematical Logic Mathematics 114L Spring 2018 D.A. Martin Mathematical Logic 1 First-Order Languages. Symbols. All first-order languages we consider will have the following symbols: (i) variables v 1, v 2, v 3,... ; (ii)

More information

MA103 STATEMENTS, PROOF, LOGIC

MA103 STATEMENTS, PROOF, LOGIC MA103 STATEMENTS, PROOF, LOGIC Abstract Mathematics is about making precise mathematical statements and establishing, by proof or disproof, whether these statements are true or false. We start by looking

More information

THE LOGIC OF COMPOUND STATEMENTS

THE LOGIC OF COMPOUND STATEMENTS THE LOGIC OF COMPOUND STATEMENTS All dogs have four legs. All tables have four legs. Therefore, all dogs are tables LOGIC Logic is a science of the necessary laws of thought, without which no employment

More information

Equational Logic and Term Rewriting: Lecture I

Equational Logic and Term Rewriting: Lecture I Why so many logics? You all know classical propositional logic. Why would we want anything more? Equational Logic and Term Rewriting: Lecture I One reason is that we might want to change some basic logical

More information

LIN1032 Formal Foundations for Linguistics

LIN1032 Formal Foundations for Linguistics LIN1032 Formal Foundations for Lecture 5 Albert Gatt In this lecture We conclude our discussion of the logical connectives We begin our foray into predicate logic much more expressive than propositional

More information

Section 2.1: Introduction to the Logic of Quantified Statements

Section 2.1: Introduction to the Logic of Quantified Statements Section 2.1: Introduction to the Logic of Quantified Statements In the previous chapter, we studied a branch of logic called propositional logic or propositional calculus. Loosely speaking, propositional

More information

Propositional logic. First order logic. Alexander Clark. Autumn 2014

Propositional logic. First order logic. Alexander Clark. Autumn 2014 Propositional logic First order logic Alexander Clark Autumn 2014 Formal Logic Logical arguments are valid because of their form. Formal languages are devised to express exactly that relevant form and

More information

Logic. Propositional Logic: Syntax. Wffs

Logic. Propositional Logic: Syntax. Wffs Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

Equivalent Forms of the Axiom of Infinity

Equivalent Forms of the Axiom of Infinity Equivalent Forms of the Axiom of Infinity Axiom of Infinity 1. There is a set that contains each finite ordinal as an element. The Axiom of Infinity is the axiom of Set Theory that explicitly asserts that

More information

Introducing Proof 1. hsn.uk.net. Contents

Introducing Proof 1. hsn.uk.net. Contents Contents 1 1 Introduction 1 What is proof? 1 Statements, Definitions and Euler Diagrams 1 Statements 1 Definitions Our first proof Euler diagrams 4 3 Logical Connectives 5 Negation 6 Conjunction 7 Disjunction

More information

A Little History Incompleteness The First Theorem The Second Theorem Implications. Gödel s Theorem. Anders O.F. Hendrickson

A Little History Incompleteness The First Theorem The Second Theorem Implications. Gödel s Theorem. Anders O.F. Hendrickson Gödel s Theorem Anders O.F. Hendrickson Department of Mathematics and Computer Science Concordia College, Moorhead, MN Math/CS Colloquium, November 15, 2011 Outline 1 A Little History 2 Incompleteness

More information

5. And. 5.1 The conjunction

5. And. 5.1 The conjunction 5. And 5.1 The conjunction To make our logical language more easy and intuitive to use, we can now add to it elements that make it able to express the equivalents of other sentences from a natural language

More information

Formal (natural) deduction in propositional logic

Formal (natural) deduction in propositional logic Formal (natural) deduction in propositional logic Lila Kari University of Waterloo Formal (natural) deduction in propositional logic CS245, Logic and Computation 1 / 67 I know what you re thinking about,

More information

Lecture 11: Gödel s Second Incompleteness Theorem, and Tarski s Theorem

Lecture 11: Gödel s Second Incompleteness Theorem, and Tarski s Theorem Lecture 11: Gödel s Second Incompleteness Theorem, and Tarski s Theorem Valentine Kabanets October 27, 2016 1 Gödel s Second Incompleteness Theorem 1.1 Consistency We say that a proof system P is consistent

More information

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel Propositional Logic Testing, Quality Assurance, and Maintenance Winter 2018 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

Introduction to Logic

Introduction to Logic Introduction to Logic L. Marizza A. Bailey June 21, 2014 The beginning of Modern Mathematics Before Euclid, there were many mathematicians that made great progress in the knowledge of numbers, algebra

More information

Ling 130 Notes: Syntax and Semantics of Propositional Logic

Ling 130 Notes: Syntax and Semantics of Propositional Logic Ling 130 Notes: Syntax and Semantics of Propositional Logic Sophia A. Malamud January 21, 2011 1 Preliminaries. Goals: Motivate propositional logic syntax and inferencing. Feel comfortable manipulating

More information

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 1 Real Numbers In these lectures, we are going to study a branch of mathematics called

More information

Lecture 3: Semantics of Propositional Logic

Lecture 3: Semantics of Propositional Logic Lecture 3: Semantics of Propositional Logic 1 Semantics of Propositional Logic Every language has two aspects: syntax and semantics. While syntax deals with the form or structure of the language, it is

More information

First Order Logic (1A) Young W. Lim 11/18/13

First Order Logic (1A) Young W. Lim 11/18/13 Copyright (c) 2013. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #4: Predicates and Quantifiers Based on materials developed by Dr. Adam Lee Topics n Predicates n

More information

P Q (P Q) (P Q) (P Q) (P % Q) T T T T T T T F F T F F F T F T T T F F F F T T

P Q (P Q) (P Q) (P Q) (P % Q) T T T T T T T F F T F F F T F T T T F F F F T T Logic and Reasoning Final Exam Practice Fall 2017 Name Section Number The final examination is worth 100 points. 1. (10 points) What is an argument? Explain what is meant when one says that logic is the

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

First Order Logic (1A) Young W. Lim 11/5/13

First Order Logic (1A) Young W. Lim 11/5/13 Copyright (c) 2013. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software

More information

Overview of Today s Lecture

Overview of Today s Lecture Branden Fitelson Philosophy 4515 (Advanced Logic) Notes 1 Overview of Today s Lecture Administrative Stuff HW #1 grades and solutions have been posted Please make sure to work through the solutions HW

More information

Introduction to Logic

Introduction to Logic Introduction to Logic 1 What is Logic? The word logic comes from the Greek logos, which can be translated as reason. Logic as a discipline is about studying the fundamental principles of how to reason

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Reasoning Modal Logics Bernhard Nebel, Malte Helmert and Stefan Wölfl Albert-Ludwigs-Universität Freiburg May 2 & 6, 2008 Nebel, Helmert, Wölfl (Uni Freiburg)

More information

Lecture 15: Validity and Predicate Logic

Lecture 15: Validity and Predicate Logic Lecture 15: Validity and Predicate Logic 1 Goals Today Learn the definition of valid and invalid arguments in terms of the semantics of predicate logic, and look at several examples. Learn how to get equivalents

More information

Class 29 - November 3 Semantics for Predicate Logic

Class 29 - November 3 Semantics for Predicate Logic Philosophy 240: Symbolic Logic Fall 2010 Mondays, Wednesdays, Fridays: 9am - 9:50am Hamilton College Russell Marcus rmarcus1@hamilton.edu Class 29 - November 3 Semantics for Predicate Logic I. Proof Theory

More information

EXERCISE 10 SOLUTIONS

EXERCISE 10 SOLUTIONS CSE541 EXERCISE 10 SOLUTIONS Covers Chapters 10, 11, 12 Read and learn all examples and exercises in the chapters as well! QUESTION 1 Let GL be the Gentzen style proof system for classical logic defined

More information

Lecture 7. Logic. Section1: Statement Logic.

Lecture 7. Logic. Section1: Statement Logic. Ling 726: Mathematical Linguistics, Logic, Section : Statement Logic V. Borschev and B. Partee, October 5, 26 p. Lecture 7. Logic. Section: Statement Logic.. Statement Logic..... Goals..... Syntax of Statement

More information

Propositional Logic and Semantics

Propositional Logic and Semantics Propositional Logic and Semantics English is naturally ambiguous. For example, consider the following employee (non)recommendations and their ambiguity in the English language: I can assure you that no

More information

(Refer Slide Time: 02:20)

(Refer Slide Time: 02:20) Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 5 Logical Inference In the last class we saw about

More information

Logical Structures in Natural Language: Propositional Logic II (Truth Tables and Reasoning

Logical Structures in Natural Language: Propositional Logic II (Truth Tables and Reasoning Logical Structures in Natural Language: Propositional Logic II (Truth Tables and Reasoning Raffaella Bernardi Università degli Studi di Trento e-mail: bernardi@disi.unitn.it Contents 1 What we have said

More information

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Our main goal is here is to do counting using functions. For that, we

More information

Propositional Language - Semantics

Propositional Language - Semantics Propositional Language - Semantics Lila Kari University of Waterloo Propositional Language - Semantics CS245, Logic and Computation 1 / 41 Syntax and semantics Syntax Semantics analyzes Form analyzes Meaning

More information

Semantics and Generative Grammar. The Semantics of Adjectival Modification 1. (1) Our Current Assumptions Regarding Adjectives and Common Ns

Semantics and Generative Grammar. The Semantics of Adjectival Modification 1. (1) Our Current Assumptions Regarding Adjectives and Common Ns The Semantics of Adjectival Modification 1 (1) Our Current Assumptions Regarding Adjectives and Common Ns a. Both adjectives and common nouns denote functions of type (i) [[ male ]] = [ λx : x D

More information

Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras

Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras V. Borschev and B. Partee, September 21-26, 2006 p. 1 Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras CONTENTS 1. Lattices.... 1 1.0. Why lattices?... 1 1.1. Posets... 1 1.1.1. Upper

More information

CMPSCI 601: Tarski s Truth Definition Lecture 15. where

CMPSCI 601: Tarski s Truth Definition Lecture 15. where @ CMPSCI 601: Tarski s Truth Definition Lecture 15! "$#&%(') *+,-!".#/%0'!12 43 5 6 7 8:9 4; 9 9 < = 9 = or 5 6?>A@B!9 2 D for all C @B 9 CFE where ) CGE @B-HI LJKK MKK )HG if H ; C if H @ 1 > > > Fitch

More information

- 1.2 Implication P. Danziger. Implication

- 1.2 Implication P. Danziger. Implication Implication There is another fundamental type of connectives between statements, that of implication or more properly conditional statements. In English these are statements of the form If p then q or

More information

On the Complexity of the Reflected Logic of Proofs

On the Complexity of the Reflected Logic of Proofs On the Complexity of the Reflected Logic of Proofs Nikolai V. Krupski Department of Math. Logic and the Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899,

More information

(Refer Slide Time: 0:21)

(Refer Slide Time: 0:21) Theory of Computation Prof. Somenath Biswas Department of Computer Science and Engineering Indian Institute of Technology Kanpur Lecture 7 A generalisation of pumping lemma, Non-deterministic finite automata

More information

Lecture 9. Model theory. Consistency, independence, completeness, categoricity of axiom systems. Expanded with algebraic view.

Lecture 9. Model theory. Consistency, independence, completeness, categoricity of axiom systems. Expanded with algebraic view. V. Borschev and B. Partee, October 17-19, 2006 p. 1 Lecture 9. Model theory. Consistency, independence, completeness, categoricity of axiom systems. Expanded with algebraic view. CONTENTS 0. Syntax and

More information

Chapter 11: Automated Proof Systems

Chapter 11: Automated Proof Systems Chapter 11: Automated Proof Systems SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems are

More information

Propositional Logic Arguments (5A) Young W. Lim 11/29/16

Propositional Logic Arguments (5A) Young W. Lim 11/29/16 Propositional Logic (5A) Young W. Lim Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Introduction to Logic and Axiomatic Set Theory

Introduction to Logic and Axiomatic Set Theory Introduction to Logic and Axiomatic Set Theory 1 Introduction In mathematics, we seek absolute rigor in our arguments, and a solid foundation for all of the structures we consider. Here, we will see some

More information

Logic (3A) Young W. Lim 10/29/13

Logic (3A) Young W. Lim 10/29/13 Copyright (c) 2013. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software

More information

All psychiatrists are doctors All doctors are college graduates All psychiatrists are college graduates

All psychiatrists are doctors All doctors are college graduates All psychiatrists are college graduates Predicate Logic In what we ve discussed thus far, we haven t addressed other kinds of valid inferences: those involving quantification and predication. For example: All philosophers are wise Socrates is

More information

Logic. (Propositional Logic)

Logic. (Propositional Logic) Logic (Propositional Logic) 1 REPRESENTING KNOWLEDGE: LOGIC Logic is the branch of mathematics / philosophy concerned with knowledge and reasoning Aristotle distinguished between three types of arguments:

More information